WP5 - Computational Mechanics B1 (ESP-N2) Barrier Steel N2 MAIN REPORT Volume 2 of 2

Size: px
Start display at page:

Download "WP5 - Computational Mechanics B1 (ESP-N2) Barrier Steel N2 MAIN REPORT Volume 2 of 2"

Transcription

1 ROBUST PROJECT TRL Limited WP5 - Computational Mechanics B1 (ESP-N2) Barrier Steel N2 Volume 2 of 2 November 2005 Doc. No.: ROBUST 5-014b Rev. 1.

2 (Logo here) Main Report Report title: WP5 - Computational Mechanics Client: TRL Limited TRL Project no.: ROBUST EC/HA / Doc. no.: Document no: ROBUST-5-014b - Rev. 1 Reporter(s): M McGrath, G Williams (S Sumon) Abstract: The Robust Project aims to improve scientific and technical knowledge on the main issues still open in the new European standards on the road restraint system EN1317. The knowledge acquired will form the basis of updated standards for EN 1317 and lead to more advanced road restraint systems and improve road-users safety. This report is part of the deliverables from Work Package 5 Computational Mechanics. This report documents the simulations performed on the B1 (ESP-N2) barrier. The simulations were performed by TRL Limited. Keywords: Restricted Internal Free distribution Ref. allowed Rev. no. Date Prepared by Checked by Approved by Reason for revision M McGrath G Williams no-en

3 ROBUST project Page i CONTENTS 1 INTRODUCTION SUMMARY AND CONCLUSIONS Summary Conclusions SIMULATION OF BARRIER B1 CASE General Additional data Input data Test item Test procedure Analysis data Analysis results SIMULATION OF BARRIER B1 CASE General Additional data Input data Test item Test procedure Analysis data Analysis results REFERENCES...23

4 ROBUST project Page 1 1 INTRODUCTION The Robust project aims to improve scientific and technical knowledge on the main issues still open in the new European standards on road restraint systems EN The knowledge acquired will form the basis of updated standards for EN1317 and lead to more advanced road restraint systems and improved road-users safety. This report is part of the deliverables from Work Package 5 Computational Mechanics. The objective of WP5 is: Evaluation and enhancement of the use of computational mechanics to complement experimental activity Criteria and procedures for the validation of computational mechanics results through comparison with test results Reconstruction of real life accidents Identification of the activity needed for further enhancement of the use of computational mechanics. This report documents the simulations performed on the B1 (ESP-N2) barrier. The simulations were performed by TRL Limited as part of the ROBUST project and were run with version 970 revision 5434a of LS_DY. The data was output at 1.0E-5 from the THF and NODOUT files. PLEASE NOTE: This report should be read in conjunction with B1 (ESP-N2) Barrier Steel N2 Volume 1 of 2. This report documents the results from the same model, run under version 970 revision of LS-DY. The data was output at 1.0E-5 from the THF files and 1.0E- 3 from the RBDOUT file.

5 ROBUST project Page 2 2 SUMMARY AND CONCLUSIONS 2.1 Summary The following simulations have been performed with the B1 barrier: Barrier Test Name id. Chapter B1 case 1 Post fixed 200mm below ground level. The ends of profile are fixed. B1 case 2 Post fixed 200mm below ground level. The ends of profile are fixed. TB11 TB11 GM_R2_Vehicle- ESP-N2_barrier (R2 Vehicle Model) Generic_Vehicle- ESP-N2_barrier (TRL Generic Vehicle Model) Chapter 3 Chapter 4 The main results are summarised in Table 2-1 below. Table 2-1 Results from simulations with the B1 barrier Case ASI [-] THIV [km/h] PHD [g] Working Width [mm] Exit speed [km/h] Exit angle [deg] Trajectory Detailed description OK Chapter OK Chapter4 2.2 Conclusions

6 ROBUST project Page 3 3 SIMULATION OF BARRIER B1 CASE General This chapter gives a brief description of the results obtained from a simulation of a small car (GM_R2) hitting the B1 barrier with a velocity of 100 km/h and at an angle of 20 degrees. The B1 barrier is an ESP-N2 barrier, which consists of sigma posts and N2 steel profile. The characteristics specific to this simulation are: The sigma posts are fixed 200 mm below ground level All posts are modelled as non-linear The ends of the w-profile are fixed No friction between barrier and vehicle Friction between the ground and tyres was set to Additional data The following data and files supplement the result presentation of the simulation as presented in this chapter. Excel worksheet file: Rawdata file: Animations: GM_R2_Vehicle-ESP-N2_barrier_A.xls GM_R2_Vehicle-ESP-N2_barrier_Rawdata_A.zip - front view GM_R2_Vehicle-ESP-N2_barrier_Front_view_A.mpg * - side view GM_R2_Vehicle-ESP-N2_barrier_Side_view_A.mpg * - top view GM_R2_Vehicle-ESP-N2_barrier_Top_view_A.mpg * - perspective GM_R2_Vehicle-ESP-N2_barrier_Perspective_view_A.mpg * *AVI format of the animation is available on request (approximately 130MB each) 3.3 Input data Test item Test item: Vehicle: ESP-N2 GeoMetro GM_R2

7 ROBUST project Page Test procedure 1) Test type TB11 Impact speed: Impact angle: Impact point Spinning wheels: Inertial vehicle test mass: 100 km/h 20 degrees About 26 metres from the beginning of the VRS Yes 855 kg 2) VRS model Barrier type: Number of posts: Spacing: Total length: Element formulation/type: Connection/Joints: Foundation: End anchoring: Soil (type and formulation): Roadway: ESP N2 37 (including 2 x 3 posts at the end slopes) 2 m 76 m Shell elements used for all sections Bolt connections are modelled using spotwelds with failure (between the posts and profile). Modelled W-profile is fixed at the ends Plot of FE-Model Table 3.2 Material Data Table 3.3 Modelled as rigid walls 3) Vehicle model The model of the GeoMetro, version GM_R2 was used in the simulations. The version of the GM_R2 that was used in the model run has not been identified. The mass of the vehicle was calculated by removing the barrier from the model Analysis data Timestep: Precision: Friction barrier/vehicle (static coefficient): 0 Friction barrier/vehicle (dynamic coefficient) E-6 Single Friction wheel/ground (static coefficient) 0.7

8 ROBUST project Page 5 Friction wheel/ground (dynamic coefficient) Accelerometer location (mounting block) from COG (mm) Sampling rate Friction other: 111 longitudinally / 27 laterally / 140 vertically 1.0E-5 for THF and NODOUT data Table 3-1 Model description. VRS for roads Vehicle restraint system Computer model, VRS for roads Model description Nodes Shell elements / Brick elements Spot welds Materials / Other The VRS was modelled using shell elements for all sections. The bolt connections were modelled using spot-welds (between the posts and profile). There is no friction between the car and the VRS. The road was modelled in the FE-model. The posts were extended below the road. Table 3-2 Material characteristic Steel and plastic sections. Vehicle restraint system Part E-Module [MPa] Density [kg/m3] Yield Stress [MPa] Ultimate Stress Failure Strain [-] Comments [MPa] Sigma Posts Non-linear W-profile Non-linear Brackets Non-linear Strain Rate Stress vs. strain values STRAIN -- STRESS MPa MPa

9 ROBUST project Page Analysis results 1) VRS Maximum global dynamic deflection: Working width: Maximum global permanent deflection: Length of contact: Major parts fractured or detached: Description of damage to test items: Ground anchorage s meets design levels: 636 mm 774 mm Unable to calculate because the barrier was still moving at the end of the run at 500 ms. Approx 6 m No 3 posts detached from profile Plot of test items: Table 3.4 Table 3.7 2) Vehicle Image of the vehicle at the time when the exit angle and speed were calculated at 500ms Exit speed: km/h Exit angle: 8.9 degrees Rebound distance: Vehicle breaches barrier: No Vehicle passes over the barrier: No Vehicle within CEN box : See General Statement (Section 3.4, 5) Vehicle rolls over after impact: No Damage to test vehicle: Table 3.8

10 ROBUST project Page 7 3) General description of vehicle trajectory: The vehicle hits the VRS at a velocity of 100 km/h and at an angle of 20 degrees. The vehicle leaves the VRS at an angle of 8.90 degrees. The trajectory is good in the simulation. Vehicle damage TAD: Vehicle damage VDI: Vehicle cockpit def. index VCDI: Major parts of vehicle detached: No Plots of the vehicle: Table 3.8 4) Assessment of the impact severity Post-processing procedure Accelerometer data used in Diadem Acceleration severity index, ASI: 0.86 Acceleration graphs: No THIV: km/h Time of flight: Post-impact head deceleration, PHD: g Flail space: 0.6 x 0.3 m 5) General statement Based on the above it can be concluded that the crash protection system fulfils the requirements of the CEN standard

11 ROBUST project Page 8 Table 3-3 Vehicle - Front view. Time 0.00 Time 0.12 Time 0.16 Time 0.24 Time 0.35 Time 0.45

12 ROBUST project Page 9 Table 3-4 Vehicle Side view. Time 0.00 Time 0.12 Time 0.16 Time 0.24 Time 0.35 Time 0.45

13 ROBUST project Page 10 Table 3-5 Vehicle - Top view Time 0.00 Time 0.12 Time 0.16 Time 0.24 Time 0.35 Time 0.45

14 ROBUST project Page 11 Table 3-6 Vehicle Iso View Time 0.00 Time 0.12 Time 0.16 Time 0.24 Time 0.35 Time 0.45

15 ROBUST project Page 12 Top view Table 3-7 Vehicle damage. Bottom view Side view Side view View View

16 ROBUST project Page 13 4 SIMULATION OF BARRIER B1 CASE General This gives a brief description of the results obtained from a simulation of a small generic vehicle (940 kg) hitting the B1 barrier with a velocity of 100 km/h and at an angle of 20 degrees. The B1 barrier is an ESP-N2 barrier which consists of sigma posts and N2 steel profile. The characteristics specific to this simulation are: The sigma posts are fixed 200 mm below ground level All posts are modelled as non-linear The ends of the w-profile are fixed There is no friction between the barrier and the vehicle Friction between the ground and the tyres was set to Additional data The following data and files supplement the result presentation of the simulation as presented in this chapter. Excel worksheet file: Rawdata file: Animations: Generic_Vehicle-ESP-N2_barrier_A.xls Generic_Vehicle-ESP-N2_barrier_Rawdata_A.zip - front view Generic_Vehicle-ESP-N2_barrier_Front_view_A.mpg * - side view Generic_Vehicle-ESP-N2_barrier_Side_view_A.mpg * - top view Generic_Vehicle-ESP-N2_barrier_Top_view_A.mpg * - perspective Generic_Vehicle-ESP-N2_barrier_Perspective_view_A.mpg * *AVI format of the animation is available on request (approximately 130MB each) 4.3 Input data Test item Test item: Vehicle: ESP-N2 Generic Model Test procedure 4) Test type TB11

17 ROBUST project Page 14 Impact speed: Impact angle: Impact point Spinning wheels: Inertial vehicle test mass: 100 km/h 20 degrees About 26 metres from the beginning of the VRS No 940 kg 5) VRS model Barrier type: Number of posts: Spacing: Total length: Element formulation/type: Connection/Joints: Foundation: End anchoring: Soil (type and formulation): Roadway: ESP N2 37 (including 2 x 3 posts at the end slopes) 2 m 76 m Shell elements used for all sections Bolt connections are modelled using spotwelds with failure (between the posts and profile). Modelled W-profile is fixed at the ends None Plot of FE-Model Table 4.2 Material Data Table 4.3 6) Vehicle model A generic vehicle model was used in the simulations Analysis data Timestep: Precision: 2.03E-6 Single Friction barrier/vehicle (static coefficient): 0.3 Friction barrier/vehicle (dynamic coefficient) 0.1 Friction wheel/ground (static coefficient) Friction wheel/ground (dynamic coefficient) Accelerometer location (mounting block) from COG (mm) Sampling rate Friction other: 131 longitudinally / laterally / 20 vertically 1.0E-5 for THF and NODOUT data

18 ROBUST project Page 15 Table 4-1 Model description. VRS for roads Vehicle restraint system Computer model, VRS for roads Model description Nodes Shell elements / Brick elements Spot welds Materials / Other The VRS was modelled using shell elements for all sections. The bolt connections were modelled using spot-welds (between the posts and profile). Friction was modelled between the car and the VRS. The road was not modelled in the FE-model. The posts were extended below the road. Table 4-2 Material characteristic Steel and plastic sections. Vehicle restraint system Part E-Module [MPa] Density [kg/m3] Yield Stress [MPa] Ultimate Stress Failure Strain [-] Comments [MPa] Sigma Posts Non-linear W-profile Non-linear Brackets Non-linear Strain Rate Stress vs. strain values STRAIN -- STRESS MPa MPa

19 ROBUST project Page Analysis results 6) VRS Maximum global dynamic deflection: Working width: Maximum global permanent deflection: Length of contact: Major parts fractured or detached: Description of damage to test items: Ground anchorage s meets design levels: 639 mm 836 mm Unable to calculate because the barrier was still moving at the end of the run at 500 ms. Approx 7.5 m No 5 posts detached from profile Plot of test items: Table 4.4 Table 4.7 7) Vehicle Image of the vehicle at the time when the exit angle and speed were calculated Exit speed: Exit angle: Rebound distance: Vehicle breaches barrier: Vehicle passes over the barrier: km/h 2.25 degrees Vehicle within CEN box : See General Statement (Section 4.4, 10) Vehicle rolls over after impact: No No No Damage to test vehicle: Table 4.8

20 ROBUST project Page 17 8) General description of vehicle trajectory: The vehicle hits the VRS at a velocity of 100 km/h and at an angle of 20 degrees. The vehicle leaves the VRS at an angle of 2.25 degrees. Vehicle damage TAD: Vehicle damage VDI: Vehicle cockpit def. index VCDI: Major parts of vehicle detached: No Plots of the vehicle: Table 4.8 9) Assessment of the impact severity Post-processing procedure Accelerometer data used in Diadem Acceleration severity index, ASI: 0.69 Acceleration graphs: No THIV: km/h Time of flight: Post-impact head deceleration, PHD: 8.8g Flail space: 0.6 x 0.3 m 10) General statement Based on the above it can be concluded that the crash protection system fulfils the requirements of the CEN standard.

21 ROBUST project Page 18 Table 4-3 Vehicle - Front view. Time 0.00 Time 0.11 Time 0.16 Time 0.22 Time 0.35 Time 0.42

22 ROBUST project Page 19 Table 4-4 Vehicle Side view. Time 0.00 Time 0.11 Time 0.16 Time 0.22 Time 0.35 Time 0.42

23 ROBUST project Page 20 Table 4-5 Vehicle - Top view Time 0.00 Time 0.11 Time 0.16 Time 0.22 Time 0.35 Time 0.42

24 ROBUST project Page 21 Table 4-6 Vehicle Iso View Time 0.00 Time 0.11 Time 0.16 Time 0.22 Time 0.35 Time 0.42

25 ROBUST project Page 22 Top view Table 4-7 Vehicle damage. Bottom view Side view Side view View View

26 ROBUST project Page 23 5 REFERENCES Ref. 1: Ref. 2: EN : Road restraint systems Part 1: Terminology and general criteria for test methods. European Committee for Standardization, April EN : Road restraint systems Part 2: Performance classes, impact test acceptance criteria and test methods for safety barriers. European Committee for Standardization, April 1998.

27

WP5 - Computational Mechanics B5 - Temporary Vertical Concrete Safety Barrier MAIN REPORT Volume 1 of 1

WP5 - Computational Mechanics B5 - Temporary Vertical Concrete Safety Barrier MAIN REPORT Volume 1 of 1 ROBUST PROJECT TRL Limited WP5 - Computational Mechanics B5 - Temporary Vertical Concrete Safety Barrier MAIN REPORT Volume 1 of 1 December 2005 Doc. No.: ROBUST-5-010c Rev. 0. (Logo here) Main Report

More information

ROBUST PROJECT Norwegian Public Roads Administration / Force Technology Norway AS

ROBUST PROJECT Norwegian Public Roads Administration / Force Technology Norway AS ROBUST PROJECT Norwegian Public Roads Administration / Force Technology Norway AS Evaluation of small car - RM_R1 - prepared by Politecnico di Milano Volume 1 of 1 January 2006 Doc. No.: ROBUST-5-002/TR-2004-0039

More information

ROBUST PROJECT Norwegian Public Roads Administration / Force Technology Norway AS

ROBUST PROJECT Norwegian Public Roads Administration / Force Technology Norway AS ROBUST PROJECT Norwegian Public Roads Administration / Force Technology Norway AS Volume 1 of 1 April 2005 Doc. No.: ROBUST-05-009/TR-2005-0012 - Rev. 0 286-2-1-no-en Main Report Report title: Simulation

More information

Manual for Assessing Safety Hardware

Manual for Assessing Safety Hardware American Association of State Highway and Transportation Officials Manual for Assessing Safety Hardware 2009 vii PREFACE Effective traffic barrier systems, end treatments, crash cushions, breakaway devices,

More information

NUMERICAL ANALYSIS OF IMPACT BETWEEN SHUNTING LOCOMOTIVE AND SELECTED ROAD VEHICLE

NUMERICAL ANALYSIS OF IMPACT BETWEEN SHUNTING LOCOMOTIVE AND SELECTED ROAD VEHICLE Journal of KONES Powertrain and Transport, Vol. 21, No. 4 2014 ISSN: 1231-4005 e-issn: 2354-0133 ICID: 1130437 DOI: 10.5604/12314005.1130437 NUMERICAL ANALYSIS OF IMPACT BETWEEN SHUNTING LOCOMOTIVE AND

More information

STI Project: Barrier Systems, Inc. RTS-QMB Longitudinal Barrier. Page 38 of 40 QBOR1. Appendix F (Continued) Figure F-3

STI Project: Barrier Systems, Inc. RTS-QMB Longitudinal Barrier. Page 38 of 40 QBOR1. Appendix F (Continued) Figure F-3 Barrier Systems, Inc. RTS-QMB Longitudinal Barrier STI Project: QBOR1 Page 38 of 40 Appendix F (Continued) Figure F-3 t=.500sec 115 meters overall 37.1 Impact Severity (kj).. 141.6 Angle (deg).. 25 Speed

More information

Electronic Reporting

Electronic Reporting Electronic Reporting Test TB31 of BS EN 1317 Parts 1 & 2 Test Number: TRL068 Trief Kerb and Pavement (Opinions and interpretations do not form part of this report.) TEST REPORT VIDEO FOOTAGE TRL068, Trief

More information

July 10, Refer to: HSA-10/CC-78A

July 10, Refer to: HSA-10/CC-78A July 10, 2003 Refer to: HSA-10/CC-78A Barry D. Stephens, P.E. Senior Vice President of Engineering ENERGY ABSORPTION Systems, Inc. 3617 Cincinnati Avenue Rocklin, California 95765 Dear Mr. Stephens: Your

More information

Correlation of Occupant Evaluation Index on Vehicle-occupant-guardrail Impact System Guo-sheng ZHANG, Hong-li LIU and Zhi-sheng DONG

Correlation of Occupant Evaluation Index on Vehicle-occupant-guardrail Impact System Guo-sheng ZHANG, Hong-li LIU and Zhi-sheng DONG 07 nd International Conference on Computer, Mechatronics and Electronic Engineering (CMEE 07) ISBN: 978--60595-53- Correlation of Occupant Evaluation Index on Vehicle-occupant-guardrail Impact System Guo-sheng

More information

Design Evaluation of Fuel Tank & Chassis Frame for Rear Impact of Toyota Yaris

Design Evaluation of Fuel Tank & Chassis Frame for Rear Impact of Toyota Yaris International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-0056 Volume: 03 Issue: 05 May-2016 p-issn: 2395-0072 www.irjet.net Design Evaluation of Fuel Tank & Chassis Frame for Rear

More information

Crashworthiness Evaluation of an Impact Energy Absorber in a Car Bumper for Frontal Crash Event - A FEA Approach

Crashworthiness Evaluation of an Impact Energy Absorber in a Car Bumper for Frontal Crash Event - A FEA Approach Crashworthiness Evaluation of an Impact Energy Absorber in a Car Bumper for Frontal Crash Event - A FEA Approach Pravin E. Fulpagar, Dr.S.P.Shekhawat Department of Mechanical Engineering, SSBTS COET Jalgaon.

More information

Finite Element Modeling and Analysis of Crash Safe Composite Lighting Columns, Contact-Impact Problem

Finite Element Modeling and Analysis of Crash Safe Composite Lighting Columns, Contact-Impact Problem 9 th International LS-DYNA Users Conference Impact Analysis (3) Finite Element Modeling and Analysis of Crash Safe Composite Lighting Columns, Contact-Impact Problem Alexey Borovkov, Oleg Klyavin and Alexander

More information

Jaroslav Maly & team CAE departament. AV ENGINEERING, a.s.

Jaroslav Maly & team CAE departament. AV ENGINEERING, a.s. Design & Simulation of one axle trailer loading by 6 or 7 passenger cars - Virtual Product Development Jaroslav Maly & team CAE departament www.aveng.com Pro/ENGINEER design optimization of axle trailer

More information

February 8, In Reply Refer To: HSSD/CC-104

February 8, In Reply Refer To: HSSD/CC-104 February 8, 2008 200 New Jersey Avenue, SE. Washington, DC 20590 In Reply Refer To: HSSD/CC-04 Barry D. Stephens, P.E. Sr. Vice President Engineering Energy Absorption Systems, Inc. 367 Cincinnati Avenue

More information

VERIFICATION & VALIDATION REPORT of MGS Barrier Impact with 1100C Vehicle Using Toyota Yaris Coarse FE Model

VERIFICATION & VALIDATION REPORT of MGS Barrier Impact with 1100C Vehicle Using Toyota Yaris Coarse FE Model VERIFICATION & VALIDATION REPORT of MGS Barrier Impact with 1100C Vehicle Using Toyota Yaris Coarse FE Model CCSA VALIDATION/VERIFICATION REPORT Page 1 of 4 Project: CCSA Longitudinal Barriers on Curved,

More information

DIFFERENT BUSSES -COMPARISON-

DIFFERENT BUSSES -COMPARISON- DIFFERENT BUSSES -COMPARISON- Current Work It starts from a real road accident happen to a bus on Nitsund bridge in 1998 Main Tasks: understanding of Nitsund parapet limitation (first structure built in

More information

End Terminals Installation and Repair Manual SMAT2 SMAT4

End Terminals Installation and Repair Manual SMAT2 SMAT4 End Terminals Installation and Repair Manual SMAT2 SMAT4 Industry A.M.S. s.r.l. Via Dante Giacosa snc zona ASI sud 81025 Marcianise (CE) Italy Phone: +39 0823 821 560 info@amssrl.com Rev. 04/08/2016 INDEX

More information

DESIGN FOR CRASHWORTHINESS

DESIGN FOR CRASHWORTHINESS - The main function of the body structure is to protect occupants in a collision - There are many standard crash tests and performance levels - For the USA, these standards are contained in Federal Motor

More information

Development of a Finite Element Model of a Motorcycle

Development of a Finite Element Model of a Motorcycle Development of a Finite Element Model of a Motorcycle N. Schulz, C. Silvestri Dobrovolny and S. Hurlebaus Texas A&M Transportation Institute Abstract Over the past years, extensive research efforts have

More information

Simulation and Validation of FMVSS 207/210 Using LS-DYNA

Simulation and Validation of FMVSS 207/210 Using LS-DYNA 7 th International LS-DYNA Users Conference Simulation Technology (2) Simulation and Validation of FMVSS 207/210 Using LS-DYNA Vikas Patwardhan Tuhin Halder Frank Xu Babushankar Sambamoorthy Lear Corporation

More information

A MASH Compliant W-Beam Median Guardrail System

A MASH Compliant W-Beam Median Guardrail System 0 0 0 0 0 A MASH Compliant W-Beam Median Guardrail System By A. Y. Abu-Odeh, R. P. Bligh, W. Odell, A. Meza, and W. L. Menges Submitted: July 0, 0 Word Count:, + ( figures + tables=,000) =, words Authors:

More information

Effectiveness of ECP Brakes in Reducing the Risks Associated with HHFT Trains

Effectiveness of ECP Brakes in Reducing the Risks Associated with HHFT Trains Effectiveness of ECP Brakes in Reducing the Risks Associated with HHFT Trains Presented To The National Academy of Sciences Review Committee October 14, 2016 Slide 1 1 Agenda Background leading to HM-251

More information

Optimal Design Solutions for Two Side SORB using Bumper Design Space. SMDI Bumper Group - Detroit Engineered Products

Optimal Design Solutions for Two Side SORB using Bumper Design Space. SMDI Bumper Group - Detroit Engineered Products Optimal Design Solutions for Two Side SORB using Bumper Design Space Rajasekaran Mohan (One Piece Design and Two Piece Design) SMDI Bumper Group - Detroit Engineered Products GDIS2018 Scope Of the Project

More information

TEST METHOD Booster Seats. May 2012R January 1, Revised: Issued: (Ce document est aussi disponible en français)

TEST METHOD Booster Seats. May 2012R January 1, Revised: Issued: (Ce document est aussi disponible en français) TEST METHOD 213.2 Booster Seats Revised: Issued: May 2012R January 1, 2010 (Ce document est aussi disponible en français) Table of Contents 1. Introduction... 1 2. Test Devices to be Used... 1 3. Dynamic

More information

TRL s Child Seat Rating, (TCSR) Front Impact Testing Specification

TRL s Child Seat Rating, (TCSR) Front Impact Testing Specification TRL s Child Seat Rating, (TCSR) Front Impact Testing Specification Revision 1 Prepared by TRL Limited July 2009 Foreword The UN-ECE Regulation provides a baseline level of safety for child restraint systems

More information

P5 STOPPING DISTANCES

P5 STOPPING DISTANCES P5 STOPPING DISTANCES Practice Questions Name: Class: Date: Time: 85 minutes Marks: 84 marks Comments: GCSE PHYSICS ONLY Page of 28 The stopping distance of a car is the sum of the thinking distance and

More information

LEG PROTECTION FOR MOTORCYCLISTS. B. P. Chinn T.R.R.L. M.A. Macaulay Brunel University

LEG PROTECTION FOR MOTORCYCLISTS. B. P. Chinn T.R.R.L. M.A. Macaulay Brunel University LEG PROTECTION FOR MOTORCYCLISTS B. P. Chinn T.R.R.L. M.A. Macaulay Brunel University 1. Introduction A number of earlier papers by Chinn and Macaulay (1), Chinn, Hopes and Macaulay (2) and Macaulay and

More information

Simulation of proposed FMVSS 202 using LS-DYNA Implicit

Simulation of proposed FMVSS 202 using LS-DYNA Implicit 4 th European LS-DYNA Users Conference Occupant II / Pedestrian Safety Simulation of proposed FMVSS 202 using LS-DYNA Implicit Vikas Patwardhan Babushankar Sambamoorthy Tuhin Halder Lear Corporation 21557

More information

InCar the Modular Automotive Solution Kit

InCar the Modular Automotive Solution Kit InCar the Modular Automotive Solution Kit Timo Faath ThyssenKrupp Steel USA Introduction InCar - Modular Solution Kit for the Automotive Industry The InCar solution kit includes over 30 innovative solutions

More information

Simulation of Structural Latches in an Automotive Seat System Using LS-DYNA

Simulation of Structural Latches in an Automotive Seat System Using LS-DYNA Simulation of Structural Latches in an Automotive Seat System Using LS-DYNA Tuhin Halder Lear Corporation, U152 Group 5200, Auto Club Drive Dearborn, MI 48126 USA. + 313 845 0492 thalder@ford.com Keywords:

More information

English version. Road restraint systems - Part 3: Performance classes, impact test acceptance criteria and test methods for crash cushions

English version. Road restraint systems - Part 3: Performance classes, impact test acceptance criteria and test methods for crash cushions EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM EN 1317-3 May 2000 ICS 13.200; 93.080.30 English version Road restraint systems - Part 3: Performance classes, impact test acceptance criteria and test

More information

Evaluation and Design of ODOT s Type 5 Guardrail with Tubular Backup

Evaluation and Design of ODOT s Type 5 Guardrail with Tubular Backup Evaluation and Design of ODOT s Type 5 Guardrail with Tubular Backup Draft Final Report Chuck A. Plaxico, Ph.D. James C. Kennedy, Jr., Ph.D. Charles R. Miele, P.E. for the Ohio Department of Transportation

More information

Prerequisites for Increasing the Axle Load on Railway Tracks in the Czech Republic M. Lidmila, L. Horníček, H. Krejčiříková, P.

Prerequisites for Increasing the Axle Load on Railway Tracks in the Czech Republic M. Lidmila, L. Horníček, H. Krejčiříková, P. Prerequisites for Increasing the Axle Load on Railway Tracks in the Czech Republic M. Lidmila, L. Horníček, H. Krejčiříková, P. Tyc This paper deals with problems of increasing the axle load on Czech Railways

More information

Lighter and Safer Cars by Design

Lighter and Safer Cars by Design Lighter and Safer Cars by Design May 2013 DRI Compatibility Study (2008) Modern vehicle designs - generally good into fixed barriers irrespective of vehicle type or material Safety discussion is really

More information

DYNAMICS AND SAFETY ASSESSMENT OF A TRUCK IMPACT ONTO VARIOUS TYPES OF ROADSIDE CONCRETE BARRIERS ON CURVED ROADS. A Thesis by. Prasanna K Parvatikar

DYNAMICS AND SAFETY ASSESSMENT OF A TRUCK IMPACT ONTO VARIOUS TYPES OF ROADSIDE CONCRETE BARRIERS ON CURVED ROADS. A Thesis by. Prasanna K Parvatikar DYNAMICS AND SAFETY ASSESSMENT OF A TRUCK IMPACT ONTO VARIOUS TYPES OF ROADSIDE CONCRETE BARRIERS ON CURVED ROADS A Thesis by Prasanna K Parvatikar Master of Science, Wichita State University, 2007 Bachelor

More information

Abaqus Technology Brief. Automobile Roof Crush Analysis with Abaqus

Abaqus Technology Brief. Automobile Roof Crush Analysis with Abaqus Abaqus Technology Brief Automobile Roof Crush Analysis with Abaqus TB-06-RCA-1 Revised: April 2007. Summary The National Highway Traffic Safety Administration (NHTSA) mandates the use of certain test procedures

More information

SPCT Method. The SPCT Method - Testing of Dog Crates. Utskrivet dokument är ostyrt, dvs inte säkert gällande.

SPCT Method. The SPCT Method - Testing of Dog Crates. Utskrivet dokument är ostyrt, dvs inte säkert gällande. Kvalitetsdokument Författare, enhet Mikael Videby Bygg och Mekanik Hållfasthet och konstruktion Utgåva 1 (7) Godkännare 2 The Testing of Dog Crates Application Area... 2 References... 2 1 Test Sample Selection...

More information

Development and Validation of a Finite Element Model of an Energy-absorbing Guardrail End Terminal

Development and Validation of a Finite Element Model of an Energy-absorbing Guardrail End Terminal Development and Validation of a Finite Element Model of an Energy-absorbing Guardrail End Terminal Yunzhu Meng 1, Costin Untaroiu 1 1 Department of Biomedical Engineering and Virginia Tech, Blacksburg,

More information

AXLE HOUSING AND UNITIZE BEARING PACK SET MODAL CHARACTERISATION

AXLE HOUSING AND UNITIZE BEARING PACK SET MODAL CHARACTERISATION F2004F461 AXLE HOUSING AND UNITIZE BEARING PACK SET MODAL CHARACTERISATION 1 Badiola, Virginia*, 2 Pintor, Jesús María, 3 Gainza, Gorka 1 Dana Equipamientos S.A., España, 2 Universidad Pública de Navarra,

More information

Q1. The graph shows the speed of a runner during an indoor 60 metres race.

Q1. The graph shows the speed of a runner during an indoor 60 metres race. Q1. The graph shows the speed of a runner during an indoor 60 metres race. (a) Calculate the acceleration of the runner during the first four seconds. (Show your working.) (b) How far does the runner travel

More information

Analysis of Torsional Vibration in Elliptical Gears

Analysis of Torsional Vibration in Elliptical Gears The The rd rd International Conference on on Design Engineering and Science, ICDES Pilsen, Czech Pilsen, Republic, Czech August Republic, September -, Analysis of Torsional Vibration in Elliptical Gears

More information

THE NON-LINEAR STRENGTH-WORK OF ALL BODY CONSTRUCTIONS THE HELICOPTER IS - 2 DURING FAILURE LANDING

THE NON-LINEAR STRENGTH-WORK OF ALL BODY CONSTRUCTIONS THE HELICOPTER IS - 2 DURING FAILURE LANDING Journal of KONES Powertrain and Transport, Vol. 15, No. 4 2008 THE NON-LINEAR STRENGTH-WORK OF ALL BODY CONSTRUCTIONS THE HELICOPTER IS - 2 DURING FAILURE LANDING Kazimierz Stanis aw Fr czek Institute

More information

Additional Science. Physics Unit Physics P2 PHY2H. (Jun11PHY2H01) General Certificate of Secondary Education Higher Tier June 2011.

Additional Science. Physics Unit Physics P2 PHY2H. (Jun11PHY2H01) General Certificate of Secondary Education Higher Tier June 2011. Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Additional Science Unit Physics P2 Physics Unit Physics P2 Written Paper General Certificate

More information

Modification of IPG Driver for Road Robustness Applications

Modification of IPG Driver for Road Robustness Applications Modification of IPG Driver for Road Robustness Applications Alexander Shawyer (BEng, MSc) Alex Bean (BEng, CEng. IMechE) SCS Analysis & Virtual Tools, Braking Development Jaguar Land Rover Introduction

More information

Appendix D. Figure D-1. ENCLOSURE 1 (4 Pages) SafeGuard TM Gate System

Appendix D. Figure D-1. ENCLOSURE 1 (4 Pages) SafeGuard TM Gate System Appendix D Figure D-1 SafeGuard TM Gate System ENCLOSURE 1 (4 Pages) Appendix D (Continued) Figure D-4 SafeGuard TM Gate System Appendix D (Continued) Figure D-9 SafeGuardTM Gate System Page D-9 Figure

More information

FAILURE ANALYSIS & REDESIGN OF A BRAKE CALLIPER SUPPORT. Prof. A. Bracciali, Dr. F. Piccioli, T. De Cicco

FAILURE ANALYSIS & REDESIGN OF A BRAKE CALLIPER SUPPORT. Prof. A. Bracciali, Dr. F. Piccioli, T. De Cicco FAILURE ANALYSIS & REDESIGN OF A BRAKE CALLIPER SUPPORT Prof. A. Bracciali, Dr. F. Piccioli, T. De Cicco Dipartimento di Meccanica e Tecnologie Industriali Università di Firenze, via Santa Marta 3, 50139

More information

FINITE ELEMENT METHOD IN CAR COMPATIBILITY PHENOMENA

FINITE ELEMENT METHOD IN CAR COMPATIBILITY PHENOMENA Journal of KONES Powertrain and Transport, Vol. 18, No. 4 2011 FINITE ELEMENT METHOD IN CAR COMPATIBILITY PHENOMENA Marcin Lisiecki Technical University of Warsaw Faculty of Power and Aeronautical Engineering

More information

Infant Restraint Systems

Infant Restraint Systems TEST METHOD 213.1 Infant Restraint Systems Revised: Issued: May 2012R April 1, 1982 (Ce document est aussi disponible en français) Table of Contents 1. Introduction... 1 2. Test Devices to be Used... 1

More information

Abaqus Technology Brief. Prediction of B-Pillar Failure in Automobile Bodies

Abaqus Technology Brief. Prediction of B-Pillar Failure in Automobile Bodies Prediction of B-Pillar Failure in Automobile Bodies Abaqus Technology Brief TB-08-BPF-1 Revised: September 2008 Summary The B-pillar is an important load carrying component of any automobile body. It is

More information

Finite Element Modeling and Analysis of Vehicle Space Frame with Experimental Validation

Finite Element Modeling and Analysis of Vehicle Space Frame with Experimental Validation Finite Element Modeling and Analysis of Vehicle Space Frame with Experimental Validation Assoc. Prof Dr. Mohammed A.Elhaddad Mechanical Engineering Department Higher Technological Institute, Town of 6

More information

REDUCING THE OCCURRENCES AND IMPACT OF FREIGHT TRAIN DERAILMENTS

REDUCING THE OCCURRENCES AND IMPACT OF FREIGHT TRAIN DERAILMENTS REDUCING THE OCCURRENCES AND IMPACT OF FREIGHT TRAIN DERAILMENTS D-Rail Final Workshop 12 th November - Stockholm Monitoring and supervision concepts and techniques for derailments investigation Antonella

More information

Side Impact and Ease of Use Comparison between ISOFIX and LATCH. CLEPA Presentation to GRSP, Informal Document GRSP Geneva, May 2004

Side Impact and Ease of Use Comparison between ISOFIX and LATCH. CLEPA Presentation to GRSP, Informal Document GRSP Geneva, May 2004 Side Impact and Ease of Use Comparison between ISOFIX and LATCH CLEPA Presentation to GRSP, Informal Document GRSP- 35-1 9 Geneva, May 2004 1 Objective of test programme To objectively assess the comparison

More information

Validation Simulation of New Railway Rolling Stock Using the Finite Element Method

Validation Simulation of New Railway Rolling Stock Using the Finite Element Method 4 th European LS-DYNA Users Conference Crash / Automotive Applications II Validation Simulation of New Railway Rolling Stock Using the Finite Element Method Authors: Martin Wilson and Ben Ricketts Correspondence:

More information

DEVELOPMENT OF VALIDATED FINITE ELEMENT MODEL OF A RIGID TRUCK SUITABLE TO SIMULATE COLLISIONS AGAINST ROAD SAFETY BARRIERS AUTHORS: CORRESPONDENCE:

DEVELOPMENT OF VALIDATED FINITE ELEMENT MODEL OF A RIGID TRUCK SUITABLE TO SIMULATE COLLISIONS AGAINST ROAD SAFETY BARRIERS AUTHORS: CORRESPONDENCE: DEVELOPMENT OF VALIDATED FINITE ELEMENT MODEL OF A RIGID TRUCK SUITABLE TO SIMULATE COLLISIONS AGAINST ROAD SAFETY BARRIERS AUTHORS: M. Pernetti, Department of Civil Engineering Second University of Naples

More information

2 nd European HyperWorks Technology Conference Strasbourg September 30 th October 1 st, Welcome! 1/30

2 nd European HyperWorks Technology Conference Strasbourg September 30 th October 1 st, Welcome! 1/30 2 nd European HyperWorks Technology Conference Strasbourg September 30 th October 1 st, 2008 Welcome! 1/30 2 nd European HyperWorks Technology Conference Strasbourg September 30 th October 1 st, 2008 Door

More information

Measurement methods for skid resistance of road surfaces

Measurement methods for skid resistance of road surfaces Measurement methods for skid resistance of road surfaces Presented by Martin Greene (TRL) and Veronique Cerezo (IFSTTAR) 11 October 2016 Background and requirements for Common Scale 1 Background Measurement

More information

COMPARISON OF THE IMPACT PERFORMANCE OF THE G4(1W) AND G4(2W) GUARDRAIL SYSTEMS UNDER NCHRP REPORT 350 TEST 3-11 CONDITIONS

COMPARISON OF THE IMPACT PERFORMANCE OF THE G4(1W) AND G4(2W) GUARDRAIL SYSTEMS UNDER NCHRP REPORT 350 TEST 3-11 CONDITIONS Paper No. 00-0525 COMPARISON OF THE IMPACT PERFORMANCE OF THE G4(1W) AND G4(2W) GUARDRAIL SYSTEMS UNDER NCHRP REPORT 350 TEST 3-11 CONDITIONS by Chuck A. Plaxico Associate Research Engineer Worcester Polytechnic

More information

The stopping distance of a car is the sum of the thinking distance and the braking distance.

The stopping distance of a car is the sum of the thinking distance and the braking distance. FORCES AND BRAKING Q1. The stopping distance of a car is the sum of the thinking distance and the braking distance. The table below shows how the thinking distance and braking distance vary with speed.

More information

Element Selection in Abaqus

Element Selection in Abaqus Element Selection in Abaqus 2016 About this Course Course objectives Upon completion of this course you will be able to: Understand the distinguishing characteristics of the wide range of continuum and

More information

Application of Reverse Engineering and Impact Analysis of Motor Cycle Helmet

Application of Reverse Engineering and Impact Analysis of Motor Cycle Helmet Indian Journal of Science and Technology, Vol 9(34), DOI: 10.17485/ijst/2016/v9i34/100989, September 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Application of Reverse Engineering and Impact

More information

E/ECE/324/Rev.1/Add.54/Rev.2/Amend.3 E/ECE/TRANS/505/Rev.1/Add.54/Rev.2/Amend.3

E/ECE/324/Rev.1/Add.54/Rev.2/Amend.3 E/ECE/TRANS/505/Rev.1/Add.54/Rev.2/Amend.3 26 April 2018 Agreement Concerning the Adoption of Harmonized Technical United Nations Regulations for Wheeled Vehicles, Equipment and Parts which can be Fitted and/or be Used on Wheeled Vehicles and the

More information

IMPACT2014 & SMASH Vibration propagation and damping tests V0A-V0C: Testing and simulation

IMPACT2014 & SMASH Vibration propagation and damping tests V0A-V0C: Testing and simulation IMPACT2014 & SMASH Vibration propagation and damping tests V0A-V0C: Testing and simulation SAFIR2014 Final seminar, 20.3.2015 Kim Calonius, Seppo Aatola, Ilkka Hakola, Matti Halonen, Arja Saarenheimo,

More information

PRODUCT DESCRIPTION. X-Tension DS. is suitable for all road types: Motorways, country roads, city streets for speed categories up to 110 km/h.

PRODUCT DESCRIPTION. X-Tension DS. is suitable for all road types: Motorways, country roads, city streets for speed categories up to 110 km/h. INDEX Introduction 2 Product Description 3 Installation 6 Specifications 7 Crash Tests Table 8 Reusability 9 FAQ 10 Annexes 14 Drawings 15 Pictures 16 Crash Tests Results 18 Approvals 23 INTRODUCTION Improving

More information

Estimation of Unmeasured DOF s on a Scaled Model of a Blade Structure

Estimation of Unmeasured DOF s on a Scaled Model of a Blade Structure Estimation of Unmeasured DOF s on a Scaled Model of a Blade Structure Anders Skafte 1, Rune Brincker 2 ABSTRACT This paper presents a new expansion technique which enables to predict mode shape coordinates

More information

E/ECE/324/Rev.1/Add.50/Rev.3/Amend.2 E/ECE/TRANS/505/Rev.1/Add.50/Rev.3/Amend.2

E/ECE/324/Rev.1/Add.50/Rev.3/Amend.2 E/ECE/TRANS/505/Rev.1/Add.50/Rev.3/Amend.2 26 April 2018 Agreement Concerning the Adoption of Harmonized Technical United Nations Regulations for Wheeled Vehicles, Equipment and Parts which can be Fitted and/or be Used on Wheeled Vehicles and the

More information

EVALUATION OF VEHICLE-BASED CRASH SEVERITY METRICS USING EVENT DATA RECORDERS

EVALUATION OF VEHICLE-BASED CRASH SEVERITY METRICS USING EVENT DATA RECORDERS EVALUATION OF VEHICLE-BASED CRASH SEVERITY METRICS USING EVENT DATA RECORDERS Grace Wusk Hampton Gabler Virginia Tech United States Paper Number 17-0407 ABSTRACT Injury risk in real world crashes is often

More information

MODELS FOR THE DYNAMIC ANALYSIS OF THE SUSPENSION SYSTEM OF THE VEHICLES REAR AXLE

MODELS FOR THE DYNAMIC ANALYSIS OF THE SUSPENSION SYSTEM OF THE VEHICLES REAR AXLE MODELS FOR THE DYNAMIC ANALYSIS OF THE SUSPENSION SYSTEM OF THE VEHICLES REAR AXLE Alexandru Cătălin Transilvania University of Braşov, Product Design and Robotics Department, calex@unitbv.ro Keywords:

More information

DEVELOPMENT OF VALIDATED FINITE ELEMENT MODEL OF AN ARTICULATED TRUCK SUITABLE TO SIMULATE COLLISIONS AGAINST ROAD SAFETY BARRIERS AUTHORS:

DEVELOPMENT OF VALIDATED FINITE ELEMENT MODEL OF AN ARTICULATED TRUCK SUITABLE TO SIMULATE COLLISIONS AGAINST ROAD SAFETY BARRIERS AUTHORS: DEVELOPMENT OF VALIDATED FINITE ELEMENT MODEL OF AN ARTICULATED TRUCK SUITABLE TO SIMULATE COLLISIONS AGAINST ROAD SAFETY BARRIERS AUTHORS: M. Pernetti, Department of Civil Engineering Second University

More information

Finite Element Analysis of Bus Rollover Test in Accordance with UN ECE R66 Standard

Finite Element Analysis of Bus Rollover Test in Accordance with UN ECE R66 Standard J. Eng. Technol. Sci., Vol. 49, No. 6, 2017, 799-810 799 Finite Element Analysis of Bus Rollover Test in Accordance with UN ECE R66 Standard Satrio Wicaksono*, M. Rizka Faisal Rahman, Sandro Mihradi &

More information

Economic and Social Council

Economic and Social Council United Nations Economic and Social Council ECE/TRANS/WP.29/2017/69 Distr.: General 6 April 2017 Original: English Economic Commission for Europe Inland Transport Committee World Forum for Harmonization

More information

Design, Analysis& Optimization of Truck chassis- Rail & Cross member

Design, Analysis& Optimization of Truck chassis- Rail & Cross member Design, Analysis& Optimization of Truck chassis- Rail & Cross member Mr. Jinto Joju Thaikkattil 1, Gayatri Patil 2 1 PGScholar, Department of Mechanical Engg., KJCOEMR, Pune, jjt7171@gmail.com 2 Assistant

More information

D1.3 FINAL REPORT (WORKPACKAGE SUMMARY REPORT)

D1.3 FINAL REPORT (WORKPACKAGE SUMMARY REPORT) WP 1 D1.3 FINAL REPORT (WORKPACKAGE SUMMARY REPORT) Project Acronym: Smart RRS Project Full Title: Innovative Concepts for smart road restraint systems to provide greater safety for vulnerable road users.

More information

Introduction to Abaqus/CAE. Abaqus 2018

Introduction to Abaqus/CAE. Abaqus 2018 Introduction to Abaqus/CAE Abaqus 2018 About this Course Course objectives Upon completion of this course you will be able to: Use Abaqus/CAE to create complete finite element models. Use Abaqus/CAE to

More information

Improvement Design of Vehicle s Front Rails for Dynamic Impact

Improvement Design of Vehicle s Front Rails for Dynamic Impact 5 th European LS-DYNA Users Conference Crash Technology (1) Improvement Design of Vehicle s Front Rails for Dynamic Impact Authors: Chien-Hsun Wu, Automotive research & testing center Chung-Yung Tung,

More information

Press-Hardened and Roll-Formed Lightweight Bumpers in Steels with Enhanced Strength

Press-Hardened and Roll-Formed Lightweight Bumpers in Steels with Enhanced Strength Press-Hardened and Roll-Formed Lightweight Bumpers in Steels with Enhanced Strength Johan Nilsson Gestamp GDIS2018 Abstract -Bumpers protect the BIW and external attributes in low speed collisions and

More information

Impact analysis of a vertical flared back bridge rail-to-guardrail transition structure using simulation

Impact analysis of a vertical flared back bridge rail-to-guardrail transition structure using simulation Finite Elements in Analysis and Design 41 (2005) 371 396 www.elsevier.com/locate/finel Impact analysis of a vertical flared back bridge rail-to-guardrail transition structure using simulation Ali O. Atahan,

More information

Vehicle Dynamic Simulation Using A Non-Linear Finite Element Simulation Program (LS-DYNA)

Vehicle Dynamic Simulation Using A Non-Linear Finite Element Simulation Program (LS-DYNA) Vehicle Dynamic Simulation Using A Non-Linear Finite Element Simulation Program (LS-DYNA) G. S. Choi and H. K. Min Kia Motors Technical Center 3-61 INTRODUCTION The reason manufacturers invest their time

More information

Structural performance improvement of passenger seat using FEA for AIS 023 compliance

Structural performance improvement of passenger seat using FEA for AIS 023 compliance Structural performance improvement of passenger seat using FEA for AIS 023 compliance 1 Satyajit Thane, 2 Dr.R.N.Patil, 3 Chandrakant Inamdar 1 P.G.Student, 2 Prof. & Head, 3 Director 1 Department of Mechanical

More information

Accident Reconstruction & Vehicle Data Recovery Systems and Uses

Accident Reconstruction & Vehicle Data Recovery Systems and Uses Research Engineers, Inc. (919) 781-7730 7730 Collision Analysis Engineering Animation Accident Reconstruction & Vehicle Data Recovery Systems and Uses Bill Kluge Thursday, May 21, 2009 Accident Reconstruction

More information

WET GRIP TEST METHOD IMPROVEMENT for Passenger Car Tyres (C1) Overview of Tyre Industry / ISO activities. Ottawa

WET GRIP TEST METHOD IMPROVEMENT for Passenger Car Tyres (C1) Overview of Tyre Industry / ISO activities. Ottawa WET GRIP TEST METHOD IMPROVEMENT for Passenger Car Tyres (C1) Overview of Tyre Industry / ISO activities Ottawa June 11 th, 2017 1 CURRENT REGULATORY FRAMEWORK CURRENT WET GRIP PROCEDURE TECHNICAL PRINCIPLES

More information

EFFECT OF TYRE OVERLOAD AND INFLATION PRESSURE ON ROLLING LOSS & FUEL CONSUMPTION OF AUTOMOBILES CARS

EFFECT OF TYRE OVERLOAD AND INFLATION PRESSURE ON ROLLING LOSS & FUEL CONSUMPTION OF AUTOMOBILES CARS EFFECT OF TYRE OVERLOAD AND INFLATION PRESSURE ON ROLLING LOSS & FUEL CONSUMPTION OF AUTOMOBILES CARS D.MADHUSUDHANA 1 C. NAGARAJA 2 PG Student Assistant Professor Dept. of Mechanical Engineering Dept.

More information

Non-Linear Implicit Analysis of Roll over Protective Structure OSHA STANDARD (PART )

Non-Linear Implicit Analysis of Roll over Protective Structure OSHA STANDARD (PART ) Non-Linear Implicit Analysis of Roll over Protective Structure OSHA STANDARD (PART 1928.52) Pritam Prakash Deputy Manager - R&D, CAE International Tractor Limited Jalandhar Road, Hoshiarpur Punjab 146022,

More information

Contact person Date Reference Page Mikael Videby P08110A 1 (6) SP Structural and Solid Mechanics

Contact person Date Reference Page Mikael Videby P08110A 1 (6) SP Structural and Solid Mechanics issued by an Accredited Testing Laboratory Contact person Mikael Videby 2015-11-13 5P08110A 1 (6) SP Structural and Solid Mechanics +46 10 516 50 36 Mikael.Videby@sp.se Accred. No. 1002 Testing ISO/IEC

More information

Evaluation of sealing performance of metal. CRIEPI (Central Research Institute of Electric Power Industry)

Evaluation of sealing performance of metal. CRIEPI (Central Research Institute of Electric Power Industry) 0 Evaluation of sealing performance of metal gasket used in dual purpose metal cask subjected to an aircraft engine missile CRIEPI (Central Research Institute of Electric Power Industry) K. SHIRAI These

More information

Coupled Aero-Structural Modelling and Optimisation of Deployable Mars Aero-Decelerators

Coupled Aero-Structural Modelling and Optimisation of Deployable Mars Aero-Decelerators Coupled Aero-Structural Modelling and Optimisation of Deployable Mars Aero-Decelerators Lisa Peacocke, Paul Bruce and Matthew Santer International Planetary Probe Workshop 11-15 June 2018 Boulder, CO,

More information

Innovative designs and methods for VHST 2 nd Dissemination Event, Brussels 3 rd November 2016

Innovative designs and methods for VHST 2 nd Dissemination Event, Brussels 3 rd November 2016 Capacity for Rail Innovative designs and methods for VHST 2 nd Dissemination Event, Brussels 3 rd November 2016 Miguel Rodríguez Plaza Adif Introduction C4R WP 1.2: VHST 2 Objectives: To identify market

More information

e-cfr Data is current as of October 31, 2012

e-cfr Data is current as of October 31, 2012 Page 1 of 11 ELECTRONIC CODE OF FEDERAL REGULATIONS e-cfr Data is current as of October 31, 2012 Title 49: Transportation PART 563 EVENT DATA RECORDERS Contents 563.1 Scope. 563.2 Purpose. 563.3 Application.

More information

Modeling Contact with Abaqus/Standard

Modeling Contact with Abaqus/Standard Modeling Contact with Abaqus/Standard 2016 About this Course Course objectives Upon completion of this course you will be able to: Define general contact and contact pairs Define appropriate surfaces (rigid

More information

CHAPTER 4 : RESISTANCE TO PROGRESS OF A VEHICLE - MEASUREMENT METHOD ON THE ROAD - SIMULATION ON A CHASSIS DYNAMOMETER

CHAPTER 4 : RESISTANCE TO PROGRESS OF A VEHICLE - MEASUREMENT METHOD ON THE ROAD - SIMULATION ON A CHASSIS DYNAMOMETER CHAPTER 4 : RESISTANCE TO PROGRESS OF A VEHICLE - MEASUREMENT METHOD ON THE ROAD - SIMULATION ON A CHASSIS DYNAMOMETER 1. Scope : This Chapter describes the methods to measure the resistance to the progress

More information

Virginia Department of Transportation

Virginia Department of Transportation TEST REPORT FOR: Virginia Department of Transportation SKT SP 350 50 (15.24 m) System PREPARED FOR: Virginia Department of Transportation 1401 E. Broad St. Richmond, VA 23219 TEST REPORT NUMBER: REPORT

More information

Structural Analysis of Student Formula Race Car Chassis

Structural Analysis of Student Formula Race Car Chassis Structural Analysis of Student Formula Race Car Chassis Arindam Ghosh 1, Rishika Saha 2, Sourav Dhali 3, Adrija Das 4, Prasid Biswas 5, Alok Kumar Dubey 6 1Assistant Professor, Dept. of Mechanical Engineering,

More information

Modeling Contact with Abaqus/Standard. Abaqus 2018

Modeling Contact with Abaqus/Standard. Abaqus 2018 Modeling Contact with Abaqus/Standard Abaqus 2018 About this Course Course objectives Upon completion of this course you will be able to: Define general contact and contact pairs Define appropriate surfaces

More information

An Urgent Bulletin from CSA Group

An Urgent Bulletin from CSA Group Ref No: I15-014 Elevator Equipment No. 20 (Supersedes Elevator Equipment Certification Notice No. 1A, and Informs Elevator Equipment No 1B) Date: January 21, 2015 An Urgent Bulletin from CSA Group Existing

More information

Study concerning the loads over driver's chests in car crashes with cars of the same or different generation

Study concerning the loads over driver's chests in car crashes with cars of the same or different generation IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Study concerning the loads over driver's chests in car crashes with cars of the same or different generation Related content -

More information

Carbon Fiber Parts Performance In Crash SITUATIONS - CAN WE PREDICT IT?

Carbon Fiber Parts Performance In Crash SITUATIONS - CAN WE PREDICT IT? Carbon Fiber Parts Performance In Crash SITUATIONS - CAN WE PREDICT IT? Commercial Division of Plasan Sasa 2016 by Plasan 1 ABOUT THE AUTHORS D.Sc - Technion - Israel Institute of technology Head of the

More information

United States Code of Federal Regulations Title 49 Part 563

United States Code of Federal Regulations Title 49 Part 563 United States Code of Federal Regulations Title 49 Part 563 EVENT DATA RECORDERS. 563.1 Scope 563.2 Purpose 563.3 Application 563.4 Incorporation by reference 563.5 Definitions 563.6 Requirements for vehicles

More information

PROGRESS IN QUALITY ASSESSMENT OF CONVEYOR IDLERS

PROGRESS IN QUALITY ASSESSMENT OF CONVEYOR IDLERS PROGRESS IN QUALITY ASSESSMENT OF CONVEYOR IDLERS W. Bartelmus and W. Sawicki Wroc³aw University of Technology Faculty of Mining Machinery Systems Division Wroc³aw Poland Abstract: The paper deals with

More information

Crashworthiness Analysis with Abaqus

Crashworthiness Analysis with Abaqus Crashworthiness Analysis with Abaqus 2017 About this Course Course objectives This course covers: Abaqus fundamentals and input syntax General "automatic" contact modeling Element selection for crash simulation

More information

FX-HR Holden Front End - 800kg axle rating - manufactured after August 2010

FX-HR Holden Front End - 800kg axle rating - manufactured after August 2010 Project: CO0048 Re: FX-HR Holden Front End - 800kg axle rating - manufactured after August 2010 Stress Analysis & Geometry Assessment Prepared for: V6 Conversions Date: 2 nd December 2010 By: Brett Longhurst

More information

Ansys-CFX Analysis on a Hatch-Back Car with Wheels and without Wheels

Ansys-CFX Analysis on a Hatch-Back Car with Wheels and without Wheels ISSN (ONLINE): 2321-3051 INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING Ansys-CFX Analysis on a Hatch-Back Car with Wheels and without Wheels Roopsandeep Bammidi 1, Dr.B.V.Ramana

More information