Chapter 1: Battery management: State of charge

Size: px
Start display at page:

Download "Chapter 1: Battery management: State of charge"

Transcription

1 Chapter 1: Battery management: State of charge Since the mobility need of the people, portable energy is one of the most important development fields nowadays. There are many types of portable energy device and the most of them are around of a state of charge measurement system. a. Definition State of charge (SoC) is the available capacity of a battery and it could be compared to the fuel gauge in a fuel vehicle. This parameter is used to be represented as a percentage of a fully charged reference, which should be reset and update periodically; although, rarely, it is shown as absolute measure in Coulombs (C), Ampere-hour (Ah) or kilowatts-hour (kwh). Basing in the amount of available energy which is stored in a battery referred to the complete range of energy that this battery could store, it is possible to find out how much longer the battery will be working properly and when it needs be recharged. State of charge measurement is essential to reach an optimum behavior in a system which manages electric or hybrid cars in order to maximizing the function of the electric motor versus the engine. The capacity of a battery is not always the same value because of the ageing. It means that the capacity of an old cell is lower than the capacity of a new one due to the charge-discharge cycles in its life. The rated capacity must be calculated always in reference to the current value to the battery, not in reference to the value that it had at the beginning, for that reason the reference has to be update periodically. Otherwise, SOC reaches never the maximum value 100% when a battery is not new. But ageing is not the only factor which is involved in the SOC estimation, there are several ones: 11

2 Charge Discharge Rate. The electrochemical process in the cells takes always a finite time and it may be longer than the continuously electrical stimulus which is charging the cell. The effect of a charging pulse may not be completed if a discharging pulse is given very fast and it could be a source of inaccuracy in measurement of SOC. On the other way, the contrary process wastes energy in the electrochemical reaction and the discharge energy is less than the stored one. The ratio between discharge energy and charge energy is called Coulombic efficiency and can reach up to 3 % of the available capacity. Graph 3 Hysteresis The open circuit voltage of a battery in a charge is higher than this voltage in a discharge. 12

3 Graph 4 Temperature and discharge rate The available capacity of a battery depends directly on the temperature in which is involved. The look up shows an example of how it depends on the temperature and the discharge rate Graph 5 13

4 Self discharge Aside of the charging-discharging cycles, the self discharge effect is consuming energy from the available energy of the battery. This amount is typically less than 3 % per month and if the time between charges is too long, the effect can be important. b. State of art: Methods Many different methods have been developed to measuring the SOC of a battery stack. The research work to improve the SOC determination has been increased in recent years and it depends on the type of battery, its chemistry and its parameters. Direct measurement This method is hypothetical and theoretical since a constant discharging current rate is needed, which would be multiplied by the total discharging time. This integration method is not available because the discharging current rate is variable for all practical batteries. Furthermore, another important drawback of this theoretical estimation is that, in the most of the practical cases (not evaluation or testing), users should be able to measure the SOC without discharging the battery or, at least, before it becomes to be completely discharged. Specific gravity (SG) measurement Also known as Relative density measurement, this method is only available for cells which can offer access to their internal liquid electrolyte. This parameter is referred to the ratio of density of a substance to the density of a reference substance, which is used to be water. The specific gravity is decreasing linearly with the ampere-hour discharge of the battery cell. Hence, measuring the density of the electrolyte provides an approximate indication of the state of charge of the cell. Even though this method is rather accurate to estimate the SOC of 14

5 one cell, it is not able to determine the battery capacity. Graph 6 shows one example of specific gravity and voltage measurement depending on the charge discharge time. Graph 6 Internal impedance The composition of the chemical components of the cell is changing in charge-discharge cycles and it derives internal impedance variation. This parameter could also be an indicative of the estimation of SOC. However, the measurement of the impedance is difficult during running as well as it is depending on the temperature. Voltage based estimation Cell voltage measurement is another method of SOC estimation. This estimation is based on the current battery voltage as a direct relationship of the remaining capacity. Depending on the type of battery this relationship can be linear or non linear. When it is not linear, like on Lithium-ion cell; this estimation may not be accurate enough at intermediate values. Graph 7 shows the characteristic curve of a discharging cycle of a Lithium-ion battery. 15

6 Graph 7 At the time close to total discharge, an abrupt fall is marked showing imminent critical discharge. In many applications, this situation is forbidden and it can be an important drawback. Moreover, at intermediate range of the voltage, the SOC estimation is not accuracy at all due to the dependant factors of the battery: temperature, discharging rate, hysteresis Thus features make Voltage estimation a good method in order to estimate the total charge and the imminent discharge point, but some method else is needed to make this measurement reliable at the whole range. Current based estimation This method is also called as Coulomb Counting and it consists on the integration of the current entering (charging) and leaving (discharging) the battery. Basically, this estimation takes into account the current flowing to and from the cell and integrates it over the time. Hence, since the integration of current is charge, Coulomb counting is currently the most accurate method to estimate SOC due to the directly measure of the charge flowing over the battery. However, this estimation needs to be combined with one more measurement else to 16

7 know the conditions of the measurement, for example the starting point for the current integration. The reference point is the fully charged point and the charging losses or self-discharge are not taken into account in this method. An additional method has to be added to get more accuracy by this estimation. There are several sensors to measure the current: o Current shunt: measuring the voltage drop a low ohmic value, high precision, sense resistor which does not cause large power loss. This method is not accurate for low current. o Hall Effect: it consists on the user of transducers to measure the current but they are susceptible to noise and not acceptable to high current even more expensive. o GMR: Magnetoresistive sensors are more expensive but they obtain higher signal level and are more stable at high temperature. Its sensitivity is higher. Studying the state of the art of SOC measurement and regarding on the influence factors to estimate this important parameter, Coulomb counting with the support of the battery voltage measurement has been chosen to develop this project. The current integration obtains the available charge capacity into the battery and the voltage measurement is used to acquire the reference the extreme of the function battery range. The voltage is also used to refresh and update the available capacity of the fully charged battery. 17

8 c. Objective and organization Designing a complete system to estimate the battery SOC of Toyota Prius is the scope of this project. The project development has been performed by this documentation s author. This process has been faced knowing the difficulties that the design over one car can reach. Prius battery stack is sited on the backside of the car and the screen to be observed by the driver is on the front side of the car inside of the drive cabin. Since this situation, the communication between battery measurement and screen displaying turns out complex. To solve this drawback, the use of wireless communication has been integrated to communicate both sides. The work was divided into different stages depending on the advance: Documentation and research System block diagram and components choice Schematics Building Layout design Soldering Programming Debugging and mistakes correction Evaluation 18

9 These stages has always been accompanied by documentation writing as well as each stage was preceded by one period of learning and practicing of the respective software or handling of tools to be used. Anyway, every stage was performed by the documentation author. d. Tools and materials To develop the whole project in order to provide it the maximum precision and efficiency, several of the most famous and accurate software have been used. It has been considered to be named in this documentation by the fact of the understanding of some schematics, layouts and pictures in general which are part of the project document. Every software is licensed by austriamicrosystems AG. This list of software and programs is attached with a series of physical materials and hardware needed to connect this software between them. As software, this hardware is provided by austriamicrosystems AG and its suppliers. Following, the different programs and tools which have been used are described as well as its respective uses in the envelopment of the various stages of the design. PSpice Student Version It is a limited version for several types of simulation of simple schematics with a limited number of nodes and devices. This software is supplied by Orcad and this version is free distribution. This version provides some types of simulation of circuits, being able to calculate AC simulation, DC simulation and transient analysis for example. The behavior of one circuit can 19

10 be showed in multiple outputs with the stimulation of some inputs regarding on either the time either the frequency. PSpice has been used to specify the values of the passive components of the anti-aliasing filter sited on the input of the current measurement. This behavior will be explained in details later. Cadence SPB 16.2 It is one of the most famous tools for complete PCB design. This is also Orcad supplied software but, in this case, it is not a free distribution program. From top to bottom, a whole PCB can be designed with the help of Cadence software. In purpose of this project, two important tools of Cadence have been utilized: o Allegro Design Entry CIS This tool is used to create schematics and produce connectivity and simulation information for printed circuit board and programmable logic designs. Allegro PCB Design CIS is a complete printed circuit board design solution that integrates PCB tools for creating design projects, managing libraries, capturing schematics, packaging, physical placement and routing. The complete schematics of transceiver and receiver board has been designed with this tool as well as the netlists of the layouts were built to be routed in the next step. 20

11 o OrCAD Layout Plus After assigning the respective footprint to each component of a schematics circuit, Layout Plus is used to route the PCB layout. This tool is also part of Cadence software. It is provided a library manager which is able to design the footprint of the component to be used on each PCB and, furthermore, some libraries are added with the most of the most useful component footprint on the current market. This tool has been used to route the layout of the transceiver and receiver boards and some concrete footprints has been designed with this specific software. AVR Studio 4 This programming tool is powered by ATMEL to program ATMEL microcontroller from a visual and intuitive interface. It can be found on the official ATMEL web page and is freeware. Any ATMEL microcontroller can be programmed with AVR Studio because it provides libraries for all types of ATMEL microcontroller. This tool gives the option of programming with C programming language or Assembly programming language. This tool is also a debugger program to run the code step by step and debug the programming. The programming of both microcontroller (transceiver and receiver) has been done and debugged with this tool using C language. Compiling, debugging and object building are some of the mainly functions of it. 21

12 Extreme Burner It is software to program AVR microcontrollers using USBasp programmer. This tool is used to program EEPROM, Flash and fuses of ATMEL microcontrollers with a graphical, simple interface. It also is able to read the values already programmed on the device memory. This software was used to load the programming on the microcontroller of both PCBs with the help of USBasp. USBasp USBasp is an USB programmer for AVR microcontroller. This hardware is connected by serial interface to program the target and debug it. This unit was ordered to the webpage Figure 5 22

13 The schematics of the USB programmer is shown in the next picture Schematic 1 As it is shown in the schematic 1, this device is easily built with one microcontroller and some passive component and it is very useful working with ATMEL AVR controllers. Standard Laboratory tools and materials During the development of this project, some standard tools have been used on the laboratory, like soldering stations, soldering materials, wires, computer, computer complements To sum up, the standards utilities sited into a standard lab environment. 23

DESIGN OF HIGH ENERGY LITHIUM-ION BATTERY CHARGER

DESIGN OF HIGH ENERGY LITHIUM-ION BATTERY CHARGER Australasian Universities Power Engineering Conference (AUPEC 2004) 26-29 September 2004, Brisbane, Australia DESIGN OF HIGH ENERGY LITHIUM-ION BATTERY CHARGER M.F.M. Elias*, A.K. Arof**, K.M. Nor* *Department

More information

80V 300Ah Lithium-ion Battery Pack Data Sheet

80V 300Ah Lithium-ion Battery Pack Data Sheet 80V 300Ah Lithium-ion Battery Pack Data Sheet 80 V, 300 amp-hour capacity, maintenance-free energy storage, IP65 design, fully integrated BMS, integrated fuse and safety relay protection, highly configurable

More information

A Battery Smart Sensor and Its SOC Estimation Function for Assembled Lithium-Ion Batteries

A Battery Smart Sensor and Its SOC Estimation Function for Assembled Lithium-Ion Batteries R1-6 SASIMI 2015 Proceedings A Battery Smart Sensor and Its SOC Estimation Function for Assembled Lithium-Ion Batteries Naoki Kawarabayashi, Lei Lin, Ryu Ishizaki and Masahiro Fukui Graduate School of

More information

A14-18 Active Balancing of Batteries - final demo. Lauri Sorsa & Joonas Sainio Final demo presentation

A14-18 Active Balancing of Batteries - final demo. Lauri Sorsa & Joonas Sainio Final demo presentation A14-18 Active Balancing of Batteries - final demo Lauri Sorsa & Joonas Sainio Final demo presentation 06.12.2014 Active balancing project before in Aalto Respectable research was done before us. Unfortunately

More information

Programming of different charge methods with the BaSyTec Battery Test System

Programming of different charge methods with the BaSyTec Battery Test System Programming of different charge methods with the BaSyTec Battery Test System Important Note: You have to use the basytec software version 4.0.6.0 or later in the ethernet operation mode if you use the

More information

Optimal Design Methodology for LLC Resonant Converter in Battery Charging Applications Based on Time-Weighted Average Efficiency

Optimal Design Methodology for LLC Resonant Converter in Battery Charging Applications Based on Time-Weighted Average Efficiency LeMeniz Infotech Page number 1 Optimal Design Methodology for LLC Resonant Converter in Battery Charging Applications Based on Time-Weighted Average Efficiency Abstract The problems of storage capacity

More information

DC Electronic Loads simulate NTC devices for temperature monitoring in battery test applications

DC Electronic Loads simulate NTC devices for temperature monitoring in battery test applications DC Electronic Loads simulate NTC devices for temperature monitoring in battery test applications This application note discusses the use of programmable DC loads to simulate temperature sensors used in

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 1 Battery Fundamentals EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with various types of lead-acid batteries and their features. DISCUSSION OUTLINE The Discussion

More information

Accurate and available today: a ready-made implementation of a battery management system for the new 48V automotive power bus

Accurate and available today: a ready-made implementation of a battery management system for the new 48V automotive power bus Accurate and available today: a ready-made implementation of a battery management system for the new 48V automotive power bus Gernot Hehn Today s personal vehicles have an electrical system operating from

More information

Embedded Systems and Software. Some Power Considerations

Embedded Systems and Software. Some Power Considerations Embedded Systems and Software Some Power Considerations Slide-1 Energy/Power Considerations Terms Cell, Battery Energy (Joule) Power (J/s or Watt) Ampere-hour (Ah) Deep-cycle MCU Sleep Modes ADC Data rate

More information

Lithium Ion Medium Power Battery Design

Lithium Ion Medium Power Battery Design Bradley University Lithium Ion Medium Power Battery Design Project Proposal By: Jeremy Karrick and Charles Lau Advised by: Dr. Brian D. Huggins 12/10/2009 Introduction The objective of this project is

More information

Armature Reaction and Saturation Effect

Armature Reaction and Saturation Effect Exercise 3-1 Armature Reaction and Saturation Effect EXERCISE OBJECTIVE When you have completed this exercise, you will be able to demonstrate some of the effects of armature reaction and saturation in

More information

Analytical thermal model for characterizing a Li-ion battery cell

Analytical thermal model for characterizing a Li-ion battery cell Analytical thermal model for characterizing a Li-ion battery cell Landi Daniele, Cicconi Paolo, Michele Germani Department of Mechanics, Polytechnic University of Marche Ancona (Italy) www.dipmec.univpm.it/disegno

More information

Exercise 2. Discharge Characteristics EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Cutoff voltage versus discharge rate

Exercise 2. Discharge Characteristics EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Cutoff voltage versus discharge rate Exercise 2 Discharge Characteristics EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the discharge characteristics of lead-acid batteries. DISCUSSION OUTLINE The Discussion

More information

End-To-End Cell Pack System Solution: Rechargeable Lithium-Ion Battery

End-To-End Cell Pack System Solution: Rechargeable Lithium-Ion Battery White Paper End-To-End Cell Pack System Solution: Industry has become more interested in developing optimal energy storage systems as a result of increasing gasoline prices and environmental concerns.

More information

Real-time Simulation of Electric Motors

Real-time Simulation of Electric Motors Real-time Simulation of Electric Motors SimuleD Developments in the electric drive-train have the highest priority, but all the same proven development methods are not consequently applied. For example

More information

Battery Capacity Versus Discharge Rate

Battery Capacity Versus Discharge Rate Exercise 2 Battery Capacity Versus Discharge Rate EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the effects of the discharge rate and battery temperature on the capacity

More information

Testing Lead-acid fire panel batteries

Testing Lead-acid fire panel batteries Thames House, 29 Thames Street Kingston upon Thames, Surrey, KT1 1PH Phone: +44 (0) 8549 5855 Website: www.fia.uk.com Testing Lead-acid fire panel batteries 1. Background - Methods of testing batteries

More information

BOOST POWER 1212 Product Description

BOOST POWER 1212 Product Description BOOST POWER 1212 Product Description Contents 1 Introduction...4 2 General Description...4 2.1 Compatibility with standard Lead-Acid Batteries... 4 3 Battery Performance...5 3.1 Discharge Capability...

More information

Exercise 3. Battery Charging Fundamentals EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Charging fundamentals

Exercise 3. Battery Charging Fundamentals EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Charging fundamentals Exercise 3 Battery Charging Fundamentals EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the effects of charge input, charge rate, and ambient temperature on the voltage

More information

Nanopower IoT Power Supply Accurately Monitors Battery Discharge. by Samuel Nork Director, Boston Design Center Linear Technology Corporation

Nanopower IoT Power Supply Accurately Monitors Battery Discharge. by Samuel Nork Director, Boston Design Center Linear Technology Corporation Nanopower IoT Power Supply Accurately Monitors Battery Discharge by Samuel Nork Director, Boston Design Center Linear Technology Corporation The Internet of Things, or IoT, refers to the growing number

More information

Modeling the Lithium-Ion Battery

Modeling the Lithium-Ion Battery Modeling the Lithium-Ion Battery Dr. Andreas Nyman, Intertek Semko Dr. Henrik Ekström, Comsol The term lithium-ion battery refers to an entire family of battery chemistries. The common properties of these

More information

C8000. Advanced Battery Analyzer. cadex.com/c8

C8000. Advanced Battery Analyzer. cadex.com/c8 C8000 Advanced Battery Analyzer cadex.com/c8 AN OUT-OF-THIS-WORLD BATTERY ANALYZER CREATED FOR ADVANCED USERS The Cadex C8000 delivers the versatility needed to ensure you get the right performance from

More information

Simple Line Follower robot

Simple Line Follower robot Simple Line Follower robot May 14, 12 It is a machine that follows a line, either a black line on white surface or vise-versa. For Beginners it is usually their first robot to play with. In this tutorial,

More information

Capital Cost Sensitivity Analysis of an All-Vanadium Redox-Flow Battery

Capital Cost Sensitivity Analysis of an All-Vanadium Redox-Flow Battery 10.1149/1.3684787 The Electrochemical Society Capital Cost Sensitivity Analysis of an All-Vanadium Redox-Flow Battery Mark Moore a, J.S. Watson a, Thomas A.. Zawodzinski a,b, Mengqi Zhang a, and Robert

More information

INSTALLATION INFORMATION

INSTALLATION INFORMATION INSTALLATION INFORMATION BMS ZE6000i-PCBT.xxxx / ver. 2 Programmable battery management system for Lithium Ion battery cells, for up to 32 round or prismatic cells, 10 to 400Ah NOTE: This installation

More information

Optimizing Battery Accuracy for EVs and HEVs

Optimizing Battery Accuracy for EVs and HEVs Optimizing Battery Accuracy for EVs and HEVs Introduction Automotive battery management system (BMS) technology has advanced considerably over the last decade. Today, several multi-cell balancing (MCB)

More information

Modeling of Battery Systems and Installations for Automotive Applications

Modeling of Battery Systems and Installations for Automotive Applications Modeling of Battery Systems and Installations for Automotive Applications Richard Johns, Automotive Director, CD-adapco Robert Spotnitz, President, Battery Design Predicted Growth in HEV/EV Vehicles Source:

More information

Lithium Ion Battery Charger for Solar-Powered Systems

Lithium Ion Battery Charger for Solar-Powered Systems Lithium Ion Battery Charger for Solar-Powered Systems General Description: The is a complete constant-current /constant voltage linear charger for single cell Li-ion and Li Polymer rechargeable batteries.

More information

CONSONANCE CN3051A/CN3052A. 500mA USB-Compatible Lithium Ion Battery Charger. General Description: Features: Pin Assignment.

CONSONANCE CN3051A/CN3052A. 500mA USB-Compatible Lithium Ion Battery Charger. General Description: Features: Pin Assignment. CONSONANCE 500mA USB-Compatible Lithium Ion Battery Charger CN3051A/CN3052A General Description: The CN3051A/CN3052A is a complete constant-current /constant voltage linear charger for single cell Li-ion

More information

Review: The West Mountain Radio CBA-IV Battery Analyzer Phil Salas AD5X. Figure 1: West Mountain Radio CBA-IV Battery Analyzer

Review: The West Mountain Radio CBA-IV Battery Analyzer Phil Salas AD5X. Figure 1: West Mountain Radio CBA-IV Battery Analyzer Review: The West Mountain Radio CBA-IV Battery Analyzer Phil Salas AD5X Figure 1: West Mountain Radio CBA-IV Battery Analyzer Introduction There has been more emphasis on battery power of late, particularly

More information

Technology for Estimating the Battery State and a Solution for the Efficient Operation of Battery Energy Storage Systems

Technology for Estimating the Battery State and a Solution for the Efficient Operation of Battery Energy Storage Systems Technology for Estimating the Battery State and a Solution for the Efficient Operation of Battery Energy Storage Systems Soichiro Torai *1 Masahiro Kazumi *1 Expectations for a distributed energy system

More information

SmartON / SmartON+ Installation and Use Manual

SmartON / SmartON+ Installation and Use Manual SmartON / SmartON+ Installation and Use Manual Rev. Date Ver. Ver. Notes document document SmartON SmartViewII 1.0 06/04/2007 3.08 2.30 Pre-release 1.01 10/04/2007 3.08 2.30 Release 1.02 04/10/2007 3.09

More information

Technical Information Average Efficiency of the SMA Flexible Storage System

Technical Information Average Efficiency of the SMA Flexible Storage System Technical Information Average Efficiency of the SMA Flexible Storage System The average efficiency of a system for intermediate storage of energy, e.g. of the SMA Flexible Storage System, indicates how

More information

Thermal Analysis of Laptop Battery Using Composite Material

Thermal Analysis of Laptop Battery Using Composite Material IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 3 Ver. IV (May June 2017), PP 01-08 www.iosrjournals.org Thermal Analysis of Laptop

More information

Turbo-charging Your Forklift Fleet: The Power of Industrial Lithium Forklift Batteries

Turbo-charging Your Forklift Fleet: The Power of Industrial Lithium Forklift Batteries Turbo-charging Your Forklift Fleet: The Power of Industrial Lithium Forklift Batteries Presented by: Samer Elshafei Director of Commercial Product and Business Development selshafei@navitassys.com PRESENTATION

More information

Since the necessity of the wireless and mobiles electronic devices, the estimation of state

Since the necessity of the wireless and mobiles electronic devices, the estimation of state State of Charge Introduction Since the necessity of the wireless and mobiles electronic devices, the estimation of state of charge is being one of the most relevant researches on engineering field. One

More information

Technical Article. How to implement a low-cost, accurate state-of-charge gauge for an electric scooter. Manfred Brandl

Technical Article. How to implement a low-cost, accurate state-of-charge gauge for an electric scooter. Manfred Brandl Technical How to implement a low-cost, accurate state-of-charge gauge for an electric scooter Manfred Brandl How to implement a low-cost, accurate state-of-charge gauge for an electric scooter Manfred

More information

S Analog/PWM Input-Charge-Current Setting S Up to 1.2MHz Switching Frequency S Programmable Charge Current Up to 4A S Monitors Input/Outputs

S Analog/PWM Input-Charge-Current Setting S Up to 1.2MHz Switching Frequency S Programmable Charge Current Up to 4A S Monitors Input/Outputs 19-4996; Rev 0; 10/09 General Description The MAX17015 evaluation kit (EV kit) is a complete, fully assembled and tested surface-mount PCB that features the MAX17015B highly integrated, multichemistry

More information

Dr. Daho Taghezout applied magnetics (CH 1110 Morges)

Dr. Daho Taghezout applied magnetics (CH 1110 Morges) EMR 11 Lausanne July 2011 Joint Summer School EMR 11 Energetic Macroscopic Representation Dr. Daho Taghezout applied magnetics (CH 1110 Morges) magnetics@bluewin.ch - Outline - EMR 11, Lausanne, July 2011

More information

High Energy cell target specification for EV, PHEV and HEV-APU applications

High Energy cell target specification for EV, PHEV and HEV-APU applications Project HELIOS - High Energy Lithium-Ion Storage Solutions (www.helios-eu.org) Project number: FP7 2333765 (A 3 year project, supported by the European Commission, to study and test the comparative performances

More information

arxiv:submit/ [math.gm] 27 Mar 2018

arxiv:submit/ [math.gm] 27 Mar 2018 arxiv:submit/2209270 [math.gm] 27 Mar 2018 State of Health Estimation for Lithium Ion Batteries NSERC Report for the UBC/JTT Engage Project Arman Bonakapour Wei Dong James Garry Bhushan Gopaluni XiangRong

More information

An Experimental System for Battery Management Algorithm Development

An Experimental System for Battery Management Algorithm Development An Experimental System for Battery Management Algorithm evelopment Jonas Hellgren, Lei Feng, Björn Andersson and Ricard Blanc Volvo Technology, Göteborg, Sweden E-mail: {jonas.hellgren, lei.feng, bjorn.bj.andersson,

More information

The RCS-6V kit. Page of Contents. 1. This Book 1.1. Warning & safety What can I do with the RCS-kit? Tips 3

The RCS-6V kit. Page of Contents. 1. This Book 1.1. Warning & safety What can I do with the RCS-kit? Tips 3 The RCS-6V kit Page of Contents Page 1. This Book 1.1. Warning & safety 3 1.2. What can I do with the RCS-kit? 3 1.3. Tips 3 2. The principle of the system 2.1. How the load measurement system works 5

More information

User Manual 123electric Battery Management System 123\BMS Revision 1.4 Augusts 2015

User Manual 123electric Battery Management System 123\BMS Revision 1.4 Augusts 2015 User Manual 123electric Battery Management System 123\BMS Revision 1.4 Augusts 2015 Table of contents Introduction... 3 System structure... 3 Keep the batteries in a perfect condition : ALWAYS!... 5 Specifications...

More information

Batteries Specifications. Estimating when they will be fully discharged

Batteries Specifications. Estimating when they will be fully discharged Batteries Specifications Estimating when they will be fully discharged Batteries Batteries are electrochemical cells. A chemical reaction inside the battery produces a voltage between two terminals. Connecting

More information

Battery Pack Laboratory Testing Results

Battery Pack Laboratory Testing Results Battery Pack Laboratory Testing Results 2013 Toyota Prius Plug-in - VIN 8663 Vehicle Details and Battery Specifications¹ʹ² Vehicle Details Base Vehicle: 2013 Toyota Prius Plug-in Architecture: Plug-In

More information

Battery Life in Water Communication Modules

Battery Life in Water Communication Modules Battery Life in Water Communication Modules Satish Bhakta, Ph.D. Advisor, Hardware Solutions 2011, Itron Inc. All rights reserved. 1 Introduction 3 Battery Technology 3 Determining Battery Life 3 Wake-Up

More information

Autonomous Power Supply Uninterruptible Power Supply (UPS)

Autonomous Power Supply Uninterruptible Power Supply (UPS) 1.2 kw Fuel Cell Training System for System Design and Hybridization Autonomous Power Supply Uninterruptible Power Supply (UPS) Hands-on Instruction for Fuel Cell Technology The is a comprehensive tool

More information

ACE4054C. 500mA/1.5A Standalone Linear Li-Ion Battery Charge

ACE4054C. 500mA/1.5A Standalone Linear Li-Ion Battery Charge Description The ACE4054C is a single cell, fully integrated constant current (CC)/ constant voltage (CV) Li-ion battery charger. Its compact package with minimum external components requirement makes the

More information

PRELIMINARY DESIGN REVIEW. LFEV-ESCM-2014 February 13, 2014

PRELIMINARY DESIGN REVIEW. LFEV-ESCM-2014 February 13, 2014 PRELIMINARY DESIGN REVIEW LFEV-ESCM-2014 February 13, 2014 LFEV-Y2-2014 Continuation of Lafayette Formula Electric Vehicle-Energy Storage, Control, and Management (LFEV-ESCM) project for use in the Formula

More information

Figure 1: Graphs Showing the Energy and Power Consumed by Two Systems on an ROV during a Mission

Figure 1: Graphs Showing the Energy and Power Consumed by Two Systems on an ROV during a Mission Power Systems 3 Cornerstone Electronics Technology and Robotics III Notes primarily from Underwater Robotics Science Design and Fabrication, an excellent book for the design, fabrication, and operation

More information

GRADE 7 TEKS ALIGNMENT CHART

GRADE 7 TEKS ALIGNMENT CHART GRADE 7 TEKS ALIGNMENT CHART TEKS 7.2 extend previous knowledge of sets and subsets using a visual representation to describe relationships between sets of rational numbers. 7.3.A add, subtract, multiply,

More information

Performance Characteristics

Performance Characteristics Performance Characteristics 5.1 Voltage The nominal voltage of Li/M no 2 cells is 3. volts, twice that of conventional cells due to the high electrode potential of elemental lithium. Consequently a single

More information

EE152 Green Electronics

EE152 Green Electronics EE152 Green Electronics Batteries 11/5/13 Prof. William Dally Computer Systems Laboratory Stanford University Course Logistics Tutorial on Lab 6 during Thursday lecture Homework 5 due today Homework 6

More information

800mA Lithium Ion Battery Linear Charger

800mA Lithium Ion Battery Linear Charger GENERAL DESCRIPTION is a complete CC/CV linear charger for single cell lithium-ion batteries. it is specifically designed to work within USB power Specifications. No external sense resistor is needed and

More information

doi: / Online SOC Estimation of Power Battery Based on Closed-loop Feedback Model

doi: / Online SOC Estimation of Power Battery Based on Closed-loop Feedback Model doi:10.21311/001.39.7.37 Online Estimation of Power Battery Based on Closed-loop Feedbac Model Shouzhen Zhang School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China

More information

Presented at the 2012 Aerospace Space Power Workshop Manhattan Beach, CA April 16-20, 2012

Presented at the 2012 Aerospace Space Power Workshop Manhattan Beach, CA April 16-20, 2012 Complex Modeling of LiIon Cells in Series and Batteries in Parallel within Satellite EPS Time Dependent Simulations Presented at the 2012 Aerospace Space Power Workshop Manhattan Beach, CA April 16-20,

More information

Comparing FEM Transfer Matrix Simulated Compressor Plenum Pressure Pulsations to Measured Pressure Pulsations and to CFD Results

Comparing FEM Transfer Matrix Simulated Compressor Plenum Pressure Pulsations to Measured Pressure Pulsations and to CFD Results Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2012 Comparing FEM Transfer Matrix Simulated Compressor Plenum Pressure Pulsations to Measured

More information

Orion BMS Purchasing Guide Rev. 1.2

Orion BMS Purchasing Guide Rev. 1.2 www.orionbms.com Orion BMS Purchasing Guide Rev. 1.2 Main Components... 2 Orion BMS Unit... 2 Current Sensor... 4 Thermistors... 5 CANdapter... 6 Wiring Harnesses... 7 Cell voltage tap wiring harnesses...

More information

This short paper describes a novel approach to determine the state of health of a LiFP (LiFePO 4

This short paper describes a novel approach to determine the state of health of a LiFP (LiFePO 4 Impedance Modeling of Li Batteries for Determination of State of Charge and State of Health SA100 Introduction Li-Ion batteries and their derivatives are being used in ever increasing and demanding applications.

More information

UniverSOL Charge Station

UniverSOL Charge Station UniverSOL Charge Station Group 17 Jonathan German Amy Parkinson John Curristan Brock Stoops Sponsored by Motivations Environmental Renewable Energy Carbon Emissions Power Demand Power Dependency Availability

More information

Lithium battery charging

Lithium battery charging Lithium battery charging How to charge to extend battery life? Why Lithium? Compared with the traditional battery, lithium ion battery charge faster, last longer, and have a higher power density for more

More information

THINERGY MEC220. Solid-State, Flexible, Rechargeable Thin-Film Micro-Energy Cell

THINERGY MEC220. Solid-State, Flexible, Rechargeable Thin-Film Micro-Energy Cell THINERGY MEC220 Solid-State, Flexible, Rechargeable Thin-Film Micro-Energy Cell DS1013 v1.1 Preliminary Product Data Sheet Features Thin Form Factor 170 µm Thick Capacity options up to 400 µah All Solid-State

More information

Accurate Technology for Easy, Secure Fuel Gauging You Can Trust. By Bakul Damle, Mobile Power Business Management Director

Accurate Technology for Easy, Secure Fuel Gauging You Can Trust. By Bakul Damle, Mobile Power Business Management Director Accurate Technology for Easy, Secure Fuel Gauging You Can Trust By Bakul Damle, Mobile Power Business Management Director April 2017 Table of Contents Abstract...1 Introduction...2 Fuel Gauging Methodologies...3

More information

SONNENSCHEIN LITHIUM INDUSTRIAL BATTERIES / MOTIVE POWER

SONNENSCHEIN LITHIUM INDUSTRIAL BATTERIES / MOTIVE POWER SONNENSCHEIN LITHIUM INDUSTRIAL BATTERIES / MOTIVE POWER FEATURES AND TECHNOLOGY The Intelligent Energy Source Maximizing Your Productivity GNB's traction batteries based on Lithium-ion technology are

More information

The Benefits of Cell Balancing

The Benefits of Cell Balancing The Benefits of Cell Balancing Application Note AN141.0 Author: Yossi Drori and Carlos Martinez Introduction In the world of portable consumer products, the single biggest complaint voiced by the consumer

More information

Podium Engineering complete race cars, vehicle prototypes high performance hybrid/electric powertrain

Podium Engineering complete race cars, vehicle prototypes high performance hybrid/electric powertrain Born in the firm belief that design quality, high project commitment and absolute respect of deadlines are key competitive factors for a consulting and engineering company, Podium Engineering is a dynamic

More information

THE IMPACT OF BATTERY OPERATING TEMPERATURE AND STATE OF CHARGE ON THE LITHIUM-ION BATTERY INTERNAL RESISTANCE

THE IMPACT OF BATTERY OPERATING TEMPERATURE AND STATE OF CHARGE ON THE LITHIUM-ION BATTERY INTERNAL RESISTANCE Jurnal Mekanikal June 2017, Vol 40, 01-08 THE IMPACT OF BATTERY OPERATING TEMPERATURE AND STATE OF CHARGE ON THE LITHIUM-ION BATTERY INTERNAL RESISTANCE Amirul Haniff Mahmud, Zul Hilmi Che Daud, Zainab

More information

Study on State of Charge Estimation of Batteries for Electric Vehicle

Study on State of Charge Estimation of Batteries for Electric Vehicle Study on State of Charge Estimation of Batteries for Electric Vehicle Haiying Wang 1,a, Shuangquan Liu 1,b, Shiwei Li 1,c and Gechen Li 2 1 Harbin University of Science and Technology, School of Automation,

More information

HOMER OPTIMIZATION BASED SOLAR WIND HYBRID SYSTEM 1 Supriya A. Barge, 2 Prof. D.B. Pawar,

HOMER OPTIMIZATION BASED SOLAR WIND HYBRID SYSTEM 1 Supriya A. Barge, 2 Prof. D.B. Pawar, 1 HOMER OPTIMIZATION BASED SOLAR WIND HYBRID SYSTEM 1 Supriya A. Barge, 2 Prof. D.B. Pawar, 1,2 E&TC Dept. TSSM s Bhivrabai Sawant College of Engg. & Research, Pune, Maharashtra, India. 1 priyaabarge1711@gmail.com,

More information

Designing Applications with Lithium-Ion Batteries

Designing Applications with Lithium-Ion Batteries Application Note Roland van Roy AN025 Sep 2014 Designing Applications with Lithium-Ion Batteries Contents 1. Introduction...1 2. Single Li-Ion Cell as Power Source...2 3. Battery Charging...6 4. Battery

More information

Performance of Batteries in Grid Connected Energy Storage Systems. June 2018

Performance of Batteries in Grid Connected Energy Storage Systems. June 2018 Performance of Batteries in Grid Connected Energy Storage Systems June 2018 PERFORMANCE OF BATTERIES IN GRID CONNECTED ENERGY STORAGE SYSTEMS Authors Laurie Florence, Principal Engineer, UL LLC Northbrook,

More information

Ming Cheng, Bo Chen, Michigan Technological University

Ming Cheng, Bo Chen, Michigan Technological University THE MODEL INTEGRATION AND HARDWARE-IN-THE-LOOP (HIL) SIMULATION DESIGN FOR THE ANALYSIS OF A POWER-SPLIT HYBRID ELECTRIC VEHICLE WITH ELECTROCHEMICAL BATTERY MODEL Ming Cheng, Bo Chen, Michigan Technological

More information

Sensor Suit for the Visually Impaired

Sensor Suit for the Visually Impaired Sensor Suit for the Visually Impaired Proposed Completion Date 2013 People today that are visually impaired at birth or by misfortune have few options for methods of getting around in their every-day lives.

More information

CHAPTER NO. 3. Parameters

CHAPTER NO. 3. Parameters CHAPTER NO. 3 Modeling and Simulation of Battery Performance Parameters 3.1 Modeling and Simulation- Fundamentals 3.1.1 Importance 3.1.2 Modeling 3.1.3 Implementing a model 3.1.4 Simulation 3.2 Modeling

More information

Battery Response Analyzer using a high current DC-DC converter as an electronic load F. Ibañez, J.M. Echeverria, J. Vadillo, F.Martín and L.

Battery Response Analyzer using a high current DC-DC converter as an electronic load F. Ibañez, J.M. Echeverria, J. Vadillo, F.Martín and L. European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 11) Las Palmas de Gran Canaria

More information

Battery Power Management

Battery Power Management Battery Power Management for Portable Devices Yevgen Barsukov Jinrong Qian ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface xi Acknowledgments xiii Foreword xv 1 Battery Chemistry Fundamentals

More information

PSIM Tutorial. How to Use Lithium-Ion Battery Model

PSIM Tutorial. How to Use Lithium-Ion Battery Model PSIM Tutorial How to Use Lithium-Ion Battery Model - 1 - www.powersimtech.com This tutorial describes how to use the lithium-ion battery model. Some of the battery parameters can be obtained from manufacturer

More information

Exercise 2-1. The Separately-Excited DC Motor N S EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Simplified equivalent circuit of a dc motor

Exercise 2-1. The Separately-Excited DC Motor N S EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Simplified equivalent circuit of a dc motor Exercise 2-1 The Separately-Excited DC Motor EXERCISE OBJECTIVE When you have completed this exercise, you will be able to demonstrate the main operating characteristics of a separately-excited dc motor

More information

Preliminary Study on Quantitative Analysis of Steering System Using Hardware-in-the-Loop (HIL) Simulator

Preliminary Study on Quantitative Analysis of Steering System Using Hardware-in-the-Loop (HIL) Simulator TECHNICAL PAPER Preliminary Study on Quantitative Analysis of Steering System Using Hardware-in-the-Loop (HIL) Simulator M. SEGAWA M. HIGASHI One of the objectives in developing simulation methods is to

More information

AltiumLive 2017: Adopting Early Analysis of Your Power Delivery Network

AltiumLive 2017: Adopting Early Analysis of Your Power Delivery Network AltiumLive 2017: Adopting Early Analysis of Your Power Delivery Network Andy Haas Product Manager, Analysis John Magyar Sr. Field Applications Engineer What is a PDN? PDN is an acronym for Power Delivery

More information

Power Systems for GRID Simulation. Mahesh Thaker, Director of Engineering AMETEK Programmable Power / VTI Instruments

Power Systems for GRID Simulation. Mahesh Thaker, Director of Engineering AMETEK Programmable Power / VTI Instruments Power Systems for GRID Simulation Mahesh Thaker, Director of Engineering AMETEK Programmable Power / VTI Instruments Agenda AMETEK Programable Power introduction Evolution of Grid Power Simulation Growth

More information

Cordless Drill Motor Control with Battery Charging Using Z8 Encore! F0830 Reference Design

Cordless Drill Motor Control with Battery Charging Using Z8 Encore! F0830 Reference Design Application Note Cordless Drill Motor Control with Battery Charging Using Z8 Encore! F0830 Reference Design AN025504-0910 Abstract Currently, most hand-held electric drilling machines operating on batteries

More information

ABB's Energy Efficiency and Advisory Systems

ABB's Energy Efficiency and Advisory Systems ABB's Energy Efficiency and Advisory Systems The common nominator for all the Advisory Systems products is the significance of full scale measurements. ABB has developed algorithms using multidimensional

More information

800mA Lithium Ion Battery Linear Charger

800mA Lithium Ion Battery Linear Charger 800mA Lithium Ion Battery Linear Charger General Description is a complete constant-current/constant voltage linear charger for single cell lithium-ion batteries. Furthermore the is specifically designed

More information

The evaluation of endurance running tests of the fuel cells and battery hybrid test railway train

The evaluation of endurance running tests of the fuel cells and battery hybrid test railway train The evaluation of endurance running tests of the fuel cells and battery hybrid test railway train K.Ogawa, T.Yamamoto, T.Hasegawa, T.Furuya, S.Nagaishi Railway Technical Research Institute (RTRI), TOKYO,

More information

Chapter 11. Using MAX II User Flash Memory for Data Storage in Manufacturing Flow

Chapter 11. Using MAX II User Flash Memory for Data Storage in Manufacturing Flow Chapter 11. Using MAX II User Flash Memory for Data Storage in Manufacturing Flow MII51011-1.0 Introduction Small capacity, non-volatile memory is commonly used in storing manufacturing data (e.g., manufacturer

More information

AA Battery Selection and Storage for Portable Operation

AA Battery Selection and Storage for Portable Operation AA Battery Selection and Storage for Portable Operation By Bryan Ackerly, VK3YNG AA batteries are probably the most common size of replaceable battery. This paper gives a brief comparison of battery types.

More information

Effectiveness of Plug-in Hybrid Electric Vehicle Validated by Analysis of Real World Driving Data

Effectiveness of Plug-in Hybrid Electric Vehicle Validated by Analysis of Real World Driving Data World Electric Vehicle Journal Vol. 6 - ISSN 32-663 - 13 WEVA Page Page 416 EVS27 Barcelona, Spain, November 17-, 13 Effectiveness of Plug-in Hybrid Electric Vehicle Validated by Analysis of Real World

More information

E61, E63, E64 BMW AG - TIS

E61, E63, E64 BMW AG - TIS VS-42 je Baugruppe/Group: 61 meeknet.co.uk/e64 Power supply E60, E61, E63, E64 61 07 03 (029) weltweit Datum/Date: 06/2003 Update 02/2006 Introduction The power supply on the BMW 5- and 6-Series is similar

More information

TRANSPORT OF DANGEROUS GOODS

TRANSPORT OF DANGEROUS GOODS Recommendations on the TRANSPORT OF DANGEROUS GOODS Manual of Tests and Criteria Fifth revised edition Amendment 1 UNITED NATIONS SECTION 38 38.3 Amend to read as follows: "38.3 Lithium metal and lithium

More information

BMS-LiFePower. 123SmartBMS. Instruction manual

BMS-LiFePower. 123SmartBMS. Instruction manual BMS-LiFePower 123SmartBMS Instruction manual Index Introduction...2 Keep the batteries in perfect condition...2 Package contains (12 Volt, 4 cells)...3 Specs...3 Placing the cell modules...4 Mounting the

More information

BASIC ELECTRICAL MEASUREMENTS By David Navone

BASIC ELECTRICAL MEASUREMENTS By David Navone BASIC ELECTRICAL MEASUREMENTS By David Navone Just about every component designed to operate in an automobile was designed to run on a nominal 12 volts. When this voltage, V, is applied across a resistance,

More information

Control System for a Diesel Generator and UPS

Control System for a Diesel Generator and UPS Control System for a Diesel Generator and UPS I. INTRODUCTION In recent years demand in the continuity of power supply in the local distributed areas is steadily increasing. Nowadays, more and more consumers

More information

VERIFICATION OF LiFePO4 BATTERY MATHEMATIC MODEL

VERIFICATION OF LiFePO4 BATTERY MATHEMATIC MODEL Journal of KONES Powertrain and Transport, Vol. 23, No. 4 2016 VERIFICATION OF LiFePO4 BATTERY MATHEMATIC MODEL Filip Polak Military University of Technology Faculty of Mechanical Engineering Institute

More information

Course Outcome Summary

Course Outcome Summary Course Information Division: ASET Contact Hours: 90 Theory: 30 Lab Hours: 60 Total Credits 4 Prerequisites ELEC 125 (Fundamentals of Electricity) Course Description This course is designed to provide students

More information

User Manual. BMS123 Smart

User Manual. BMS123 Smart User Manual BMS123 Smart Introduction After the introduction of affordable LiFePO4 batteries, off-grid solutions became available for wide public. It is vital that such batteries are charged very carefully.

More information

W SERIES IMPULSE VOLTAGE TEST SYSTEM APPLICATION FEATURES

W SERIES IMPULSE VOLTAGE TEST SYSTEM APPLICATION FEATURES W SERIES IMPULSE VOLTAGE TEST SYSTEM Impulse Voltage Test System is used to generate impulse voltages from 100 KV to 2400 KV simulating lightning strokes and switching surges with energies up to 240 KJ.

More information

Design and Implementation of Automatic Solar Grass Cutter

Design and Implementation of Automatic Solar Grass Cutter IJIRST National Conference on Networks, Intelligence and Computing Systems March 2017 Design and Implementation of Automatic Solar Grass Cutter P. K. Arunkumar 1 M. Vibesh Ram 2 E. Rajesh Kumar 3 A. Manivasagam

More information