Research Paper MULTIPLE INPUT BIDIRECTIONAL DC-DC CONVERTER Gomathi.S 1, Ragavendiran T.A. S 2

Size: px
Start display at page:

Download "Research Paper MULTIPLE INPUT BIDIRECTIONAL DC-DC CONVERTER Gomathi.S 1, Ragavendiran T.A. S 2"

Transcription

1 Research Paper MULTIPLE INPUT BIDIRECTIONAL DC-DC CONVERTER Gomathi.S 1, Ragavendiran T.A. S 2 Address for Correspondence M.E.,(Ph.D).,Assistant Professor, St. Joseph s institute of Technology, Chennai M.E., Ph.D., Principal, Anand Institute of Higher Technology, Chennai India. ABSTRACT In this paper two batteries of different voltage level are interfaced and also the power is transferred in both the directions i.e., bidirectional power flow capability. By using more than one dc sources the system is supplied more power during peak demands and by using bidirectional converter the charging and discharging of batteries takes place. KEYWORDS Batteries as sources, bidirectional power flow, dc-dc converter, multiple input. I. INTRODUCTION In future, there will be more applications of using more than one dc sources so that more power is supplied during peak demand. Multiple-input converters (MIC) have been proposed as a cost-effective and flexible way to interface various sources and, in some cases, energy-storage devices. Multi input bidirectional DC-DC converter is used to interconnect the multiple sources with different voltage levels. It reduces the system size, cost and power losses due to the less number of components used in the system. The purpose of multi input bidirectional converter is increase or decrease the voltage level of the system with bidirectional power flow capability. Multi input bidirectional converter can transfers the power between any two sources with different voltage levels. In this paper the two sources used here are batteries of different voltage level. Using of battery as a source because it is simple and also stores energy well. So we are using batteries as source for that reason. And coming to load, dc motor is used as a load. Converter used here is bidirectional converter which is used for power flow in both the directions i.e., forward and reverse direction. In forward direction, the supply from batteries makes to run dc motor and in reverse direction, power flows from load to both the sources so that charging of batteries takes place. MICs are being used in aerospace, electric and hybrid vehicles, sustainable energy sources and micro grid applications. Fig 1. Shows the block diagram of multiple input bidirectional dc-dc converter. As discussed already here two sources used are battery1 and battery2 of different voltage level. Bidirectional converter is used for power flow in both directions i.e., sources to load as well as load to sources. Gate pulses are given to each switch for triggering purpose. And load connected here is dc motor as mentioned before. This is the explanation of block diagram which is given as follows. Fig1. Block diagram of multiple input bidirectional dc-dc converter. Bidirectional converter used here consists of 6 switches and for each switches the gate pulse is given for triggering purpose. Circuit diagram for multiple input bidirectional dc-dc converter explains the two sources used here and mainly the converter portion and dc link. Fig.2. Circuit diagram of multiple input bidirectional dc-dc converter. Here in the above circuit, in bidirectional converter the switches used here is mosfet because of its low limiting current and also used for high power applications. Sources Bt1 and Bt2 represent the battery and ultra capacitor, which are interfaced with the dc link of inverter Vdc. Two legs of switch modules are connected to these dc voltage sources instead of dc bus. Another leg of the converter is connected to the dc link of the inverter, which is also fed by an FC through a dc dc converter. In this project, a multi-input nonisolated bidirectional power converter with the flexibility of interfacing multiple sources is proposed. This converter has the minimum number of devices with independent transfer of power between any two sources with wide variation in voltage levels. II. MODES OF OPERATION There are 5 modes of operation of multiple input bidirectional dc-dc converter. It is based on the power transfer between the two sources and the load. Mode A explains the power transfer between battery unit and dc link of the output (i.e. the power is supplied from one of the source to the load). Mode B explains the power transfer between another battery unit and dc link (i.e. power is supplied from one of the source to the load).mode C explains the power transfer between both the batteries. It means between the two sources. Mode D explains the power transfer between two batteries to DC link (i.e. power is supplied from both sources to the load). Mode E is based on power transfer from DC link capacitor to both the batteries. These 5 modes are explained as below, A. Mode-A (power transfer between battery and dc link) In this mode of operation, the energy stored in the battery is transferred to the dc link to supply power to the load. The switching sequence of the power devices in this mode of operation is given in Table I. Mode a is further divided into two parts, mode A(i) and mode

2 A(ii).In mode A(i),the devices S2 and S3 are first turned on to store the energy during the interval T1. During time interval T2, both the switches are turned off. Inductor current il1 flows to the dc link capacitor through the diodes D1 and D4. Energy stored in L1 during time T1 is being discharged to Cdc in this interval. In the next time interval T3, switches S1 and S4 are turned on. Current continues to flow from L1 to the dc link through the switches as opposed to the diodes in T2.Switches S1 and S4 are made to operate as rectifiers. In mode A(ii),the switches S1 and S4 is made to on at time interval T1. In time interval T2, the current flows through diode D2 and D3.At time interval T3, the switches S2 and S3 are made to on. Table I. conduction of devices for mode A,B and C Mode-B (power transfer between another battery and dc link) For energy transfer from the ultra capacitor to the dc link, the switching sequence for three distinct time intervals of operation is given in mode B(i) in Table II. The operation in this mode is similar to that of A(i). similar devices are switched as given in mode B(ii) in Table I. The direction of current flow in inductor L2 is opposite to that of mode B(i), as the direction of power flow is now reversed. In this mode, it is important to observe the changes in conducting devices in three different time intervals. B. Mode-C (power transfer between two batteries) Whenever energy stored in the battery needs to be transferred over to the ultra capacitor or vice versa, the switching sequence given in Table I is followed. There are various combinations possible for switching the four devices S3 to S6, depending on the voltage level soft the two energy sources. While charging the ultra capacitor from the battery in mode C(i), the converter can be operated in boost mode, buck mode, or buck boost mode. The boost mode of operation is used when the ripple current in the battery is lower as compared to the other two modes of operation. This is chosen to improve the life of the battery by reducing the peak value of charging or discharging current. If the ultra capacitor voltage is lower than the battery voltage, it is operated in buck mode, and if its voltage increases from less than VBt to above VBt, then the controller needs to seamlessly maneuver from the buck mode to the boost mode of operation. On the other hand, buck boost mode can be implemented. C. Mode-D (power transfer between two batteries and dc link) Mode D is based on power transfer between battery1 and battery2 to DC link (i.e. power is supplied from both sources to the load). When there is peak power needed, both the sources supply power to the load. In this mode of operation, more than two sources transfers energy to dc-link. Identical gate signals are given to switches S1 and S6 with a duty ratio of d2, and the complementary of this signal is being provided to switches S2 and S5. The gate signal for the switch S3 is synchronized with that of switch S1 having a duty ratio of d1. S4 is switched complementary to switch S3 with a dead time. During interval T1, switches S2, S3, and S5 are gated on, charging both the inductors L1 and L2 by corresponding sources Bt1 and Bt2. During peak power demand from the propulsion drive, the battery units provide the peak power demand due to its faster dynamic response as compared with the FC system. In FCV, the auxiliary sources have to deliver rated power during the process of cold start-up of the FC system. Switching states during this mode of operation is given in Table II, dividing the switching cycle TS into five time intervals. Identical gate signals are given to switches S1 and S6 with a duty ratio of d2, and the complementary of this signal is being provided to switches S2 and S5 as demonstrated in Fig. 3. The gate signal for the switch S3 is synchronized with that of switch S1 having a duty ratio of d1. S4 is switched complementary to switch S3 with a dead time. During interval T1, switches S2, S3, and S5 are gated on, charging both the inductors L1 and L2 by corresponding sources. At the end of this interval, switch S3 is turned off, providing a freewheeling path for il1 through D4. In interval T3, switch S4 is turned on in order to avoid voltage drop across the diode D4 while inductor L2 continues to charge from the battery2. Switches S2 and S5 are turned off at the end of interval T3, forcing current to flow through antiparallel diodes of their corresponding complementary switches. Energy stored in the inductors L1 and L2 is transferred to the dc link through diode D1. The voltage drop across the switch is reduced by gating on switch S1 to act as the synchronous rectifier. At the end of this interval, gating signals for each switching leg are complemented to start charging the inductors L1 and L2 going back to interval T1. Fig 3. Gate pulses for mode D

3 Table II. Conduction of devices for mode D and E Fig 4. Current waveform for IBT, IL1, IL2, IDC Fig. 5. DC output voltage for mode D A. Mode-E(power transfer between dc link to two batteries ) Mode E is based on power transfer from DC link to both battery and ultra capacitor. When there is excess power in the load, it is fed back to both the Fig 6. Output current for mode D sources during regenerative braking. In this mode of operation, L2 is always connected to the ultra capacitor by keeping S5 and S6 in ON and OFF states, respectively, throughout the cycle. The switch pairs

4 S1 S2 and S3 S4 are operated in complementary fashion with duty ratios of d1 and d2. The switching sequence during this mode of operation is given in mode E of Table II. In this mode of operation, L2 is always connected to the battery 2 by keeping S5 and S6 in ON and OFF states, respectively, throughout the cycle. The switch pairs S1 S2 and S3 S4 are operated in complementary fashion with duty ratios of d1 and d2 as shown in Fig. 5. Switches S1, S3, and S5 are turned on in the time interval T1, transferring energy from the dc link to charge both the auxiliary sources. Inductor currents il1 and il2 increase as Vdc appears at point A. At the end of T1, switch S1 is turned off, providing a freewheeling path for the inductor currents through diode D2. In order to reduce the voltage drop across the diode, switch S2 is gated onto effectively function as asynchronous rectifier in T3. In order to control the charging of two sources independently, switch S3 is turned off, and S4 is turned on, maintaining the current through inductor L1 as shown in Fig. 5. During this time interval, the inductor current il2 continues to charge the ultra capacitor. Switches S2 and S4 are turned off at the end of the interval T4. Current in inductors flow from the dc link to the battery and ultra capacitor through switches S1 and S5 and diode D3.One cycle of operation completes when the switch S3 is turned on, providing a path for il1 by reducing the voltage drop across it. Fig 7. Gate pulses for mode E Fig 8. Dc link voltage for mode E III.RESULTS The proposed multiple-input dc dc converter has been tested in various modes of operation discussed in the previous section. The unit has been designed for Vdc = 300 V, output power Po =5kW, and switching frequency of 20 khz. The other details are as follows. Battery 1: 144-V 17-Ah lithium-ion battery bank. Voltage varies from 120 to 144 V. Battery 2: 177-V 17-Ah lithium-ion battery bank. Voltage varies from 150 to 177 V. DC-link capacitor: 3 mf. Inductors are 100 microh each. The switches are controlled from DSP320F2808. Fig.9 charging of batteries bt1 and bt2 for mode E

5 Fig.10 Battery1 input voltage for mode D Fig.11 Battery2 input voltage for mode D Fig.12 DC link output voltage for mode D Fig.13 DC link input voltage for mode E Fig.14 Charging voltage of battery1 for mode E IV. CONCLUSION Thus, the batteries of different voltage level is interfaced i.e., multiple input interfacing is achieved and can be used where more than two sources are needed. And by using bidirectional converter, the excess energy can be stored and used when needed. i.e., bidirectional power flow capability is achieved. REFERENCES Fig.15 Charging voltage of battery2 for mode E [1] A Emadi and S. S. Williamson, Fuel cell vehicles: Opportunities and challenges, in Proc. IEEE PES Meet., 2004, pp [2] S. Aso, M. Kizaki, and Y. Nonobe, Development of hybrid fuel cell vehicles in Toyota, in Proc. IEEE PCC, 2007, pp [3] K. Rajashekara, Present status and future trends in electric vehicle propulsion technologies, IEEE Trans. Emerging Sel. Topics Power Electron., vol. 1, no. 1, pp. 3 10, Mar [4] B. Bilgin, A. Emadi, and M. Krishnamurthy, Design considerations for a universal input battery charger circuit for

6 PHEV applications, in Proc.IEEE ISIE, 2010, pp [5] K. Rajashekhara, Power conversion and control strategies for fuel cell vehicles, in Proc. IEEE IECON, 2003, pp [6] A. Emadi, S. S.Williamson, and A. Khaligh, Power electronics intensive solutions for advanced electric, hybrid electric, fuel cell vehicular power systems, IEEE Trans. Power Electron., vol. 21, no. 3, pp ,May [7] A. Emadi, K. Rajashekara, S. S. Williamson, and S. M. Lukic, Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations, IEEE Trans. Veh. Technol., vol. 54,no. 3, pp , May [8] A. Khaligh and Z. Li, Battery, ultracapacitor, fuel cell, hybrid energy storage systems for electric, hybrid electric, fuel cell, plug-in hybrid electric vehicles: State of the art, IEEE Trans. Veh. Technol., vol. 59, no. 6pp , Jul [9] J. M. Miller, Power electronics in hybrid electric vehicle applications, in Proc. IEEE Appl. Power Electron. Conf., Miami Beach, FL, USA,Feb. 2003, vol. 1, pp [10] J.-S. Kim et al., Optimal battery design of FCEV using a fuel cell dynamics model, in Proc. Telecommun. Energy Conf., 2009, pp [11] E. Schaltz, A. Khaligh, and P. O. Rasmussen, Influence of battery/ultracapacitor energy-storage sizing on battery lifetime in a fuel cell hybrid electric vehicle, IEEE Trans. Veh. Technol., vol. 58, no. 8, pp , Oct [12] U. R. Prasanna, P. Xuewei, A. K. Rathore, and K. Rajashekara, Propulsionsystem architecture and power conditioning topologies for fuelcell vehicles, IEEE Trans. Ind. Appl., vol. 51, no. 1, pp ,Jan./Feb

NOVEL MODULAR MULTIPLE-INPUT BIDIRECTIONAL DC DC POWER CONVERTER (MIPC) FOR HEV/FCV APPLICATION

NOVEL MODULAR MULTIPLE-INPUT BIDIRECTIONAL DC DC POWER CONVERTER (MIPC) FOR HEV/FCV APPLICATION NOVEL MODULAR MULTIPLE-INPUT BIDIRECTIONAL DC DC POWER CONVERTER (MIPC) FOR HEV/FCV APPLICATION 1 Anitha Mary J P, 2 Arul Prakash. A, 1 PG Scholar, Dept of Power Electronics Egg, Kuppam Engg College, 2

More information

Simulation of Fully-Directional Universal DC- DC Converter for Electric Vehicle Applications

Simulation of Fully-Directional Universal DC- DC Converter for Electric Vehicle Applications Simulation of Fully-Directional Universal DC- DC Converter for Electric Vehicle Applications Saikrupa C Iyer* R. M. Sahdhashivapurhipurun Sandhya Sriraman Tulsi S Ramanujam R. Ramaprabha Department of

More information

Dual power flow Interface for EV, HEV, and PHEV Applications

Dual power flow Interface for EV, HEV, and PHEV Applications International Journal of Engineering Inventions e-issn: 2278-7461, p-issn: 2319-6491 Volume 4, Issue 4 [Sep. 2014] PP: 20-24 Dual power flow Interface for EV, HEV, and PHEV Applications J Ranga 1 Madhavilatha

More information

A Reduced switch count Soft-Switching Current-Fed Full-Bridge Isolated DC/DC Converter for Fuel Cell Vehicles

A Reduced switch count Soft-Switching Current-Fed Full-Bridge Isolated DC/DC Converter for Fuel Cell Vehicles A Reduced switch count Soft-Switching Current-Fed Full-Bridge Isolated DC/DC Converter for Fuel Cell Vehicles Julakanti Mounika M.Tech Student, Department of PEED, HITAM Engineering College. Abstract:

More information

A Novel DC-DC Converter Based Integration of Renewable Energy Sources for Residential Micro Grid Applications

A Novel DC-DC Converter Based Integration of Renewable Energy Sources for Residential Micro Grid Applications A Novel DC-DC Converter Based Integration of Renewable Energy Sources for Residential Micro Grid Applications Madasamy P 1, Ramadas K 2 Assistant Professor, Department of Electrical and Electronics Engineering,

More information

INVESTIGATION AND PERFORMANCE ANALYSIS OF MULTI INPUT CONVERTER FOR THREE PHASE NON CONVENTIONAL ENERGY SOURCES FOR A THREE PHASE INDUCTION MOTOR

INVESTIGATION AND PERFORMANCE ANALYSIS OF MULTI INPUT CONVERTER FOR THREE PHASE NON CONVENTIONAL ENERGY SOURCES FOR A THREE PHASE INDUCTION MOTOR Man In India, 96 (12) : 5421-5430 Serials Publications INVESTIGATION AND PERFORMANCE ANALYSIS OF MULTI INPUT CONVERTER FOR THREE PHASE NON CONVENTIONAL ENERGY SOURCES FOR A THREE PHASE INDUCTION MOTOR

More information

Development and Analysis of Bidirectional Converter for Electric Vehicle Application

Development and Analysis of Bidirectional Converter for Electric Vehicle Application Development and Analysis of Bidirectional Converter for Electric Vehicle Application N.Vadivel, A.Manikandan, G.Premkumar ME (Power Electronics and Drives) Department of Electrical and Electronics Engineering

More information

Implementation of Bidirectional DC-DC converter for Power Management in Hybrid Energy Sources

Implementation of Bidirectional DC-DC converter for Power Management in Hybrid Energy Sources Implementation of Bidirectional DC-DC converter for Power Management in Hybrid Energy Sources Inturi Praveen M.Tech-Energy systems, Department of EEE, JBIET-Hyderabad, Telangana, India. G Raja Sekhar Associate

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online): 2321-0613 Bidirectional Double Buck Boost Dc- Dc Converter Malatesha C Chokkanagoudra 1 Sagar B

More information

Abstract- In order to increase energy independency and decrease harmful vehicle emissions, plug-in hybrid electric vehicles

Abstract- In order to increase energy independency and decrease harmful vehicle emissions, plug-in hybrid electric vehicles An Integrated Bi-Directional Power Electronic Converter with Multi-level AC-DC/DC-AC Converter and Non-inverted Buck-Boost Converter for PHEVs with Minimal Grid Level Disruptions Dylan C. Erb, Omer C.

More information

An Improved Powertrain Topology for Fuel Cell-Battery-Ultracapacitor Vehicles

An Improved Powertrain Topology for Fuel Cell-Battery-Ultracapacitor Vehicles An Improved Powertrain Topology for Fuel Cell-Battery-Ultracapacitor Vehicles J. Bauman, Student Member, IEEE, M. Kazerani, Senior Member, IEEE Department of Electrical and Computer Engineering, University

More information

Analysis and Design of Improved Isolated Bidirectional Fullbridge DC-DC Converter for Hybrid Electric Vehicle

Analysis and Design of Improved Isolated Bidirectional Fullbridge DC-DC Converter for Hybrid Electric Vehicle Analysis and Design of Improved Isolated Bidirectional Fullbridge DC-DC Converter for Hybrid Electric Vehicle Divya K. Nair 1 Asst. Professor, Dept. of EEE, Mar Athanasius College Of Engineering, Kothamangalam,

More information

Design of High Performance and High Efficiency DC-DC Converter for Hybrid Electric Vehicles

Design of High Performance and High Efficiency DC-DC Converter for Hybrid Electric Vehicles Design of High Performance and High Efficiency DC-DC Converter for Hybrid Electric Vehicles R. Santhos kumar 1 and M.Murugesan 2 PG Student [PSE], Dept. of EEE, V.S.B. Engineering College, Karur, Tamilnadu,

More information

Simulation Analysis of Closed Loop Dual Inductor Current-Fed Push-Pull Converter by using Soft Switching

Simulation Analysis of Closed Loop Dual Inductor Current-Fed Push-Pull Converter by using Soft Switching Journal for Research Volume 02 Issue 04 June 2016 ISSN: 2395-7549 Simulation Analysis of Closed Loop Dual Inductor Current-Fed Push-Pull Converter by using Soft Switching Ms. Manasa M P PG Scholar Department

More information

Implementation of Bidirectional DC/AC and DC/DC Converters for Automotive Applications

Implementation of Bidirectional DC/AC and DC/DC Converters for Automotive Applications I J C T A, 9(37) 2016, pp. 923-930 International Science Press Implementation of Bidirectional DC/AC and DC/DC Converters for Automotive Applications T.M. Thamizh Thentral *, A. Geetha *, C. Subramani

More information

Performance Analysis of Bidirectional DC-DC Converter for Electric Vehicle Application

Performance Analysis of Bidirectional DC-DC Converter for Electric Vehicle Application IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 9 February 2015 ISSN (online): 2349-6010 Performance Analysis of Bidirectional DC-DC Converter for Electric Vehicle

More information

BIDIRECTIONAL DC-DC CONVERTER FOR INTEGRATION OF BATTERY ENERGY STORAGE SYSTEM WITH DC GRID

BIDIRECTIONAL DC-DC CONVERTER FOR INTEGRATION OF BATTERY ENERGY STORAGE SYSTEM WITH DC GRID BIDIRECTIONAL DC-DC CONVERTER FOR INTEGRATION OF BATTERY ENERGY STORAGE SYSTEM WITH DC GRID 1 SUNNY KUMAR, 2 MAHESWARAPU SYDULU Department of electrical engineering National institute of technology Warangal,

More information

Soft Switching of Two Quadrant Forward Boost and Reverse Buck DC- DC Converters Sarath Chandran P C 1

Soft Switching of Two Quadrant Forward Boost and Reverse Buck DC- DC Converters Sarath Chandran P C 1 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 02, 2015 ISSN (online): 2321-0613 Soft Switching of Two Quadrant Forward Boost and Reverse Buck DC- DC Converters Sarath

More information

Fuzzy Logic Control Based MIMO DC-DC Boost Converter for Electric Vehicle Application Ans Jose 1 Absal Nabi 2 Jubin Eldho Paul 3

Fuzzy Logic Control Based MIMO DC-DC Boost Converter for Electric Vehicle Application Ans Jose 1 Absal Nabi 2 Jubin Eldho Paul 3 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 10, 2015 ISSN (online): 2321-0613 Fuzzy Logic Control Based MIMO DC-DC Boost Converter for Electric Vehicle Application

More information

A Bidirectional Universal Dc/Dc Converter Topology for Electric Vehicle Applicationsand Photovoltaic Applications

A Bidirectional Universal Dc/Dc Converter Topology for Electric Vehicle Applicationsand Photovoltaic Applications International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 1 (February 2014), PP. 04-10 A Bidirectional Universal Dc/Dc Converter

More information

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) Proceedings of the 2 nd International Conference on Current Trends in Engineering and Management ICCTEM -2014 ISSN 0976 6545(Print)

More information

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. (An ISO 3297: 2007 Certified Organization)

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. (An ISO 3297: 2007 Certified Organization) Modeling and Control of Quasi Z-Source Inverter for Advanced Power Conditioning Of Renewable Energy Systems C.Dinakaran 1, Abhimanyu Bhimarjun Panthee 2, Prof.K.Eswaramma 3 PG Scholar (PE&ED), Department

More information

Modelling, Measurement and Control A Vol. 91, No. 1, March, 2018, pp Journal homepage:

Modelling, Measurement and Control A Vol. 91, No. 1, March, 2018, pp Journal homepage: Modelling, Measurement and Control A Vol. 91, No. 1, March, 2018, pp. 15-21 Journal homepage: http://iieta.org/journals/mmc/mmc_a Math function based controller applied to electric/hybrid electric vehicle

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Efficiency Improvement InZVS DC-DC Converter Using Snubber 1 E.Parameswari and 2 P.Karpagavalli 1 PG

More information

APPLICATION OF BOOST INVERTER FOR GRID CONNECTED FUEL CELL BASED POWER GENERATION

APPLICATION OF BOOST INVERTER FOR GRID CONNECTED FUEL CELL BASED POWER GENERATION APPLICATION OF BOOST INVERTER FOR GRID CONNECTED FUEL CELL BASED POWER GENERATION P.Bhagyasri 1, N. Prasanth Babu 2 1 M.Tech Scholar (PS), Nalanda Institute of Engineering and Tech. (NIET), Kantepudi,

More information

5 kw Multilevel DC-DC Converter for Hybrid Electric and Fuel Cell Automotive Applications

5 kw Multilevel DC-DC Converter for Hybrid Electric and Fuel Cell Automotive Applications 1 5 kw Multilevel DC-DC Converter for Hybrid Electric and Fuel Cell Automotive Applications Faisal H. Khan 1,2 Leon M. Tolbert 2 fkhan3@utk.edu tolbert@utk.edu 2 Electric Power Research Institute (EPRI)

More information

OUTLINE INTRODUCTION SYSTEM CONFIGURATION AND OPERATIONAL MODES ENERGY MANAGEMENT ALGORITHM CONTROL ALGORITHMS SYSTEM OPERATION WITH VARYING LOAD

OUTLINE INTRODUCTION SYSTEM CONFIGURATION AND OPERATIONAL MODES ENERGY MANAGEMENT ALGORITHM CONTROL ALGORITHMS SYSTEM OPERATION WITH VARYING LOAD OUTLINE INTRODUCTION SYSTEM CONFIGURATION AND OPERATIONAL MODES ENERGY MANAGEMENT ALGORITHM CONTROL ALGORITHMS SYSTEM OPERATION WITH VARYING LOAD CONCLUSION REFERENCES INTRODUCTION Reliable alternative

More information

A Bidirectional DC-DC Battery Interface for EV Charger with G2V and V2X Capability

A Bidirectional DC-DC Battery Interface for EV Charger with G2V and V2X Capability A Bidirectional DC-DC Battery Interface for EV Charger with G2V and V2X Capability Prasoon Chandran Mavila 1, Nisha B. Kumar 2 P.G. Student, Dept. of Electrical & Electronics Engineering, Govt. College

More information

Fuzzy logic controlled Bi-directional DC-DC Converter for Electric Vehicle Applications

Fuzzy logic controlled Bi-directional DC-DC Converter for Electric Vehicle Applications IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 3 Ver. IV (May June 2017), PP 51-55 www.iosrjournals.org Fuzzy logic controlled

More information

Modeling and Simulation of Multi-input Bi-directional Boost Converter for Renewable Energy Applications using MatLab/Simulink

Modeling and Simulation of Multi-input Bi-directional Boost Converter for Renewable Energy Applications using MatLab/Simulink Modeling and Simulation of Multi-input Bi-directional Boost Converter for Renewable Energy Applications using MatLab/Simulink Ramya. S Assistant Professor, ECE P.A. College of Engineering and Technology,

More information

Multi-Port DC-DC Converter for Grid Integration of Photo Voltaic Systems through Storage Systems with High Step-Up Ratio

Multi-Port DC-DC Converter for Grid Integration of Photo Voltaic Systems through Storage Systems with High Step-Up Ratio Multi-Port DC-DC Converter for Grid Integration of Photo Voltaic Systems through Storage Systems with High Step-Up Ratio CH.Rekha M.Tech (Energy Systems), Dept of EEE, M.Vinod Kumar Assistant Professor,

More information

Control Scheme for Grid Connected WECS Using SEIG

Control Scheme for Grid Connected WECS Using SEIG Control Scheme for Grid Connected WECS Using SEIG B. Anjinamma, M. Ramasekhar Reddy, M. Vijaya Kumar, Abstract: Now-a-days wind energy is one of the pivotal options for electricity generation among all

More information

Review & Study of Bidirectional of DC-DC Converter Topologies for Electric Vehicle Application

Review & Study of Bidirectional of DC-DC Converter Topologies for Electric Vehicle Application Akash Pathak et al. 205, Volume 3 Issue 6 ISSN (Online): 2348-4098 ISSN (Print): 2395-4752 International Journal of Science, Engineering and Technology An Open Access Journal Review & Study of Bidirectional

More information

International Journal Of Global Innovations -Vol.2, Issue.I Paper Id: SP-V2-I1-048 ISSN Online:

International Journal Of Global Innovations -Vol.2, Issue.I Paper Id: SP-V2-I1-048 ISSN Online: Multilevel Inverter Analysis and Modeling in Distribution System with FACTS Capability #1 B. PRIYANKA - M.TECH (PE Student), #2 D. SUDHEEKAR - Asst Professor, Dept of EEE HASVITA INSTITUTE OF MANAGEMENT

More information

Power Electronics Projects

Power Electronics Projects Power Electronics Projects I. POWER ELECTRONICS based MULTI-PORT SYSTEMS 1. Analysis, Design, Modeling, and Control of an Interleaved- Boost Full-ridge Three-Port Converter for Hybrid Renewable Energy

More information

Implementation Soft Switching Bidirectional DC- DC Converter For Stand Alone Photovoltaic Power Generation System

Implementation Soft Switching Bidirectional DC- DC Converter For Stand Alone Photovoltaic Power Generation System IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 6 November 2014 ISSN (online): 2349-6010 Implementation Soft Switching Bidirectional DC- DC Converter For Stand

More information

Design of Three Input Buck-Boost DC-DC Converter with Constant input voltage and Variable duty ratio using MATLAB/Simulink

Design of Three Input Buck-Boost DC-DC Converter with Constant input voltage and Variable duty ratio using MATLAB/Simulink Design of Three Input Buck-Boost DC-DC Converter with Constant input voltage and Variable duty ratio using MATLAB/Simulink A.Thiyagarajan, B.Gokulavasan Abstract Nowadays DC-DC converter is mostly used

More information

A NOVEL MULTIPHASE BIDIRECTIONAL FLY-BACK CONVERTER TOPOLOGY IS APPLIED TO INDUCTION MOTOR DRIVE

A NOVEL MULTIPHASE BIDIRECTIONAL FLY-BACK CONVERTER TOPOLOGY IS APPLIED TO INDUCTION MOTOR DRIVE A NOVEL MULTIPHASE BIDIRECTIONAL FLY-BACK CONVERTER TOPOLOGY IS APPLIED TO INDUCTION MOTOR DRIVE M.RAMA MOHANA RAO 1 & CH.RAMBABU 2 1,2 Department of Electrical and Electronics Engineering, Sri Vasavi

More information

A Study of Suitable Bi-Directional DC-DC Converter Topology Essential For Battery Charge Regulation In Photovoltaic Applications

A Study of Suitable Bi-Directional DC-DC Converter Topology Essential For Battery Charge Regulation In Photovoltaic Applications IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 2 Ver. I (Mar. Apr. 2016), PP 92-96 www.iosrjournals.org A Study of Suitable Bi-Directional

More information

Battery-Ultracapacitor based Hybrid Energy System for Standalone power supply and Hybrid Electric Vehicles - Part I: Simulation and Economic Analysis

Battery-Ultracapacitor based Hybrid Energy System for Standalone power supply and Hybrid Electric Vehicles - Part I: Simulation and Economic Analysis Battery-Ultracapacitor based Hybrid Energy System for Standalone power supply and Hybrid Electric Vehicles - Part I: Simulation and Economic Analysis Netra Pd. Gyawali*, Nava Raj Karki, Dipesh Shrestha,

More information

Design of Active and Reactive Power Control of Grid Tied Photovoltaics

Design of Active and Reactive Power Control of Grid Tied Photovoltaics IJCTA, 9(39), 2016, pp. 187-195 International Science Press Closed Loop Control of Soft Switched Forward Converter Using Intelligent Controller 187 Design of Active and Reactive Power Control of Grid Tied

More information

Raised Step-Up Converter Using Three-Winding Coupled Inductor for Fuel Cell Potential Source Purposes

Raised Step-Up Converter Using Three-Winding Coupled Inductor for Fuel Cell Potential Source Purposes Raised Step-Up Converter Using Three-Winding Coupled Inductor for Fuel Cell Potential Source Purposes K. Jahnavi M tech in Power Electronics Prasad Engineering College Abstract Abstract: This paper presents

More information

Design and Implementation of Non-Isolated Three- Port DC/DC Converter for Stand-Alone Renewable Power System Applications

Design and Implementation of Non-Isolated Three- Port DC/DC Converter for Stand-Alone Renewable Power System Applications Design and Implementation of Non-Isolated Three- Port DC/DC Converter for Stand-Alone Renewable Power System Applications Archana 1, Nalina Kumari 2 1 PG Student (power Electronics), Department of EEE,

More information

Hybrid Three-Port DC DC Converter for PV-FC Systems

Hybrid Three-Port DC DC Converter for PV-FC Systems Hybrid Three-Port DC DC Converter for PV-FC Systems P Srihari Babu M.Tech (Power Systems) B Ashok Kumar Assistant Professor Dr. A.Purna Chandra Rao Professor & HoD Abstract The proposed a hybrid power

More information

Research on Electric Drive for Small Vehicles

Research on Electric Drive for Small Vehicles Journal of Energy and Power Engineering 9 (215) 668-672 doi: 1.17265/1934-8975/215.7.8 D DAVID PUBLISHING Mihail Hristov Antchev and Hristo Mihailov Antchev Section Power Electronics, Technical University-Sofia,

More information

A Double Input Buck Boost Converter for Wind Energy System with Power.. S.Kamalakkannan et al., International Journal of Power Control and Computation(IJPCSC) Vol 7. No.2 2015 Pp.54-60 gopalax Journals,

More information

DC-DC BIDIRECTIONAL ISOLATED CONVERTER FOR FUEL CELLS AND SUPER-CAPACITORS HYBRID SYSTEM

DC-DC BIDIRECTIONAL ISOLATED CONVERTER FOR FUEL CELLS AND SUPER-CAPACITORS HYBRID SYSTEM DC-DC BIDIRECTIONAL ISOLATED CONVERTER FOR FUEL CELLS AND SUPER-CAPACITORS HYBRID SYSTEM P.Pugazhendiran 1, Mohammed Nisham 2 Department of EEE, IFET College of Engineering, Villupuram, Tamil Nadu, India.

More information

Bidirectional Intelligent Semiconductor Transformer

Bidirectional Intelligent Semiconductor Transformer Journal of Engineering and Fundamentals Vol. 2(2), pp. 9-16, December, 2015 Available online at http://www.tjef.net ISSN: 2149-0325 http://dx.doi.org/10.17530/jef.15.08.2.2 Article history Received: 24.05.2015

More information

Energy Conversion and Management

Energy Conversion and Management Energy Conversion and Management 50 (2009) 2879 2884 Contents lists available at ScienceDirect Energy Conversion and Management journal homepage: www.elsevier.com/locate/enconman Soft switching bidirectional

More information

BIDIRECTIONAL FULL-BRIDGE DC-DC CONVERTER WITH FLYBACK SNUBBER FOR PHOTOVOLTAIC APPLICATIONS

BIDIRECTIONAL FULL-BRIDGE DC-DC CONVERTER WITH FLYBACK SNUBBER FOR PHOTOVOLTAIC APPLICATIONS INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976 6545(Print) ISSN 0976

More information

A Novel Hybrid PV/Wind/Battery based Generation System for Grid Integration

A Novel Hybrid PV/Wind/Battery based Generation System for Grid Integration A Novel Hybrid PV/Wind/Battery based Generation System for Grid Integration B.Venkata Seshu Babu M.Tech (Power Systems), St. Ann s College of Engineering & Technology, A.P, India. Abstract: A hybrid wind/pv

More information

PERFORMANCE AND ENHANCEMENT OF Z-SOURCE INVERTER FED BLDC MOTOR USING SLIDING MODE OBSERVER

PERFORMANCE AND ENHANCEMENT OF Z-SOURCE INVERTER FED BLDC MOTOR USING SLIDING MODE OBSERVER PERFORMANCE AND ENHANCEMENT OF Z-SOURCE INVERTER FED BLDC MOTOR USING SLIDING MODE OBSERVER K.Kalpanadevi 1, Mrs.S.Sivaranjani 2, 1 M.E. Power Systems Engineering, V.S.B.Engineering College, Karur, Tamilnadu,

More information

A highly-integrated and efficient commercial distributed EV battery balancing system

A highly-integrated and efficient commercial distributed EV battery balancing system LETTER IEICE Electronics Express, Vol.15, No.8, 1 10 A highly-integrated and eicient commercial distributed EV battery balancing system Feng Chen 1, Jun Yuan 1, Chaojun Zheng 1, Canbo Wang 1, and Zhan

More information

Design of Power System Control in Hybrid Electric. Vehicle

Design of Power System Control in Hybrid Electric. Vehicle Page000049 EVS-25 Shenzhen, China, Nov 5-9, 2010 Design of Power System Control in Hybrid Electric Vehicle Van Tsai Liu Department of Electrical Engineering, National Formosa University, Huwei 632, Taiwan

More information

Operation and Control of Bidirectional DC-DC converter for HEV

Operation and Control of Bidirectional DC-DC converter for HEV Operation and Control of Bidirectional DC-DC converter for HEV Ahteshamul Haque 1 (Department of Electrical Engineering, Jamia Millia Islamia, New Delhi, India) Abstract: With the increasing concern over

More information

IMPROVING POWER FACTOR USING LANDSMAN CONVERTER IN PMBLDC MOTOR

IMPROVING POWER FACTOR USING LANDSMAN CONVERTER IN PMBLDC MOTOR Volume 120 No. 6 2018, 7037-7048 ISSN: 1314-3395 (on-line version) url: http://www.acadpubl.eu/hub/ http://www.acadpubl.eu/hub/ IMPROVING POWER FACTOR USING LANDSMAN CONVERTER IN PMBLDC MOTOR E.Annie Elisabeth

More information

Providing Energy Management of a Fuel Cell-Battery Hybrid Electric Vehicle Fatma Keskin Arabul, Ibrahim Senol, Ahmet Yigit Arabul, Ali Rifat Boynuegri

Providing Energy Management of a Fuel Cell-Battery Hybrid Electric Vehicle Fatma Keskin Arabul, Ibrahim Senol, Ahmet Yigit Arabul, Ali Rifat Boynuegri Vol:9, No:8, Providing Energy Management of a Fuel CellBattery Hybrid Electric Vehicle Fatma Keskin Arabul, Ibrahim Senol, Ahmet Yigit Arabul, Ali Rifat Boynuegri International Science Index, Energy and

More information

Dynamic Modeling and Simulation of a Series Motor Driven Battery Electric Vehicle Integrated With an Ultra Capacitor

Dynamic Modeling and Simulation of a Series Motor Driven Battery Electric Vehicle Integrated With an Ultra Capacitor IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 3 Ver. II (May Jun. 2015), PP 79-83 www.iosrjournals.org Dynamic Modeling and Simulation

More information

Inverter with MPPT and Suppressed Leakage Current

Inverter with MPPT and Suppressed Leakage Current POWER ELECTRONICS IEEE Projects Titles -2018 LeMeniz Infotech 36, 100 feet Road, Natesan Nagar(Near Indira Gandhi Statue and Next to Fish-O-Fish), Pondicherry-605 005 Web : www.ieeemaster.com / www.lemenizinfotech.com

More information

POWER ELECTRONICS & DRIVES

POWER ELECTRONICS & DRIVES POWER ELECTRONICS & DRIVES S.No Title Year Solar Energy/PV Grid-Tied 01 Nonlinear PWM-Controlled Single-Phase Boost Mode Grid-Connected Photovoltaic Inverter With Limited Storage Inductance Current 02

More information

EMS of Electric Vehicles using LQG Optimal Control

EMS of Electric Vehicles using LQG Optimal Control EMS of Electric Vehicles using LQG Optimal Control, PG Student of EEE Dept, HoD of Department of EEE, JNTU College of Engineering & Technology, JNTU College of Engineering & Technology, Ananthapuramu Ananthapuramu

More information

ISSN Vol.07,Issue.11, August-2015, Pages:

ISSN Vol.07,Issue.11, August-2015, Pages: ISSN 2348 2370 Vol.07,Issue.11, August-2015, Pages:2108-2114 www.ijatir.org A New Bidirectional Soft Switching DC-DC Converter using PID Controller P. RAMANA REDDY 1, Y. PERAIAH 2 1 PG Scholar, Dept of

More information

The hierarchical three layer protection of photovoltaic generators in microgrid with co-ordinated droop control for hybrid energy storage system

The hierarchical three layer protection of photovoltaic generators in microgrid with co-ordinated droop control for hybrid energy storage system The hierarchical three layer protection of photovoltaic generators in microgrid with co-ordinated droop control for hybrid energy storage system Vignesh, Student Member, IEEE, Sundaramoorthy, Student Member,

More information

Photovoltaic Based EV/HEV for Bi-Directional operation in AC and DC Grid with PWM Control and PV Converters

Photovoltaic Based EV/HEV for Bi-Directional operation in AC and DC Grid with PWM Control and PV Converters Photovoltaic Based EV/HEV for Bi-Directional operation in AC and DC Grid with PWM Control and PV Converters Sahu Gopi Gowri Santosh Kumar M-Tech Student Scholar, Department of Electrical & Electronics

More information

A matrix converter based drive for BLDC motor Radhika R, Prince Jose

A matrix converter based drive for BLDC motor Radhika R, Prince Jose A matrix converter based drive for BLDC motor Radhika R, Prince Jose Abstract This paper presents a matrix converter based drive for BLDC motor. Matrix converter is a popular direct conversion method.

More information

Hybrid Energy Storage System Controller for Electric Vehicle using Ultracapacitor: Modeling and Performance Analysis

Hybrid Energy Storage System Controller for Electric Vehicle using Ultracapacitor: Modeling and Performance Analysis Hybrid Energy Storage System Controller for Electric Vehicle using Ultracapacitor: Modeling and Performance Analysis Sarva Ruvinigya Somanshu 1, S. K. Sinha 2 PG Student [PED], Dept. of EE, Kamla Nehru

More information

Integration of Ultra-Capacitor Using Bidirectional Converter with RES Applications

Integration of Ultra-Capacitor Using Bidirectional Converter with RES Applications Integration of Ultra-Capacitor Using Bidirectional Converter with RES Applications CH.Srikanth M.Tech (Power Electronics) SRTIST-Nalgonda, Abstract: Renewable energy sources can be used to provide constant

More information

Design of Four Input Buck-Boost DC-DC Converter for Renewable Energy Application

Design of Four Input Buck-Boost DC-DC Converter for Renewable Energy Application Design of Four Input Buck-Boost DC-DC Converter for Renewable Energy Application A.Thiyagarajan Assistant Professor, Department of Electrical and Electronics Engineering Karpagam Institute of Technology

More information

MATLAB Simulation for Combination of Battery and Supercapacitor

MATLAB Simulation for Combination of Battery and Supercapacitor I J E E E C International Journal of Electrical, Electronics ISSN No. (Online): 2277-2626 and Computer Engineering 5(1): 93-99(2016) MATLAB Simulation for Combination of Battery and Supercapacitor A.A.

More information

Current Trends In Ultra Capacitor/Battery Based Smart Transportation System

Current Trends In Ultra Capacitor/Battery Based Smart Transportation System Current Trends In Ultra Capacitor/Battery Based Smart Transportation System Current Trends In Ultra Capacitor/Battery Based Smart Transportation System Geetha Reddy Evuri, G. Srinivasa Rao, T. Rama Subba

More information

Common Bus and Line Regeneration

Common Bus and Line Regeneration Common Bus and Line Regeneration Addressing VFD applications when Regenerative Energy is Present Steve Petersen, Drives Technical Training Yaskawa America, Inc. Variable frequency drives (VFDs) are implemented

More information

Modularized Combination of Buck Boost and Cuk Converter for Electric Vehicle Lead Acid Battery Cell Voltage Equalization with Feedback

Modularized Combination of Buck Boost and Cuk Converter for Electric Vehicle Lead Acid Battery Cell Voltage Equalization with Feedback Modularized Combination of Buck Boost and Cuk Converter for Electric Vehicle Lead Acid Battery Cell Voltage Equalization with Feedback Cicy Mary Mathew 1, Acy M Kottalil 2, Neetha John 3 P.G. student,

More information

II. ANALYSIS OF DIFFERENT TOPOLOGIES

II. ANALYSIS OF DIFFERENT TOPOLOGIES An Overview of Boost Converter Topologies With Passive Snubber Sruthi P K 1, Dhanya Rajan 2, Pranav M S 3 1,2,3 Department of EEE, Calicut University Abstract This paper does the analysis of different

More information

Modeling and Control of Direct Drive Variable Speed Stand-Alone Wind Energy Conversion Systems

Modeling and Control of Direct Drive Variable Speed Stand-Alone Wind Energy Conversion Systems Proceedings of the 14th International Middle East Power Systems Conference (MEPCON 10), Cairo University, Egypt, December 19-21, 2010, Paper ID 276. Modeling and Control of Direct Drive Variable Speed

More information

SOLAR PHOTOVOLTAIC ARRAY FED WATER PUMP RIVEN BY BRUSHLESS DC MOTOR USING KY CONVERTER

SOLAR PHOTOVOLTAIC ARRAY FED WATER PUMP RIVEN BY BRUSHLESS DC MOTOR USING KY CONVERTER SOLAR PHOTOVOLTAIC ARRAY FED WATER PUMP RIVEN BY BRUSHLESS DC MOTOR USING KY CONVERTER B.Dinesh, Mail Id: dineshtata911@gmail.com M.k.Jaivinayagam, Mail Id: jaivimk5678@gmail.com M.Udayakumar, Mail Id:

More information

COMPARISON OF PID AND FUZZY CONTROLLED DUAL INVERTER-BASED SUPER CAPACITOR FOR WIND ENERGY CONVERSION SYSTEMS

COMPARISON OF PID AND FUZZY CONTROLLED DUAL INVERTER-BASED SUPER CAPACITOR FOR WIND ENERGY CONVERSION SYSTEMS COMPARISON OF PID AND FUZZY CONTROLLED DUAL INVERTER-BASED SUPER CAPACITOR FOR WIND ENERGY CONVERSION SYSTEMS R. Vinu Priya 1, M. Ramasekharreddy 2, M. Vijayakumar 3 1 PG student, Dept. of EEE, JNTUA College

More information

A PARALLEL SNUBBER CAPACITOR BASED HIGH STEP UP ISOLATED BIDIRECTIONAL FULL BRIDGE DC TO DC CONVERTER

A PARALLEL SNUBBER CAPACITOR BASED HIGH STEP UP ISOLATED BIDIRECTIONAL FULL BRIDGE DC TO DC CONVERTER Volume 115 No. 8 2017, 1-8 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu A PARALLEL SNUBBER CAPACITOR BASED HIGH STEP UP ISOLATED BIDIRECTIONAL

More information

FOUR SWITCH THREE PHASE BRUSHLESS DC MOTOR DRIVE FOR HYBRID VEHICLES

FOUR SWITCH THREE PHASE BRUSHLESS DC MOTOR DRIVE FOR HYBRID VEHICLES INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976 6545(Print) ISSN 0976

More information

PI Controller for Energy Management System in Hybrid Electric Ship S.Saravana, S.Naveen Prabhu, P.Lenin Pugalhanthi

PI Controller for Energy Management System in Hybrid Electric Ship S.Saravana, S.Naveen Prabhu, P.Lenin Pugalhanthi ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference

More information

International Journal of Advance Research in Engineering, Science & Technology

International Journal of Advance Research in Engineering, Science & Technology Impact Factor (SJIF): 4.54 International Journal of Advance Research in ngineering, Science & Technology e-issn: 393-9877, p-issn: 394-444 Volume 4, Issue 4, April-17 ltracapacitor selection and design

More information

Page 1393

Page 1393 BESS based Multi input inverter for Grid connected hybrid pv and wind power system Seshadri Pithani 1, Mr.B,D.S.Prasad 2 1 PG Scholar, Pydah College of Engineering, Kakinada, AP, India. 2 Assistant Professor,

More information

various energy sources. Auto rickshaws are three-wheeled vehicles which are commonly used as taxis for people and

various energy sources. Auto rickshaws are three-wheeled vehicles which are commonly used as taxis for people and ISSN: 0975-766X CODEN: IJPTFI Available Online through Research Article www.ijptonline.com ANALYSIS OF ELECTRIC TRACTION FOR SOLAR POWERED HYBRID AUTO RICKSHAW Chaitanya Kumar. B, Monisuthan.S.K Student,

More information

The Master of IEEE Projects. LeMenizInfotech. 36, 100 Feet Road, Natesan Nagar, Near Indira Gandhi Statue, Pondicherry

The Master of IEEE Projects. LeMenizInfotech. 36, 100 Feet Road, Natesan Nagar, Near Indira Gandhi Statue, Pondicherry An Interleaved Half-Bridge Three-Port Converter With Enhanced Power Transfer Capability Using Three-Leg Rectifier for Renewable Energy Applications Introduction: Renewable energy power systems attract

More information

A.Arun 1, M.Porkodi 2 1 PG student, 2 Associate Professor. Department of Electrical Engineering, Sona College of Technology, Salem, India

A.Arun 1, M.Porkodi 2 1 PG student, 2 Associate Professor. Department of Electrical Engineering, Sona College of Technology, Salem, India A novel anti-islanding technique in a Distributed generation systems A.Arun 1, M.Porkodi 2 1 PG student, 2 Associate Professor Department of Electrical Engineering, Sona College of Technology, Salem, India

More information

One-Cycle Average Torque Control of Brushless DC Machine Drive Systems

One-Cycle Average Torque Control of Brushless DC Machine Drive Systems One-Cycle Average Torque Control of Brushless DC Machine Drive Systems Najma P.I. 1, Sakkeer Hussain C.K. 2 P.G. Student, Department of Electrical and Electronics Engineering, MEA Engineering College,

More information

Design and Simulation of a Solar Based DC-DC Converter for Hybrid Electric Vehicles

Design and Simulation of a Solar Based DC-DC Converter for Hybrid Electric Vehicles Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 11, November 2015,

More information

Batteries Comparative Analysis and their Dynamic Model for Electric Vehicular Technology

Batteries Comparative Analysis and their Dynamic Model for Electric Vehicular Technology Volume 114 No. 7 2017, 629-637 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Batteries Comparative Analysis and their Dynamic Model for Electric

More information

Renewable Energy Sources Based EV/HEV for Bi-Directional Operation in AC and DC Grid

Renewable Energy Sources Based EV/HEV for Bi-Directional Operation in AC and DC Grid Renewable Energy Sources Based EV/HEV for Bi-Directional Operation in AC and DC Grid Routhu Trimurtulu M.Tech Student Scholar, Department of Electrical & Electronics Engineering, Thandra Paparaya Institute

More information

Design and Development of Bidirectional DC-DC Converter using coupled inductor with a battery SOC indication

Design and Development of Bidirectional DC-DC Converter using coupled inductor with a battery SOC indication Design and Development of Bidirectional DC-DC Converter using coupled inductor with a battery SOC indication Sangamesh Herurmath #1 and Dr. Dhanalakshmi *2 # BE,MTech, EEE, Dayananda Sagar institute of

More information

Electric cars: Technology

Electric cars: Technology In his lecture, Professor Pavol Bauer explains all about how power is converted between the various power sources and power consumers in an electric vehicle. This is done using power electronic converters.

More information

An energy Storage using Cascaded Multilevel Inverters by PMSM with Autonomous Power Regernarative Control System

An energy Storage using Cascaded Multilevel Inverters by PMSM with Autonomous Power Regernarative Control System An energy Storage using Cascaded Multilevel Inverters by PMSM with Autonomous Power Regernarative Control System G. Venkateswarlu P.G Student MITS College M.kishore Asst. Prof, Dept of EEE MITS College

More information

Intelligent Power Management of Electric Vehicle with Li-Ion Battery Sheng Chen 1,a, Chih-Chen Chen 2,b

Intelligent Power Management of Electric Vehicle with Li-Ion Battery Sheng Chen 1,a, Chih-Chen Chen 2,b Applied Mechanics and Materials Vols. 300-301 (2013) pp 1558-1561 Online available since 2013/Feb/13 at www.scientific.net (2013) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amm.300-301.1558

More information

Exercise 7. Thyristor Three-Phase Rectifier/Inverter EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Thyristor three-phase rectifier/inverter

Exercise 7. Thyristor Three-Phase Rectifier/Inverter EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Thyristor three-phase rectifier/inverter Exercise 7 Thyristor Three-Phase Rectifier/Inverter EXERCISE OBJECTIVE When you have completed this exercise, you will know what a thyristor threephase rectifier/limiter (thyristor three-phase bridge)

More information

VOLTAGE BALANCING IN SOLAR BASED DC MICRO-GRID SYSTEM

VOLTAGE BALANCING IN SOLAR BASED DC MICRO-GRID SYSTEM VOLTAGE BALANCING IN SOLAR BASED DC MICRO-GRID SYSTEM Darshana Baghel 1, Mr. Ram Ratan Tiwari 2 1PG Scholar, 2 Lecturer,Electrical Department, LDRP-ITR, Gandhinagar, Gujarat, India ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

DC Microgrid Management Using Power Electronics Converters

DC Microgrid Management Using Power Electronics Converters DC Microgrid Management Using Power Electronics s R. K. Behera Department of Electrical Engineering Indian Institute of Technology Patna Patna, India rkb@iitp.ac.in S. K. Parida Department of Electrical

More information

A Zero-Voltage-Transition Bidirectional DC/DC Converter

A Zero-Voltage-Transition Bidirectional DC/DC Converter Page number 1 A Zero-Voltage-Transition Bidirectional DC/DC Converter Abstract A three-level (TL) bidirectional dc/dc converter is a suitable choice for power electronic systems with a high-voltage dc

More information

Four Switch BLDC Motor Drive

Four Switch BLDC Motor Drive Four Switch BLDC Motor Drive Geethu James, Prof. K Radhakrishnan, Mrs.Jaya B M.Tech Student, Dept. of EEE, Mar Athanasius College Of Engineering, Kothamangalam, Kerala, India Professor, Dept. of EEE, Mar

More information

Design and Implementation of an 11-Level Inverter with FACTS Capability for Distributed Energy Systems

Design and Implementation of an 11-Level Inverter with FACTS Capability for Distributed Energy Systems Design and Implementation of an 11-Level Inverter with FACTS Capability for Distributed Energy Systems Pinnam Swetha M.Tech Student KSRM College of Engineering, Kadapa, A.P. Abstract: In this paper, a

More information

Solar PV Powered SRM Drive for Electric Vehicles with Novel Flexible Energy Control

Solar PV Powered SRM Drive for Electric Vehicles with Novel Flexible Energy Control Solar PV Powered SRM Drive for Electric Vehicles with Novel Flexible Energy Control Kavya Suresh 1, Nandan G 2 P.G. Student, Department of EEE, Sree Buddha Engineering College, Alappuzha, Kerala, India

More information

Intelligent UPS System for Smart Grid to Achieve the Sustainable Energy

Intelligent UPS System for Smart Grid to Achieve the Sustainable Energy Intelligent UPS System for Smart Grid to Achieve the Sustainable Energy Ravi Angadi 1 PG-Scholar, Department of Electrical and Electronics Engineering, KEC Kuppam, JNTU Anantapur, AP, India S. Zabiullah

More information