A Novel Axial-flux Electric Machine for In-wheel Gearless Drive in Plug-in Hybrid Electric Vehicles

Size: px
Start display at page:

Download "A Novel Axial-flux Electric Machine for In-wheel Gearless Drive in Plug-in Hybrid Electric Vehicles"

Transcription

1 A Novel Axial-flux Electric Machine for In-wheel Gearless Drive in Plug-in Hybrid Electric Vehicles W. N. Fu, and S. L. Ho The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong A novel low-speed axial-flux-modulated motor is presented. The proposed motor breaks the traditional design rule which stipulates that the pole-pair numbers of the stator and the rotor must be the same. Special iron segments in the airgap are used to modulate the magnetic field. It has the merit of having high power density at low speed. It can be fitted into very limited space such as inside the wheel rim of electric vehicles. Compared with those of radial-flux-modulated motor, its manufacturing and assembling process are simple and easy. Its performance is compared with those of a radial-flux-modulated motor using two-dimensional and threedimensional finite-element methods. Index Terms Axial flux, electric motor, electric vehicle, finite element method, flux modulation, low-speed, magnetic field, power density. C I. INTRODUCTION RUDE OIL price is expected to rise rapidly in the long term. Emissions from gasoline driven automobiles are among the main causes of global warming and environmental pollution. One of the best solutions is to develop hybrid electric vehicle (HEV). For HEV drives, inwheel electric motors mounted in the rear wheel axles have many advantages in that the front wheels and rear wheels can form a series-parallel drive combination without special mechanical coupling. Since the wheels of vehicles run in low speed and the dimension of electric machines is inversely proportional to its running speed, conventional direct drive electric motor is very bulk if the traction motor needs to produce a reasonable torque over a wide speed range. Normally, a mechanical gear is needed to reduce the motor speed. The use of a mechanical gear reduces the motor size, but additional space is needed for the gear. The mechanical gear also reduces the energy transmission efficiency. Recently, magnetic gears (MG) are proposed to compete with mechanical gears in terms of torque transmission capability and efficiency [1]. Compared to their mechanical counterparts, MGs have a highly competitive torque transmission capability with very high efficiency. The MG can be directly combined with a conventional permanent magnet (PM) motor inside one frame [2-4]. The system torque density can be significantly improved. However such system has two rotating parts. Its mechanical structure is complex and it runs noisily. A novel simple magnetic geared motor that integrates MG with a conventional outer-rotor PM brushless motor is presented recently [5-6]. According to the reported system, the MG is integrated with a conventional outer-rotor PM brushless motor and there is only one rotary part. The outerrotor is equipped with sintered NdFeB magnets. Fig. 1 shows such a motor. Its stator has a 3-phase concentrated winding which can produce a rotating magnetic field with 3 pole pairs, and the outer-rotor is equipped with 22 pole pairs. It has stationary iron segments which are made of silicon steel laminations to modulate the airgap field space harmonics, and the rotor can rotate at low speed. The operating principle of the setup is similar to that of MG. However, the high-speed rotary field is created by an armature rather than with magnets. The overall size of the unit is more compact than a motor and gear combination. In this paper the idea of flux-modulation is extended to axial-flux motors. A novel low-speed axial-flux-modulated motor (AFMM) for the in-wheel gearless drive of HEV is proposed. The AFMM has a 3-phase concentrated winding which can produce a rotary magnetic field with 3 pole pairs, and the outer-rotor has 22 pole pairs. Iron segments in the airgap are used to modulate the magnetic field. It can operate with high power density at low speed and hence can be used as direct drives in electric vehicles. Its manufacturing and assembling processes are simple when compared with those of radial-flux-modulated motor (RFMM). With AFMM, the front wheels and rear wheels can operate as a series-parallel drive without special mechanical coupling between them. The advantages of AFMM are: (1) Because of the space constraints in the wheel, the disc shape is well suited for direct coupling of the motor with a wheel. Because the ratio between the airgap diameter and the axial length of iron cores is large, the axial-flux design can further boost the torque density significantly. (2) The manufacture process of AFMM is much simpler than that of the radial-flux-modulated motor (RFMM). Both the iron segments and the stator are made from soft magnetic compound (SMC) materials in modular structures and can be assembled easily [7-9]. (3) The coils on the two sides of the stator core are wound back-to-back toroidally in order to shorten the length of the

2 end windings which share a common back iron, thereby saving the copper materials and improving the power density. (4) Because of the small number of stator slots, the slot space is used efficiently. (5) It has good heat dissipation because of the naturally formed ventilating ducts between the iron segments. II. BASIC DESIGN RULES OF FLUX-MODULATED MOTORS In flux-modulated motors (FMM), the numbers of pole pairs of the stator and the rotor are different. Usually the rotor has PMs and has large number of pole pairs to allow it to rotate at low speed efficiently. The stator has armature windings and it has small number of pole pairs and thus the number of slots can be small. The difference between FMM and normal motors is that the former has stationary iron pieces between the stator and rotor. These iron pieces modulate the magnetic field produced by the stator windings and the number of pole pairs of the strongest specific high-order harmonic is the same as that of the PM rotor. That means the magnetic field produced by rotor s PMs and the strongest high-order harmonic field produced by the stator winding will rotate at the synchronous speed of the motor. The constant average output torque is produced by the reactions between the magnetic fields of the stator and rotor. The theory of magnetic field modulation is the same as that of magnetic gears [1][5]. The gear ratio of the stationary iron pieces is: k1 pstator + k2niron Gr = (1) k1 pstator where p stator is the number of stator pole pairs and N iron is the number of stationary iron pieces. In (1) k 1 and k 2 can be 1, 3, 5,,, respectively. If k 1 = 1 and k 2 = -1, the stator winding will produce the highest space harmonic field. The number of rotor pole pairs p rotor should be G r p stator. Therefore, the relationship among the number of stator pole pairs p stator, the number of rotor pole pairs p rotor and the number of stationary iron pieces N iron is: N p = p (2) iron stator rotor Fig. 1. An overview of an intersection structure of a radial-flux-modulated PM motor (Motor I). In this paper an AFMM is presented and its performances are compared with that of a RFMM. In both motors the number of pole pairs in the stator p stator is 3 and the number of pole pairs in the rotor p rotor is 22. The number of stationary iron pieces N iron is 25. The gear ratio G = = and r 3 3 G r pstator = 22 3 = 22 = p. The coil arrangement of the stator rotor 3 windings is the same as that of a conventional 3-phase motor with 3 pole pairs. The phases in the stator slots along the circumferential direction are: A, A, -C, -C, B, B, -A, -A, C, C, -B, -B. For AFMM, in the opposite side of the core, the current in each slot will be the same as that in slots on the other side but with opposite direction. To compare power densities, the RFMM and the AFMM are assumed to have the same outside dimensions. III. PERFORMANCE ANALYSIS OF RADIAL-FLUX-MODULATED MOTOR The original RFMM as shown in Fig. 1 is referred as Motor I. Its design data are listed in Table I. Taking into account of the limitation in current density (assumed to be 9 A/mm 2 in this study) in the conductors of the stator slots, the magnitude of the ampere-conductors IN slot N conductor is A, where I is the phase current, N slot is the number of stator slots and N conductor is the number of conductors in each slot. The performances of RFMM are analyzed using 2-D timestepping finite element method (FEM) of transient magnetic field electric circuit mechanical motion coupled model [10-11]. The FEM mesh is refined until the solution

3 differences between the final mesh with triangle elements and the previously refined mesh with triangle elements are within a small tolerance. When this problem is also solved in 3-D, the differences in solution accuracy are virtually unnoticeable. The magnetic torque is computed using the virtual work method [12-13]. The core loss is computed in time domain using the method presented in [14]. When the rotor is at full load, the computed torque is 58 Nm and the back emf is 37 V. The core loss is W. The magnitude of this motor s cogging torque is 0.03 Nm. TABLE I DESIGN DATA OF THE RADIAL FM MOTOR (MOTOR I) Frequency 220 Hz Axial length of iron core 40 mm Total axial length 64 mm Outside radius of outer-rotor 92 mm Outside radius of PM 88.6 mm Inside radius of PM 80.8 mm Outside radius of stationary ring 80.2 mm Inside radius of stationary ring 67.2 mm Outside radius of stator 66.6 mm Inside radius of stator 17.5 mm Number of outer rotor pole pairs 22 Number of stationary iron pieces 25 Number of stator pole pairs 3 Number of stator slots 36 IV. PERFORMANCE ANALYSIS OF AXIAL-FLUX-MODULATED MOTOR The structure of AFMM is shown in Figs. 2 and 3. It is referred as Motor II. The coils on the two sides of the stator core are wound back-to-back toroidally. The basic structure of the PM and iron core is similar to those of normal axial-flux motors. The difference is that between the PM and the stator iron core, there are iron segments in the AFMM. Its design data are listed in Table II. To compare the performance of the two motors, both machines are assumed to have the same axial length, the same outside frame radius, the same phase number, the same stator and rotor pole number as well as the same total PM thickness. There are 3 phases in the two motors being studied. The supply frequency is 220 Hz and the rotor runs at 600 rpm. The basis for comparison on the power density of different motors is that the temperature rises at full-load are the same for the two motors. For simplicity, the temperature rises are assumed to be proportional to the total losses in the machines. As the core loss is only a small percentage of the total losses in these motors, it suffices to assume the temperature rises in both motors are the same if their copper losses are the same. The values of IN slot N conductor for the AFMM and RFMM are listed in Table III. The performances of AFMM are analyzed using 3-D timestepping FEM of transient magnetic field electric circuit mechanical motion coupled model [15]. The FEM mesh is refined to ensure reliable solutions. The solution differences between the mesh with tetrahedron elements and the mesh with elements are almost the same. The plot of magnetic flux density on the surface of rotor iron core is given in Fig. 4. It shows that at the rotor side, one can still see the three pole-pair magnetic field produced by the stator windings. The plot of magnetic flux density on the cross-section of the x-z plane (z is the axial direction of the motor) is shown in Fig. 5. The object in the center is the central piece of the stator iron core. It shows that the arrangement of polarizations of the PMs at the two sides of the stator is south pole to south pole and north pole to north pole. The torque curve and back emf curves versus time at full-load are shown in Figs. 6 and 7, respectively. It is noted that the torque ripple is not very large and the three-phase back emf waveforms are symmetrical. The magnitude of the cogging torque is 1.2 Nm. TABLE II DESIGN DATA OF THE AXIAL FM MOTOR (MOTOR II) Frequency 220 Hz Total axial length 64 mm Outside radius 92 mm Inside radius 60 mm Thickness of PM 3.9 mm Thickness of stationary iron 6.5 mm Airgap between PM and stationary iron 0.6 mm radius of stationary ring Airgap between stationary iron and stator 0.6 mm Number of outer rotor pole pairs 22 Number of stationary iron pieces 25 Number of stator pole pairs 3 Number of stator slots 36 TABLE III ELECTRIC LOADINGS OF THE TWO DIFFERENT MOTORS Motor type Motor I (Radial flux) Motor II (Axial flux) N slot N conductor 5 5 I (A)

4 Fig. 2. An axial-flux-modulated-motor (Motor II) (assembled view). Fig. 4. The plot of magnetic flux density on the surface of rotor iron core (Motor II). The performances of the two motors are summarized in Table IV. The FEM simulations show that the AFMM produces about 40% higher torque when compared to that of RFMM. The coreloss of the AFMM is higher than that of the RFMM because the stator volume of the AFMM is smaller than that of the RFMM. However, because the AFMM has shorter end windings, the copper loss is small. Therefore, the total loss of the AFMM is smaller that those of the RFMM. Fig. 5. The plot of magnetic flux density on the cross-section of x-z plane (Motor II). Fig. 3. An axial-flux-modulated-motor (Motor II) (disassembled view). Fig. 6. The torque at full-load operation (Motor II).

5 Fig. 7. The induced emf at full-load operation (Motor II). TABLE IV COMPARISON OF DIFFERENT MOTORS Motor type Motor I (Radial flux) Motor II (Axial flux) Output torque (Nm) Coreloss (W) Copper loss (W) Total coreloss and copper loss V. CONCLUSION The RFMM can be modeled using 2-D FEM and the AFMM can be modeled using 3-D FEM. For the in-wheel drive of HEV, AFMM has higher power density than that of RFMM. The manufacturing process of AFMM is much simpler than that of RFMM. [6] W. N. Fu and S. L. Ho, A quantitative comparative analysis of a novel flux-modulated permanent magnet motor for low-speed drive, IEEE Trans. Magn., vol. 46, no. 1, pp , Jan [7] M. A. Khan, P. Pillay, R. Guan, N. R. Batane, and D. J. Morrison, Performance assessment of a PM wind generator with machined SMC cores, IEEE International Electric Machines & Drives Conference, vol. 2, 3-5 May 2007, pp [8] F. Marignetti, Colli, V. Delli, Stefano R. Di and A. Cavagnino, Design issues of a fractional-slot windings axial flux PM machine with soft magnetic compound stator, 33rd Annual Conference of the IEEE Industrial Electronics Society, 5-8 Nov. 2007, pp [9] F. Marignetti, G. Tomassi, P. Cancelliere, Colli, V. Delli, Stefano R. Di and M. Scarano, Electromagnetic and mechanical design of a fractional-slot-windings axial-flux PM synchronous machine with soft magnetic compound stator, 41st IAS Annual Meeting, vol. 1, Oct. 2006, pp [10] W. N. Fu, P. Zhou, D. Lin, S. Stanton and Z.J. Cendes, Modeling of solid conductors in two-dimensional transient finite-element analysis and its application to electric machines, IEEE Trans. Magn., vol. 40, no. 2, pp , March [11] W. N. Fu and S.L. Ho, Enhanced nonlinear algorithm for the transient analysis of magnetic field and electric circuit coupled problems, IEEE Trans. Magn., vol. 45, no. 2, pp , Feb [12] W. N. Fu, P. Zhou, D. Lin, S. Stanton and Z. J. Cendes, Magnetic force computation in permanent magnets using a local energy coordinate derivative method, IEEE Tran. Magn., vol. 40, no. 2, pp , March [13] W. N. Fu and S. L. Ho, Error estimation for the computation of force using the virtual work method on finite element models, IEEE Trans. Magn., vol. 45, no. 3, pp , March [14] D. Lin, P. Zhou, W. N. Fu, Z. Badics and Z. J. Cendes, A dynamic core loss model for soft ferromagnetic and power ferrite materials in transient finite element analysis, IEEE Tran. Magn., vol. 40, no. 2, pp , March [15] P. Zhou, W. N. Fu, D. Lin, S. Stanton and Z. J. Cendes, Numerical modeling of magnetic devices, IEEE Trans. Magn., vol. 40, no. 4, pp , July ACKNOWLEDGMENT This work was supported in part by The Hong Kong Polytechnic University under Grant B-Q18X. REFERENCES [1] M. Aubertin, A. Tounzi and Y. Le Menach, Study of an electromagnetic gearbox involving two permanent magnet synchronous machines using 3-D-FEM, IEEE Trans. Magn., vol. 44, no. 11, Part 2, pp , Nov [2] K. T. Chau, Dong Zhang, J. Z. Jiang, Chunhua Liu and Yuejin Zhang, Design of a magnetic-geared outer-rotor permanent-magnet brushless motor for electric vehicles, IEEE Trans. Magn., vol. 43, no. 6, pp , June [3] K. T. Chau, C. C. Chan, Liu Chunhua, Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles, IEEE Trans. Industrial Electronics, vol. 55, no. 6, pp , June [4] L. Jian, K. T. Chau and J. Z. Jiang, A magnetic-geared outer-rotor permanent-magnet brushless machine for wind power generation, IEEE Trans. Industry Applications, vol. 45, no. 3, pp , May-June [5] L. L. Wang, J. X. Shen, Y. Wang and K. Wang, A novel magneticgeared outer-rotor permanent-magnet brushless motor, 4th IET Conference on Power Electronics, Machines and Drives, 2-4 April 2008, pp

A Quantitative Comparative Analysis of a Novel Flux-Modulated Permanent Magnet Motor for Low-Speed Drive

A Quantitative Comparative Analysis of a Novel Flux-Modulated Permanent Magnet Motor for Low-Speed Drive ANSYS 11 中国用户大会优秀论文 A Quantitative Comparative Analysis of a Novel Flux-Modulated Permanent Magnet Motor for Low-Speed Drive W. N. Fu, and S. L. Ho The Hong Kong Polytechnic University, Hung Hom, Kowloon,

More information

Transient analysis of a new outer-rotor permanent-magnet brushless DC drive using circuit-field-torque coupled timestepping finite-element method

Transient analysis of a new outer-rotor permanent-magnet brushless DC drive using circuit-field-torque coupled timestepping finite-element method Title Transient analysis of a new outer-rotor permanent-magnet brushless DC drive using circuit-field-torque coupled timestepping finite-element method Author(s) Wang, Y; Chau, KT; Chan, CC; Jiang, JZ

More information

A novel flux-controllable vernier permanent-magnet machine

A novel flux-controllable vernier permanent-magnet machine Title A novel flux-controllable vernier permanent-magnet machine Author(s) Liu, C; Zhong, J; Chau, KT Citation The IEEE International Magnetic Conference (INTERMAG2011), Teipei, Taiwan, 25-29 April 2011.

More information

Torque Analysis of Magnetic Spur Gear with Different Configurations

Torque Analysis of Magnetic Spur Gear with Different Configurations International Journal of Electrical Engineering. ISSN 974-158 Volume 5, Number 7 (1), pp. 843-85 International Research Publication House http://www.irphouse.com Torque Analysis of Magnetic Spur Gear with

More information

Application of linear magnetic gears for pseudo-direct-drive oceanic wave energy harvesting

Application of linear magnetic gears for pseudo-direct-drive oceanic wave energy harvesting Title Application of linear magnetic gears for pseudo-direct-drive oceanic wave energy harvesting Author(s) Li, W; Chau, KT; Jiang, JZ Citation The IEEE International Magnetic Conference (INTERMAG2011),

More information

Design of Position Detection Strategy of Sensorless Permanent Magnet Motors at Standstill Using Transient Finite Element Analysis

Design of Position Detection Strategy of Sensorless Permanent Magnet Motors at Standstill Using Transient Finite Element Analysis Design of Position Detection Strategy of Sensorless Permanent Magnet Motors at Standstill Using Transient Finite Element Analysis W. N. Fu 1, and S. L. Ho 1, and Zheng Zhang 2, Fellow, IEEE 1 The Hong

More information

A Linear Magnetic-geared Free-piston Generator for Range-extended Electric Vehicles

A Linear Magnetic-geared Free-piston Generator for Range-extended Electric Vehicles A Linear Magnetic-geared Free-piston Generator for Range-extended Electric Vehicles Wenlong Li 1 and K. T. Chau 2 1 Department of Electrical and Electronic Engineering, The University of Hong Kong, wlli@eee.hku.hk

More information

CHAPTER 3 DESIGN OF THE LIMITED ANGLE BRUSHLESS TORQUE MOTOR

CHAPTER 3 DESIGN OF THE LIMITED ANGLE BRUSHLESS TORQUE MOTOR 33 CHAPTER 3 DESIGN OF THE LIMITED ANGLE BRUSHLESS TORQUE MOTOR 3.1 INTRODUCTION This chapter presents the design of frameless Limited Angle Brushless Torque motor. The armature is wound with toroidal

More information

Comparison and analysis of flux-switching permanent-magnet double-rotor machine with 4QT used for HEV

Comparison and analysis of flux-switching permanent-magnet double-rotor machine with 4QT used for HEV Title Comparison and analysis of flux-switching permanent-magnet double-rotor machine with 4QT used for HEV Author(s) Mo, L; Quan, L; Zhu, X; Chen, Y; Qiu, H; Chau, KT Citation The 2014 IEEE International

More information

Keywords: Hybrid electric vehicle, free-piston generator, linear magnetic-geared machine, finite element analysis

Keywords: Hybrid electric vehicle, free-piston generator, linear magnetic-geared machine, finite element analysis An Integrated PM Magnetic-geared Machine for Hybrid Electric Vehicles Hua Fan, K. T. Chau 1, Chunhua Liu, C. C. Chan, and T.W. Ching 1 K. T. Chau (corresponding author) The University of Hong Kong, Pokfulam

More information

WITH the requirements of reducing emissions and

WITH the requirements of reducing emissions and IEEE TRANSACTIONS ON MAGNETICS, VOL. 51, NO. 3, MARCH 2015 8201805 Investigation and Design of a High-Power Flux-Switching Permanent Magnet Machine for Hybrid Electric Vehicles Wei Hua, Gan Zhang, and

More information

PM Assisted, Brushless Wound Rotor Synchronous Machine

PM Assisted, Brushless Wound Rotor Synchronous Machine Journal of Magnetics 21(3), 399-404 (2016) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2016.21.3.399 PM Assisted, Brushless Wound Rotor Synchronous Machine Qasim Ali 1,

More information

Optimization Design of an Interior Permanent Magnet Motor for Electro Hydraulic Power Steering

Optimization Design of an Interior Permanent Magnet Motor for Electro Hydraulic Power Steering Indian Journal of Science and Technology, Vol 9(14), DOI: 10.17485/ijst/2016/v9i14/91100, April 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Optimization Design of an Interior Permanent Magnet

More information

Hysteresis Effects of Laminated Steel Materials on Detent Torque in Permanent Magnet Motors

Hysteresis Effects of Laminated Steel Materials on Detent Torque in Permanent Magnet Motors Hysteresis Effects of Laminated Steel Materials on Detent Torque in Permanent Magnet Motors Y. B. Li 1, Shuangxia Niu 1, S. L. Ho 1, Yanhai Li 2 and W. N. Fu 1 1 Department of Electrical Engineering, The

More information

The IEEE Vehicle Power and Propulsion Conference (VPPC 2008), Harbin, China, 3-5 September In Conference Proceedings, 2008, p.

The IEEE Vehicle Power and Propulsion Conference (VPPC 2008), Harbin, China, 3-5 September In Conference Proceedings, 2008, p. Title A permanent-magnet double-stator integratedstarter-generator for hybrid electric vehicles Author(s) Niu, S; Chau, KT; Jiang, JZ Citation The IEEE Vehicle Power and Propulsion Conference (VPPC 2008),

More information

A Permanent-magnet Hybrid In-wheel Motor Drive for Electric Vehicles

A Permanent-magnet Hybrid In-wheel Motor Drive for Electric Vehicles A Permanent-magnet Hybrid In-wheel Motor Drive for Electric Vehicles Chunhua Liu 1, K. T. Chau 1, Senior Member, IEEE, and J. Z. Jiang 2 1 Department of Electrical and Electronic Engineering, The University

More information

Design of disk type PM synchronous generator based on halbach

Design of disk type PM synchronous generator based on halbach Design of disk type PM synchronous generator based on halbach Chuan ZHANG 1, Shu Qin LIU 1,a 1 School of Electrical Engineering, Shandong University, Ji nan 250061, Shandong Province, China; Abstract.

More information

Performance Comparison of 24Slot-10Pole and 12Slot-8Pole Wound Field Three-Phase Switched- Flux Machine

Performance Comparison of 24Slot-10Pole and 12Slot-8Pole Wound Field Three-Phase Switched- Flux Machine Performance Comparison of 24Slot-10Pole and 12Slot-8Pole Wound Field Three-Phase Switched- Flux Machine Faisal Khan, Erwan Sulaiman, Md Zarafi Ahmad Department of Electrical Power Engineering, Faculty

More information

Design of Dual-Magnet Memory Machines

Design of Dual-Magnet Memory Machines Design of Dual-Magnet Memory Machines Fuhua Li, K.T. Chau, and Chunhua Liu Dept. of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong, China E-mail: fhli@eee.hku.hk Abstract The

More information

Characteristics Analysis of Novel Outer Rotor Fan-type PMSM for Increasing Power Density

Characteristics Analysis of Novel Outer Rotor Fan-type PMSM for Increasing Power Density Journal of Magnetics 23(2), 247-252 (2018) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 https://doi.org/10.4283/jmag.2018.23.2.247 Characteristics Analysis of Novel Outer Rotor Fan-type PMSM for Increasing

More information

86400 Parit Raja, Batu Pahat, Johor Malaysia. Keywords: Flux switching motor (FSM), permanent magnet (PM), salient rotor, electric vehicle

86400 Parit Raja, Batu Pahat, Johor Malaysia. Keywords: Flux switching motor (FSM), permanent magnet (PM), salient rotor, electric vehicle Preliminary Design of Salient Rotor Three-Phase Permanent Magnet Flux Switching Machine with Concentrated Winding Mahyuzie Jenal 1, a, Erwan Sulaiman 2,b, Faisal Khan 3,c and MdZarafi Ahmad 4,d 1 Research

More information

CHAPTER 4 HARDWARE DEVELOPMENT OF DUAL ROTOR RADIAL FLUX PERMANENT MAGNET GENERATOR FOR STAND-ALONE WIND ENERGY SYSTEMS

CHAPTER 4 HARDWARE DEVELOPMENT OF DUAL ROTOR RADIAL FLUX PERMANENT MAGNET GENERATOR FOR STAND-ALONE WIND ENERGY SYSTEMS 66 CHAPTER 4 HARDWARE DEVELOPMENT OF DUAL ROTOR RADIAL FLUX PERMANENT MAGNET GENERATOR FOR STAND-ALONE WIND ENERGY SYSTEMS 4.1 INTRODUCTION In this chapter, the prototype hardware development of proposed

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 ELECTRICAL MOTOR This thesis address the performance analysis of brushless dc (BLDC) motor having new winding method in the stator for reliability requirement of electromechanical

More information

Axial-flux PM Synchronous Machines with Air-gap Profiling and Very High Ratio of Spoke Rotor Poles to Stator Concentrated Coils

Axial-flux PM Synchronous Machines with Air-gap Profiling and Very High Ratio of Spoke Rotor Poles to Stator Concentrated Coils Axial-flux PM Synchronous Machines with Air-gap Profiling and Very High Ratio of Spoke Rotor Poles to Stator Concentrated Coils Vandana Rallabandi, Narges Taran and Dan M. Ionel, Fellow, IEEE Department

More information

Core Loss Effects on Electrical Steel Sheet of Wound Rotor Synchronous Motor for Integrated Starter Generator

Core Loss Effects on Electrical Steel Sheet of Wound Rotor Synchronous Motor for Integrated Starter Generator Journal of Magnetics 20(2), 148-154 (2015) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2015.20.2.148 Core Loss Effects on Electrical Steel Sheet of Wound Rotor Synchronous

More information

Performance Comparison Analysis of a Squirrel-cage Rotor Induction Motor with Different Rotor Structures

Performance Comparison Analysis of a Squirrel-cage Rotor Induction Motor with Different Rotor Structures Sensors & Transducers 2014 by IFSA Publishing, S. L. http://www.sensorsportal.com Performance Comparison Analysis of a Squirrel-cage Rotor Induction Motor with Different Rotor Structures 1 Jun Wang, 1

More information

Design Analysis of a Novel Double-Sided Axial- Flux Permanent-Magnet Generator for Micro-Wind Power Applications

Design Analysis of a Novel Double-Sided Axial- Flux Permanent-Magnet Generator for Micro-Wind Power Applications Design Analysis of a Novel Double-Sided Axial- Flux Permanent-Magnet Generator for Micro-Wind Power Applications Mihai CHIRCA, Stefan BREBAN, Claudiu OPREA, Mircea M. RADULESCU Technical University of

More information

An investigation on development of Precision actuator for small robot

An investigation on development of Precision actuator for small robot An investigation on development of Precision actuator for small robot Joo Han Kim*, Se Hyun Rhyu, In Soung Jung, Jung Moo Seo Korea Electronics Technology Institute (KETI) * 203-103 B/D 192 Yakdae-Dong,

More information

UNIT 2. INTRODUCTION TO DC GENERATOR (Part 1) OBJECTIVES. General Objective

UNIT 2. INTRODUCTION TO DC GENERATOR (Part 1) OBJECTIVES. General Objective DC GENERATOR (Part 1) E2063/ Unit 2/ 1 UNIT 2 INTRODUCTION TO DC GENERATOR (Part 1) OBJECTIVES General Objective : To apply the basic principle of DC generator, construction principle and types of DC generator.

More information

Department of Electrical Power Engineering, Universiti Tun Hussein Onn Malaysia, Locked Bag 101, Batu Pahat, Johor, Malaysia

Department of Electrical Power Engineering, Universiti Tun Hussein Onn Malaysia, Locked Bag 101, Batu Pahat, Johor, Malaysia Performance Comparison of 12S-14P Inner and Field Excitation Flux Switching Motor Syed Muhammad Naufal Syed Othman a, Erwan Sulaiman b, Faisal Khan c, Zhafir Aizat Husin d and Mohamed Mubin Aizat Mazlan

More information

Axial Flux Permanent Magnet Brushless Machines

Axial Flux Permanent Magnet Brushless Machines Jacek F. Gieras Rong-Jie Wang Maarten J. Kamper Axial Flux Permanent Magnet Brushless Machines Second Edition Springer Contents 1 Introduction 1 1.1 Scope 1 1.2 Features 1 1.3 Development of AFPM Machines

More information

Aspects of Permanent Magnet Machine Design

Aspects of Permanent Magnet Machine Design Aspects of Permanent Magnet Machine Design Christine Ross February 7, 2011 Grainger Center for Electric Machinery and Electromechanics Outline Permanent Magnet (PM) Machine Fundamentals Motivation and

More information

COMPARATIVE STUDY ON MAGNETIC CIRCUIT ANALYSIS BETWEEN INDEPENDENT COIL EXCITATION AND CONVENTIONAL THREE PHASE PERMANENT MAGNET MOTOR

COMPARATIVE STUDY ON MAGNETIC CIRCUIT ANALYSIS BETWEEN INDEPENDENT COIL EXCITATION AND CONVENTIONAL THREE PHASE PERMANENT MAGNET MOTOR COMPARATIVE STUDY ON MAGNETIC CIRCUIT ANALYSIS BETWEEN INDEPENDENT COIL EXCITATION AND CONVENTIONAL THREE PHASE PERMANENT MAGNET MOTOR A. Nazifah Abdullah 1, M. Norhisam 2, S. Khodijah 1, N. Amaniza 1,

More information

Joule losses of magnets in permanent magnet synchronous machines - case concentrated winding machine

Joule losses of magnets in permanent magnet synchronous machines - case concentrated winding machine Joule losses of magnets in permanent magnet synchronous machines - case concentrated winding machine Hanne Jussila Lappeenranta University of Technology 1 Joule losses of permanent magnets Eddy current

More information

Page 1. Design meeting 18/03/2008. By Mohamed KOUJILI

Page 1. Design meeting 18/03/2008. By Mohamed KOUJILI Page 1 Design meeting 18/03/2008 By Mohamed KOUJILI I. INTRODUCTION II. III. IV. CONSTRUCTION AND OPERATING PRINCIPLE 1. Stator 2. Rotor 3. Hall sensor 4. Theory of operation TORQUE/SPEED CHARACTERISTICS

More information

Comparison of different 600 kw designs of a new permanent magnet generator for wind power applications

Comparison of different 600 kw designs of a new permanent magnet generator for wind power applications Comparison of different 600 kw designs of a new permanent magnet generator for wind power applications E. Peeters, Vito, Boeretang 200, 2400 Mol, Belgium, eefje.peeters@vito.be, tel +32 14 33 59 23, fax

More information

Converteam: St. Mouty, A. Mirzaïan FEMTO-ST: A. Berthon, D. Depernet, Ch. Espanet, F. Gustin

Converteam: St. Mouty, A. Mirzaïan FEMTO-ST: A. Berthon, D. Depernet, Ch. Espanet, F. Gustin Permanent Magnet Design Solutions for Wind Turbine applications Converteam: St. Mouty, A. Mirzaïan FEMTO-ST: A. Berthon, D. Depernet, Ch. Espanet, F. Gustin Outlines 1. Description of high power electrical

More information

AXIAL FLUX PERMANENT MAGNET BRUSHLESS MACHINES

AXIAL FLUX PERMANENT MAGNET BRUSHLESS MACHINES AXIAL FLUX PERMANENT MAGNET BRUSHLESS MACHINES Jacek F. Gieras, Rong-Jie Wang and Maarten J. Kamper Kluwer Academic Publishers, Boston-Dordrecht-London, 2004 TABLE OF CONTENETS page Preface v 1. Introduction

More information

Cogging Reduction of a Low-speed Direct-drive Axial-gap Generator

Cogging Reduction of a Low-speed Direct-drive Axial-gap Generator APSAEM14 Jorunal of the Japan Society of Applied Electromagnetics and Mechanics Vol.23, No.3 (2015) Regular Paper Cogging Reduction of a Low-speed Direct-drive Axial-gap Generator Tomoki HASHIMOTO *1,

More information

The Effects of Magnetic Circuit Geometry on Torque Generation of 8/14 Switched Reluctance Machine

The Effects of Magnetic Circuit Geometry on Torque Generation of 8/14 Switched Reluctance Machine 213 XXIV International Conference on Information, Communication and Automation Technologies (ICAT) October 3 November 1, 213, Sarajevo, Bosnia and Herzegovina The Effects of Magnetic Circuit Geometry on

More information

Permanent Magnet Machines for Distributed Generation: A Review

Permanent Magnet Machines for Distributed Generation: A Review Permanent Magnet Machines for Distributed Generation: A Review Paper Number: 07GM0593 Authors: Tze-Fun Chan, EE Department, The Hong Kong Polytechnic University, Hong Kong, China Loi Lei Lai, School of

More information

CHAPTER 5 ANALYSIS OF COGGING TORQUE

CHAPTER 5 ANALYSIS OF COGGING TORQUE 95 CHAPTER 5 ANALYSIS OF COGGING TORQUE 5.1 INTRODUCTION In modern era of technology, permanent magnet AC and DC motors are widely used in many industrial applications. For such motors, it has been a challenge

More information

European Conference on Nanoelectronics and Embedded Systems for Electric Mobility

European Conference on Nanoelectronics and Embedded Systems for Electric Mobility European Conference on Nanoelectronics and Embedded Systems for Electric Mobility emobility emotion 25-26 th September 2013, Toulouse, France 6-phase Fault-Tolerant Permanent Magnet Traction Drive for

More information

Note 8. Electric Actuators

Note 8. Electric Actuators Note 8 Electric Actuators Department of Mechanical Engineering, University Of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada 1 1. Introduction In a typical closed-loop, or feedback, control

More information

Effect of Permanent Magnet Rotor Design on PMSM Properties

Effect of Permanent Magnet Rotor Design on PMSM Properties Transactions on Electrical Engineering, Vol. 1 (2012), No. 3 98 Effect of Permanent Magnet Rotor Design on PMSM Properties SEKERÁK Peter, HRABOVCOVÁ Valéria, RAFAJDUS Pavol, KALAMEN Lukáš, ONUFER Matúš

More information

INFLUENCE OF MAGNET POLE ARC VARIATION ON THE COGGING TORQUE OF RADIAL FLUX PERMANENT MAGNET BRUSHLESS DC (PMBLDC) MOTOR

INFLUENCE OF MAGNET POLE ARC VARIATION ON THE COGGING TORQUE OF RADIAL FLUX PERMANENT MAGNET BRUSHLESS DC (PMBLDC) MOTOR INFLUENCE OF MAGNET POLE ARC VARIATION ON THE COGGING TORQUE OF RADIAL FLUX PERMANENT MAGNET BRUSHLESS DC (PMBLDC) MOTOR Amit N.Patel 1, Aksh P. Naik 2 1,2 Department of Electrical Engineering, Institute

More information

CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS

CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS Objective Describe the necessary conditions for motor and generator operation. Calculate the force on a conductor carrying current in the presence of the

More information

Comparative Performance of FE-FSM, PM-FSM and HE-FSM with Segmental Rotor Hassan Ali Soomro a, Erwan Sulaiman b and Faisal Khan c

Comparative Performance of FE-FSM, PM-FSM and HE-FSM with Segmental Rotor Hassan Ali Soomro a, Erwan Sulaiman b and Faisal Khan c Comparative Performance of FE-FSM, PM-FSM and HE-FSM with Segmental Rotor Hassan Ali Soomro a, Erwan Sulaiman b and Faisal Khan c Department of Electrical power Engineering, Universiti Tun Hussein Onn

More information

2006 MINI Cooper S GENINFO Starting - Overview - MINI

2006 MINI Cooper S GENINFO Starting - Overview - MINI MINI STARTING SYSTEM * PLEASE READ THIS FIRST * 2002-07 GENINFO Starting - Overview - MINI For information on starter removal and installation, see the following articles. For Cooper, see STARTER WITH

More information

INTRODUCTION Principle

INTRODUCTION Principle DC Generators INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. Principle Whenever a conductor is moved within a

More information

CHAPTER THREE DC MOTOR OVERVIEW AND MATHEMATICAL MODEL

CHAPTER THREE DC MOTOR OVERVIEW AND MATHEMATICAL MODEL CHAPTER THREE DC MOTOR OVERVIEW AND MATHEMATICAL MODEL 3.1 Introduction Almost every mechanical movement that we see around us is accomplished by an electric motor. Electric machines are a means of converting

More information

Application of Soft Magnetic Composite Material in the Field of Electrical Machines Xiaobei Li 1,2,a, Jing Zhao 1,2,b*, Zhen Chen 1,2, c

Application of Soft Magnetic Composite Material in the Field of Electrical Machines Xiaobei Li 1,2,a, Jing Zhao 1,2,b*, Zhen Chen 1,2, c Applied Mechanics and Materials Online: 2013-08-30 I: 1662-7482, Vols. 380-384, pp 4299-4302 doi:10.4028/www.scientific.net/amm.380-384.4299 2013 Trans Tech Publications, witzerland Application of oft

More information

Investigation of Short Permanent Magnet and Stator Flux Bridges Effects on Cogging Torque Mitigation in FSPM Machines

Investigation of Short Permanent Magnet and Stator Flux Bridges Effects on Cogging Torque Mitigation in FSPM Machines Investigation of Short Permanent Magnet and Stator Flux Bridges Effects on Cogging Torque Mitigation in FSPM Machines Chun Gan, Member, IEEE, Jianhua Wu, Mengjie Shen, Qingguo Sun, Yihua Hu, Senior Member,

More information

Design and Comparison of Axial-Flux Permanent Magnet Motors for In-Wheel Electric Vehicles by 3D-FEM

Design and Comparison of Axial-Flux Permanent Magnet Motors for In-Wheel Electric Vehicles by 3D-FEM o. E-4-AAA-0000 Design and Comparison of Axial-Flux Permanent Magnet Motors for In-Wheel Electric Vehicles by 3D-FEM S.M. JafariShiadeh, M. Ardebili Department of Computer and Electrical Engineering K..

More information

INVESTIGATIVE STUDY OF A NOVEL PERMANENT MAGNET FLUX SWITCHING MACHINE EMPLOYING ALTERNATE CIRCUMFERENTIAL AND RADIAL PERMANENT MAGNET

INVESTIGATIVE STUDY OF A NOVEL PERMANENT MAGNET FLUX SWITCHING MACHINE EMPLOYING ALTERNATE CIRCUMFERENTIAL AND RADIAL PERMANENT MAGNET INVESTIGATIVE STUDY OF A NOVEL PERMANENT MAGNET FLUX SWITCHING MACHINE EMPLOYING ALTERNATE CIRCUMFERENTIAL AND RADIAL PERMANENT MAGNET M. Jenal and E. Sulaiman Research Center for Applied Electromagnetics

More information

University of L Aquila. Permanent Magnet-assisted Synchronous Reluctance Motors for Electric Vehicle applications

University of L Aquila. Permanent Magnet-assisted Synchronous Reluctance Motors for Electric Vehicle applications University of L Aquila Department of Industrial and Information Engineering and Economics Permanent Magnet-assisted Synchronous Reluctance Motors for Electric Vehicle applications A. Ometto, F. Parasiliti,

More information

SINGLE-PHASE LINE START PERMANENT MAGNET SYNCHRONOUS MOTOR WITH SKEWED STATOR*

SINGLE-PHASE LINE START PERMANENT MAGNET SYNCHRONOUS MOTOR WITH SKEWED STATOR* Vol. 1(36), No. 2, 2016 POWER ELECTRONICS AND DRIVES DOI: 10.5277/PED160212 SINGLE-PHASE LINE START PERMANENT MAGNET SYNCHRONOUS MOTOR WITH SKEWED STATOR* MACIEJ GWOŹDZIEWICZ, JAN ZAWILAK Wrocław University

More information

Comparison of IPM and SPM motors using ferrite magnets for low-voltage traction systems

Comparison of IPM and SPM motors using ferrite magnets for low-voltage traction systems EVS28 KINTEX, Korea, May 3-6, 215 Comparison of IPM and SPM motors using ferrite magnets for low-voltage traction systems Yong-Hoon Kim 1, Suwoong Lee 1, Eui-Chun Lee 1, Bo Ram Cho 1 and Soon-O Kwon 1

More information

Study of Motoring Operation of In-wheel Switched Reluctance Motor Drives for Electric Vehicles

Study of Motoring Operation of In-wheel Switched Reluctance Motor Drives for Electric Vehicles Study of Motoring Operation of In-wheel Switched Reluctance Motor Drives for Electric Vehicles X. D. XUE 1, J. K. LIN 2, Z. ZHANG 3, T. W. NG 4, K. F. LUK 5, K. W. E. CHENG 6, and N. C. CHEUNG 7 Department

More information

A New Design Approach for Torque Improvement and Torque Ripple Reduction in a Switched Reluctance Motor

A New Design Approach for Torque Improvement and Torque Ripple Reduction in a Switched Reluctance Motor IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 5 Ver. II (Sep. Oct. 2017), PP 51-58 www.iosrjournals.org A New Design Approach

More information

DESIGN OF COMPACT PERMANENT-MAGNET SYNCHRONOUS MOTORS WITH CONCENTRATED WINDINGS

DESIGN OF COMPACT PERMANENT-MAGNET SYNCHRONOUS MOTORS WITH CONCENTRATED WINDINGS DESIGN OF COMPACT PERMANENT-MAGNET SYNCHRONOUS MOTORS WITH CONCENTRATED WINDINGS CSABA DEAK, ANDREAS BINDER Key words: Synchronous motor, Permanent magnet, Concentrated winding. The design and comparison

More information

Renewable Energy Systems 13

Renewable Energy Systems 13 Renewable Energy Systems 13 Buchla, Kissell, Floyd Chapter Outline Generators 13 Buchla, Kissell, Floyd 13-1 MAGNETISM AND ELECTROMAGNETISM 13-2 DC GENERATORS 13-3 AC SYNCHRONOUS GENERATORS 13-4 AC INDUCTION

More information

DESIGN OF AXIAL FLUX BRUSHLESS DC MOTOR BASED ON 3D FINITE ELEMENT METHOD FOR UNMANNED ELECTRIC VEHICLE APPLICATIONS

DESIGN OF AXIAL FLUX BRUSHLESS DC MOTOR BASED ON 3D FINITE ELEMENT METHOD FOR UNMANNED ELECTRIC VEHICLE APPLICATIONS DESIGN OF AXIAL FLUX BRUSHLESS DC MOTOR BASED ON 3D FINITE ELEMENT METHOD FOR UNMANNED ELECTRIC VEHICLE APPLICATIONS 1 H. SURYOATMOJO, R. MARDIYANTO, G. B. A. JANARDANA, M. ASHARI Department of Electrical

More information

Comparative Study of 24Slot-10Pole and 24Slot- 14Pole Three-Phase Wound Field Salient Rotor Switched-Flux Motor

Comparative Study of 24Slot-10Pole and 24Slot- 14Pole Three-Phase Wound Field Salient Rotor Switched-Flux Motor Comparative Study of 24Slot-10Pole and 24Slot- 14Pole Three-Phase Wound Field Salient Rotor Switched-Flux Motor Faisal Khan, Erwan Sulaiman, Md Zarafi Ahmad, Zhafir Aizat Husin Department of Electrical

More information

An Investigation of Advanced Magnetic Materials for Axial Field Brushless Permanent Magnet Motor Drives for Automotive Applications

An Investigation of Advanced Magnetic Materials for Axial Field Brushless Permanent Magnet Motor Drives for Automotive Applications The following paper posted here is not the official IEEE published version. The final published version of this paper can be found in the Proceedings of the IEEE Power Electronics Specialist Conference

More information

Design and Analysis of Novel Bearingless Permanent Magnet Synchronous Motor for Flywheel Energy Storage System

Design and Analysis of Novel Bearingless Permanent Magnet Synchronous Motor for Flywheel Energy Storage System Progress In Electromagnetics Research M, Vol. 51, 147 156, 216 Design and Analysis of Novel Bearingless Permanent Magnet Synchronous Motor for Flywheel Energy Storage System Huangqiu Zhu and Ronghua Lu*

More information

Analysis of Innovative Design Variations for Double-Sided Coreless-Stator Axial-Flux Permanent-Magnet Generators in Micro-Wind Power Applications

Analysis of Innovative Design Variations for Double-Sided Coreless-Stator Axial-Flux Permanent-Magnet Generators in Micro-Wind Power Applications Analysis of Innovative Design Variations for Double-Sided Coreless-Stator Axial-Flux Permanent-Magnet Generators in Micro-Wind Power Applications M. Chirca, S. Breban, C.A. Oprea, M.M. Radulescu Abstract

More information

Development and Test of a High Force Tubular Linear Drive Concept with Discrete Wound Coils for Industrial Applications

Development and Test of a High Force Tubular Linear Drive Concept with Discrete Wound Coils for Industrial Applications Development and Test of a High Force Tubular Linear Drive Concept with Discrete Wound Coils for Industrial Applications Ralf Wegener 1 Member IEEE, Sebastian Gruber, 2 Kilian Nötzold, 2 Florian Senicar,

More information

ANALYTICAL DESIGN OF AXIAL FLUX PMG FOR LOW SPEED DIRECT DRIVE WIND APPLICATIONS

ANALYTICAL DESIGN OF AXIAL FLUX PMG FOR LOW SPEED DIRECT DRIVE WIND APPLICATIONS ANALYTICAL DESIGN OF AXIAL FLUX PMG FOR LOW SPEED DIRECT DRIVE WIND APPLICATIONS K.Indirajith 1, Dr.R.Bharani Kumar 2 1 PG Scholar, 2 Professor, Department of EEE, Bannari Amman Institute of Technolog

More information

Noise and vibration due to rotor eccentricity in a HDD spindle system

Noise and vibration due to rotor eccentricity in a HDD spindle system DOI 10.1007/s00542-014-2139-2 Technical Paper Noise and vibration due to rotor eccentricity in a HDD spindle system Sangjin Sung Gunhee Jang Kyungjin Kang Received: 7 October 2013 / Accepted: 8 March 2014

More information

New Self-Excited Synchronous Machine with Tooth Concentrated Winding

New Self-Excited Synchronous Machine with Tooth Concentrated Winding New Self-Excited Synchronous Machine with Tooth Concentrated Winding Gurakuq Dajaku 1) and Dieter Gerling 2), IEEE 1 FEAAM GmbH, D-85577 Neubiberg, Germany 2 Universitaet der Bundeswehr Muenchen, D-85577

More information

Design and Analysis of Radial Flux Permanent Magnet Brushless DC Motor for Gearless Elevators

Design and Analysis of Radial Flux Permanent Magnet Brushless DC Motor for Gearless Elevators International Journal of Control Theory and Applications ISSN : 0974-5572 International Science Press Volume 9 Number 43 2016 Design and Analysis of Radial Flux Permanent Magnet Brushless DC Motor for

More information

INWHEEL SRM DESIGN WITH HIGH AVERAGE TORQUE AND LOW TORQUE RIPPLE

INWHEEL SRM DESIGN WITH HIGH AVERAGE TORQUE AND LOW TORQUE RIPPLE INWHEEL SRM DESIGN WITH HIGH AVERAGE TORQUE AND LOW TORQUE RIPPLE G. Nalina Shini 1 and V. Kamaraj 2 1 Department of Electronics and Instrumentation Engineering, R.M.D. Engineering College, Chennai, India

More information

Chapter 1 INTRODUCTION. 1.1 Scope. 1.2 Features

Chapter 1 INTRODUCTION. 1.1 Scope. 1.2 Features Chapter 1 INTRODUCTION 1.1 Scope The term axial flux permanent magnet (AFPM) machine in this book relates only to permanent magnet (PM) machines with disc type rotors. Other AFPM machine topologies, e.g.

More information

Sub:EE6604/DESIGN OF ELECTRICAL MACHINES Unit V SYNCHRONOUS MACHINES. 2. What are the two type of poles used in salient pole machines?

Sub:EE6604/DESIGN OF ELECTRICAL MACHINES Unit V SYNCHRONOUS MACHINES. 2. What are the two type of poles used in salient pole machines? SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF EEEE QUESTION BANK Sub:EE6604/DESIGN OF ELECTRICAL MACHINES Unit V SYNCHRONOUS MACHINES 1. Name the two types of synchronous machines. 1. Salient

More information

A Dual Stator Winding-Mixed Pole Brushless Synchronous Generator (Design, Performance Analysis & Modeling)

A Dual Stator Winding-Mixed Pole Brushless Synchronous Generator (Design, Performance Analysis & Modeling) A Dual Stator Winding-Mixed Pole Brushless Synchronous Generator (Design, Performance Analysis & Modeling) M EL_SHANAWANY, SMR TAHOUN& M EZZAT Department (Electrical Engineering Department) University

More information

Principles of Electrical Engineering

Principles of Electrical Engineering D.C GENERATORS Principle of operation of D.C machines, types of D.C Generators, e.m.f equation of D.C Generator, O.C.C of a D.C Shunt Generator, Load characteristics of D.C.Generators GENERATOR PRINCIPLE:

More information

Comparative Study of Maximum Torque Control by PI ANN of Induction Motor

Comparative Study of Maximum Torque Control by PI ANN of Induction Motor Comparative Study of Maximum Torque Control by PI ANN of Induction Motor Dr. G.Madhusudhana Rao 1 and G.Srikanth 2 1 Professor of Electrical and Electronics Engineering, TKR College of Engineering and

More information

Experimental Evaluations of the Dual-Excitation Permanent Magnet Vernier Machine

Experimental Evaluations of the Dual-Excitation Permanent Magnet Vernier Machine Experimental Evaluations of the Dual-Excitation Permanent Magnet Vernier Machine Akio Toba*, Hiroshi Ohsawa*, Yoshihiro Suzuki**, Tukasa Miura**, and Thomas A. Lipo*** Fuji Electric Co. R&D, Ltd. * 1 Fuji-machi,

More information

AC Motors vs DC Motors. DC Motors. DC Motor Classification ... Prof. Dr. M. Zahurul Haq

AC Motors vs DC Motors. DC Motors. DC Motor Classification ... Prof. Dr. M. Zahurul Haq AC Motors vs DC Motors DC Motors Prof. Dr. M. Zahurul Haq http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 6401: Advanced Mechatronics

More information

Comparison Study of Permanent Magnet Transverse Flux Motors (PMTFMs) For In-Wheel Applications

Comparison Study of Permanent Magnet Transverse Flux Motors (PMTFMs) For In-Wheel Applications Comparison Study of Permanent Magnet Transverse Flux Motors (PMTFMs) For In-Wheel Applications Salwa Baserrah, Bernd Orlik Institute for Electrical Drives, Power Electronics and Devices University of Bremen

More information

Development of a High Efficiency Induction Motor and the Estimation of Energy Conservation Effect

Development of a High Efficiency Induction Motor and the Estimation of Energy Conservation Effect PAPER Development of a High Efficiency Induction Motor and the Estimation of Energy Conservation Effect Minoru KONDO Drive Systems Laboratory, Minoru MIYABE Formerly Drive Systems Laboratory, Vehicle Control

More information

Prototype of an Axial Flux Permanent Magnet Generator for Wind Energy Systems Applications

Prototype of an Axial Flux Permanent Magnet Generator for Wind Energy Systems Applications Prototype of an Axial Flux Permanent Magnet Generator for Wind Energy Systems Applications A. P. Ferreira 1, A. M. Silva 2, A. F. Costa 2 1 School of Technology and Management, Polytechnic Institute of

More information

This is a repository copy of Development of a shutter type magnetic gear

This is a repository copy of Development of a shutter type magnetic gear This is a repository copy of Development of a shutter type magnetic Article: Brönn, L., Wang, R-J., Kamper, M.J., (2010) Development of a shutter type magnetic, Proc. of the Southern African Universities

More information

Mechatronics Chapter 10 Actuators 10-3

Mechatronics Chapter 10 Actuators 10-3 MEMS1049 Mechatronics Chapter 10 Actuators 10-3 Electric Motor DC Motor DC Motor DC Motor DC Motor DC Motor Motor terminology Motor field current interaction Motor commutator It consists of a ring of

More information

Lower-Loss Technology

Lower-Loss Technology Lower-Loss Technology FOR A STEPPING MOTOR Yasuo Sato (From the Fall 28 Technical Conference of the SMMA. Reprinted with permission of the Small Motor & Motion Association.) Management Summary The demand

More information

Comprehensive Technical Training

Comprehensive Technical Training Comprehensive Technical Training For Sugar Mills Staff on Operation & Maintenance of Baggase Based HP Cogeneration System Schedule: 10 th July to 13 th July, 2017 A.C. GENERATOR Topics Covered. Introduction.

More information

TORQUE-MOTORS. as Actuators in Intake and Exhaust System. SONCEBOZ Rue Rosselet-Challandes 5 CH-2605 Sonceboz.

TORQUE-MOTORS. as Actuators in Intake and Exhaust System. SONCEBOZ Rue Rosselet-Challandes 5 CH-2605 Sonceboz. TORQUE-MOTORS as Actuators in Intake and Exhaust System SONCEBOZ Rue Rosselet-Challandes 5 CH-2605 Sonceboz Tel.: +41 / 32-488 11 11 Fax: +41 / 32-488 11 00 info@sonceboz.com www.sonceboz.com as Actuators

More information

This is a repository copy of Torque performance of axial flux permanent magnet fractional open slot machine with unequal teeth

This is a repository copy of Torque performance of axial flux permanent magnet fractional open slot machine with unequal teeth This is a repository copy of Torque performance of axial flux permanent magnet fractional open slot machine with unequal teeth Article: Kierstead, H.J., Wang, R-J., Kamper, M.J., (20) Torque performance

More information

EE6351 ELECTRIC DRIVES AND CONTROL UNIT-1 INTRODUTION

EE6351 ELECTRIC DRIVES AND CONTROL UNIT-1 INTRODUTION EE6351 ELECTRIC DRIVES AND CONTROL UNIT-1 INTRODUTION 1. What is meant by drive and electric drive? Machines employed for motion control are called drives and may employ any one of the prime movers for

More information

Electrical Engineering Department, Government Engineering College, Bhuj, India. Figure 1 Dual rotor single stator Axial Flux PM motor

Electrical Engineering Department, Government Engineering College, Bhuj, India. Figure 1 Dual rotor single stator Axial Flux PM motor American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

Research on Torque Ripple Optimization of Switched Reluctance Motor Based on Finite Element Method

Research on Torque Ripple Optimization of Switched Reluctance Motor Based on Finite Element Method Progress In Electromagnetics Research M, Vol. 74, 115 123, 18 Research on Torque Ripple Optimization of Switched Reluctance Motor Based on Finite Element Method Libing Jing * and Jia Cheng Abstract Torque

More information

Chapter 2 PRINCIPLES OF AFPM MACHINES. 2.1 Magnetic circuits Single-sided machines Double-sided machines with internal PM disc rotor

Chapter 2 PRINCIPLES OF AFPM MACHINES. 2.1 Magnetic circuits Single-sided machines Double-sided machines with internal PM disc rotor Chapter 2 PRINCIPLES OF AFPM MACHINES In this chapter the basic principles of the AFPM machine are explained in details. Considerable attention is given to the magnetic circuits, windings, torque production,

More information

Rotor Position Detection of CPPM Belt Starter Generator with Trapezoidal Back EMF using Six Hall Sensors

Rotor Position Detection of CPPM Belt Starter Generator with Trapezoidal Back EMF using Six Hall Sensors Journal of Magnetics 21(2), 173-178 (2016) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2016.21.2.173 Rotor Position Detection of CPPM Belt Starter Generator with Trapezoidal

More information

EEE3441 Electrical Machines Department of Electrical Engineering. Lecture. Introduction to Electrical Machines

EEE3441 Electrical Machines Department of Electrical Engineering. Lecture. Introduction to Electrical Machines Department of Electrical Engineering Lecture Introduction to Electrical Machines 1 In this Lecture Induction motors and synchronous machines are introduced Production of rotating magnetic field Three-phase

More information

2 Principles of d.c. machines

2 Principles of d.c. machines 2 Principles of d.c. machines D.C. machines are the electro mechanical energy converters which work from a d.c. source and generate mechanical power or convert mechanical power into a d.c. power. These

More information

Efficiency Increment on 0.35 mm and 0.50 mm Thicknesses of Non-oriented Steel Sheets for 0.5 Hp Induction Motor

Efficiency Increment on 0.35 mm and 0.50 mm Thicknesses of Non-oriented Steel Sheets for 0.5 Hp Induction Motor International Journal of Materials Engineering 2012, 2(2): 1-5 DOI: 10.5923/j.ijme.20120202.01 Efficiency Increment on 0.35 mm and 0.50 mm Thicknesses of Non-oriented Steel Sheets for 0.5 Hp Induction

More information

Thermal Analysis of the AFPM Motor with Air and Water Cooling Simulations

Thermal Analysis of the AFPM Motor with Air and Water Cooling Simulations The 14th IFToMM World Congress, Taipei, Taiwan, October 25-30, 2015 DOI Number: 10.6567/IFToMM.14TH.WC.PS20.013 Thermal Analysis of the AFPM Motor with Air and Water Cooling Simulations P. C. Chen 1 Y.

More information

Basic Motor Theory. Introduction

Basic Motor Theory. Introduction Basic Motor Theory Introduction It has been said that if the Ancient Romans, with their advanced civilization and knowledge of the sciences, had been able to develop a steam motor, the course of history

More information

J.D ENGINEERING WORKS

J.D ENGINEERING WORKS P O W E R G E N E R A T I O N About Us J. Engineering works, Manufacture Permanent Magnet Generators, AC Alternators,BLC MOTORS, Electric Motors, PMG Wind & Hydro Turbine. Mr. Gurdavinder Singh, Founder

More information