JORIND 9(2) December, ISSN

Size: px
Start display at page:

Download "JORIND 9(2) December, ISSN"

Transcription

1 LOSS MINIMISATION IN TRANSMISSION AND DISTRIBUTION NETWORKS S. Musa and A. G. Ellams Department of Electrical Engineering, Kaduna Polytechnic, Kaduna Abstract One of the outstanding and major problems in the transmission and distribution system is the losses. This paper highlighted various ways in which energy is lost between the point of generation and consumption and how these losses can be minimized. Matlab was used for the simulation(power system blockset). Some of these losses are technical while others are non technical. Technical losses are inherent in the system and are due to energy dissipated in the conductors and equipment used for transformation, transmission, sub-transmission and distribution of power. Electrical energy is almost exclusively generated transmitted and distributed in the form of alternating current. Thus power factor come into play. Low power factor is highly undesirable as it causes an increase in current, resulting in additional losses of active power in all elements of power system. In order to ensure most favourable condition for a supply system from engineering and economical stand point, it is important to have power factor as closed to unity as possible These losses can be reduced to an optimum level with used of devices like OLTC, FACTS and switched capacitor banks.thus improving the power factor to a value closed to unity as possible. Introduction In any network, energy losses arise as power flows through the network to supply the loads or consumers, with the new prepaid system of the Power Holding Company of Nigeria the question is who pay s for the losses. The losses generate a substantial cost and are a significant issue in power system management. Independent economic studies have shown that the additional capital expenditure in reducing losses on systems that have become inefficient can be more cost effective than installing additional generation (Bayliss, 2001). It is therefore, important for system planners to show interest in loss reduction on system. Reduction in losses will bring about maximization in returns and that will amount to a significant financial saving to utilities as well as customers (Dardson et al., 2002; Salawu and Achife, 2001). Losses can be minimized by reducing either the resistance or impedance of the transmission medium. This is possible by selecting a conductor with small resistivity. Another way of reducing losses in a system is by decreasing the current and maximizing voltage (Low power factor is highly undesirable as it causes an increase in current, resulting in additional losses of active power in all elements of power system). These can be achieved through the use of tap changer transformers and regulating transformers. Voltage control in transformers is required to compensate for varying voltage drops in the distribution system and to control reactive power flow over transmission lines. Practically many distribution transformers have taps in one or more windings for changing the turns ratio, to improve the voltage profile in the system. Tap changer control is the most popular method because it is used for controlling voltages at all levels, (i.e at both transmission and distribution voltage levels). (Nedic, 2002), reported that the off-nominal tap ratio determines the additional transformation relative to the nominal transformation. The value normally ranges from (1.0 corresponds to no additional transformation or the nominal value). The tapping can be automatic or manually operated via a switch. Alternatively, the change involves physically and manually changing tapping connections. Such arrangements are found on smaller distribution transformers. Tap changing can be off circuit, offload and on- load depending on the system (Zhu and Tomsoric, 2001; Ochoa,). Changing of tap setting or turns ratio will change the system impedance matrix. Therefore the Ybus admittance matrix is changed after each tap ratio adjustment and that affects the power flow solution Components of losses transmission and distribution Energy losses arise due to technical and non technical losses as power flows through the network. These 79

2 technical losses are inherent in the system and can be reduced to an optimum level. Technical losses are due to the current flowing in the electrical network and include line losses, copper resistance and iron losses of transformers (iron losses in transformer include both hysteresis and eddy current loss, these losses are minimized by using steel of high silicon content for the core and by using very thin laminations).it was reported that, (Bhalla, ; Lukman and Blackburn, 2004; Lukman et al, 2000), Non- technical losses are more dominant in the lower levels of distribution networks, they include unauthorized line tapping, equipment vandalization, and inaccuracies of meter reading which will lead to inaccurate customer billing e.t.c. Factors influencing system losses Following are some of the factors that influence system losses (Dardson et al., 2002): Circulating current: In modern highly interconnected networks, failure to maintain a flat voltage profile across networks, will result in the flow of circulating currents. It is therefore important for a power system to maintain stringent voltage limits to minimize losses. Phase balancing: This is of significance when dealing with heavily loaded lines, the objective is to balance the phase load, so that the maximum deviation from the average is below 10%. Power factor: At unity power factor the current is minimum and any reactive component will cause an increase in current with a resultant increase in real power losses. For large inductive loads losses due to volt ampere reactive (var) become significant and demand side compensation become necessary (i.e. by installation of shunt capacitors). Furthermore as a result of increase in current in the system the voltage drop due to line resistance is greater than it would be at unity power factor. Voltage regulation; since line losses increase with the square of load current either maintaining and or increasing the normal operating voltage of the system, can reduce both maximum demand and energy losses. Power flow simulation using power system blockset Using drag-and-drop operations, a power system blockset model of the three distribution transformers was configured as shown in fig. 1. The peak load for each transformer will be used for further analysis. Recorded in table1 is the real and reactive power on the three load buses at 0.8 power factor. Normally, the power factor of the whole load on the supply system is lower than 0.8, as reported by (Lemos et al; Del Rosso et al, & Sa adat). Table 1 bus data Bus data Bus no. Voltage Power Remark V(P.U) Phase angle Real (kw) Reactive in degree (kvar) Slack bus Load bus Load bus Load bus The power system network of fig. 1 was simulated under different power factor as per the loads recorded for each bus on table 1. From simulation results at a power factor of 0.8lag, the losses were found to be 21,45kW with voltage of 349V at the bus terminal as can be seen from fig. 3, 4 and 5 for the three transformers respectively.: Again at a power factor of 0.95 lag the losses where found to be 18.75kW, with bus voltage of 410V as can be seen from fig. 7, 8 and 9 for T 1, T 2 and T 3 respectively. The losses were earlier determined by this relationship Losses = input power output power. Table 2 provides bus voltages for nominal transformer taps position at different power factor. 80

3 Table 2a. Bus voltage for nominal transformer taps at 0.8p.f. lagging Bus no Network bus Magnitude (P.U) Phase angle degree Table 2b. Bus voltage for nominal transformer taps at 0.95p.f. lagging Bus no Network bus Magnitude (P.U) Phase angle degree It can be seen that at 0.8 lag power factor, voltage are found to be outside acceptable limits because they fall below 0.95 p.u. But at 0.95lag p.f voltage was found to be within acceptable limits of 0.98 which is above.95p.u. 81

4 82

5 From the analysis it is clear that if a transformer is operating at a poor power factor, that goes to show that bus voltages are lower than expected value. This condition will make the transformer to rise to full load quickly even if the load in circuit is not up to the full load condition. Under this situation more losses are incurred in the lines and customer will pay more. If on the other hand power factor is improved upon the reverse condition is seen and losses in this case are minimal. From simulation result at a power factor of 0.95, losses were found to be kw again at 0.8 power factor, were found to be 21.45kW. This explains need to have supply voltage at the desired level. The following graphs are obtained from the simulation work of the three distribution transformer network model. Fig 3.2 Real and reactive power for the system. Fig Voltage Level T 1 at p.f 0.8 At 0.8 power factor at 0.8 power Fig. 3.4 Voltage Level T 2 at p.f 0.8 Fig. 3.5 Voltage Level at T 3 p.f

6 Fig. 3.6 Real and reactive power of the system at 0.95 power factor Fig.3.7 Voltage of T 1 at 0.95 power factor Real and Fig. 3.8 Voltage of T 2 at 0.95 power factor Fig. 3.9 Voltage of T 3 at 0.95 power factor Conclusion The need to reduce electricity bills cannot be overemphasized. One way to go about it is to reduce the technical losses in the distribution network. This is expected to save the consumers a substantial amount of money annually. Losses can be minimized by reducing either the resistance or impedance of the transmission medium. This is possible by selecting a conductor with small resistivity. Another way of reducing losses in a system is by decreasing the current and maximizing voltage. These can be achieved through the use of tap changer transformers and regulating transformers switched capacitor banks. Base on the power system block sets model developed for the three distribution transformer 11kV network a power flow analysis was conducted. It was found that at a p.f of 0.8lag the bus voltage in the network is 0.84 p.u for all the transformer and total loss for the system was found to be 21.45kW. On the other hand at a power factor of 0.95lag the bus voltage increase to 0.98, p.u while the total system loss for the whole network was found to reduce to 18.75kW. It is therefore important to consider the option of installing devices for power factor improvement, this will go a long way reducing electricity bills. References Bayliss C.R (2001), Transmission and Distribution Electrical Engineering (2 nd ed) London: Newness. Bhalla M.S Transmission and Distribution losses (Power),Retrieved 19 th may, Dardson I.E, Odubiyi A, and Kacheinga M.O (2002), Technical losses computation and economic dispatch model for transmission and distribution in deregulated electricity supply Industry, Power Engineering journal April, PP Del Rosso, A.D Canizares C.A & Dona V.M A study of TCSC controller design for power system stability improvement, Retrieved 20 th November, 2006 htt/thunderbox.waterloo.ca/claudio/papers/alberto.p df, pp

7 Lemos F.A.B, Feijo Fr, W.L, Werberich L.C, & Rosa M.A (2002), Assessment of a sub-transmission and distribution system under coordinated secondary voltage control, 14 th PSCC, Serilla, June,2002, pp Retrieved 11 th April, Lukman D & Blackburn T.R (2004), Modified algorithm of load flow simulation for loss minimization in power systems, Proceedings of the Australian Universities Power Engineering Conference (AUPEC 94), Lukman D, Walshe K & Blackburn T.R (2000), Loss minimization in industrial power system operation, AUPEC 94 Brisbane, Australia, September, Nedic D (2002), Tap adjustment in A.C loadflow, UNIST, Sept Retrieved 6 th may ion/tap.adjustments.pdf Ochoa l.f, Ciric R.M, Feltrin A.P, & Harrison G.P, Evaluation of Distribution System losses due to load unbalance, Retrieved 19 th may, Sa adat H (2002) Power System Analysis, Tata McGraw-Hill Publishing Company ltd, New Delhi. Salawu R.I. and Achife J.K, (2003) Technical losses in the transmission and distribution of PHCN:. A Case study of the Ibadan transmission and distribution Network, Proceedings of the Colloquium on Current Trends in High Voltage Engineering Focusing on the Nigerian Power Sector, Abuja, Nigeria, July 2003, pp Zhu Y & Tomsoric K (2001) Adaptive power flow method for distribution system with dispersed Generation. http// public/finalk.pdf, pp

DISTRIBUTED GENERATION FROM SMALL HYDRO PLANTS. A CASE STUDY OF THE IMPACTS ON THE POWER DISTRIBUTION NETWORK.

DISTRIBUTED GENERATION FROM SMALL HYDRO PLANTS. A CASE STUDY OF THE IMPACTS ON THE POWER DISTRIBUTION NETWORK. DISTRIBUTED GENERATION FROM SMALL HYDRO PLANTS. A CASE STUDY OF THE IMPACTS ON THE POWER DISTRIBUTION NETWORK. N. Lettas*, A. Dagoumas*, G. Papagiannis*, P. Dokopoulos*, A. Zafirakis**, S. Fachouridis**,

More information

Chapter 3.1: Electrical System

Chapter 3.1: Electrical System Part-I: Objective type Questions and Answers Chapter 3.1: Electrical System 1. The heat input required for generating one kilo watt-hour of electrical output is called as. a) Efficiency b) Heat Rate c)

More information

Enhancement of Power Quality in Transmission Line Using Flexible Ac Transmission System

Enhancement of Power Quality in Transmission Line Using Flexible Ac Transmission System Enhancement of Power Quality in Transmission Line Using Flexible Ac Transmission System Raju Pandey, A. K. Kori Abstract FACTS devices can be added to power transmission and distribution systems at appropriate

More information

Modelling and Analysis of Thyristor Controlled Series Capacitor using Matlab/Simulink

Modelling and Analysis of Thyristor Controlled Series Capacitor using Matlab/Simulink Modelling and Analysis of Thyristor Controlled Series Capacitor using Matlab/Simulink Satvinder Singh Assistant Professor, Department of Electrical Engg. YMCA University of Science & Technology, Faridabad,

More information

American Journal of Science, Engineering and Technology

American Journal of Science, Engineering and Technology American Journal of Science, Engineering and Technology 017; (4): 10-131 http://www.sciencepublishinggroup.com/j/ajset doi: 10.11648/j.ajset.017004.14 Application of Distribution System Automatic Capacitor

More information

INSTALLATION OF CAPACITOR BANK IN 132/11 KV SUBSTATION FOR PARING DOWN OF LOAD CURRENT

INSTALLATION OF CAPACITOR BANK IN 132/11 KV SUBSTATION FOR PARING DOWN OF LOAD CURRENT INSTALLATION OF CAPACITOR BANK IN 132/11 KV SUBSTATION FOR PARING DOWN OF LOAD CURRENT Prof. Chandrashekhar Sakode 1, Vicky R. Khode 2, Harshal R. Malokar 3, Sanket S. Hate 4, Vinay H. Nasre 5, Ashish

More information

TRANSMISSION LOSS MINIMIZATION USING ADVANCED UNIFIED POWER FLOW CONTROLLER (UPFC)

TRANSMISSION LOSS MINIMIZATION USING ADVANCED UNIFIED POWER FLOW CONTROLLER (UPFC) TRANSMISSION LOSS MINIMIZATION USING ADVANCED UNIFIED POWER FLOW CONTROLLER (UPFC) Nazneen Choudhari Department of Electrical Engineering, Solapur University, Solapur Nida N Shaikh Department of Electrical

More information

Voltage Sag Mitigation in IEEE 6 Bus System by using STATCOM and UPFC

Voltage Sag Mitigation in IEEE 6 Bus System by using STATCOM and UPFC IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 01 July 2015 ISSN (online): 2349-784X Voltage Sag Mitigation in IEEE 6 Bus System by using STATCOM and UPFC Ravindra Mohana

More information

Management of Congestion in the Deregulated Energy Market

Management of Congestion in the Deregulated Energy Market International Journal of Scientific and Research Publications, Volume 6, Issue 7, July 2016 284 Management of Congestion in the Deregulated Energy Market Onwughalu, M.k Department of Electrical and Electronic

More information

Galapagos San Cristobal Wind Project. VOLT/VAR Optimization Report. Prepared by the General Secretariat

Galapagos San Cristobal Wind Project. VOLT/VAR Optimization Report. Prepared by the General Secretariat Galapagos San Cristobal Wind Project VOLT/VAR Optimization Report Prepared by the General Secretariat May 2015 Foreword The GSEP 2.4 MW Wind Park and its Hybrid control system was commissioned in October

More information

Power Quality. Power Factor Wiring and Service. Background. Introduction. bchydro.com

Power Quality. Power Factor Wiring and Service. Background. Introduction. bchydro.com Power Quality Power Factor Wiring and Service Scope Power factor is a major consideration in efficient building or system operation. It is the measure of how effectively your equipment is converting electric

More information

CHAPTER I INTRODUCTION

CHAPTER I INTRODUCTION CHAPTER I INTRODUCTION 1.1 GENERAL Power capacitors for use on electrical systems provide a static source of leading reactive current. Power capacitors normally consist of aluminum foil, paper, or film-insulated

More information

DYNAMIC BEHAVIOUR OF SINGLE-PHASE INDUCTION GENERATORS DURING DISCONNECTION AND RECONNECTION TO THE GRID

DYNAMIC BEHAVIOUR OF SINGLE-PHASE INDUCTION GENERATORS DURING DISCONNECTION AND RECONNECTION TO THE GRID DYNAMIC BEHAVIOUR OF SINGLE-PHASE INDUCTION GENERATORS DURING DISCONNECTION AND RECONNECTION TO THE GRID J.Ramachandran 1 G.A. Putrus 2 1 Faculty of Engineering and Computing, Coventry University, UK j.ramachandran@coventry.ac.uk

More information

Simulation of real and reactive power flow Assessment with UPFC connected to a Single/double transmission line

Simulation of real and reactive power flow Assessment with UPFC connected to a Single/double transmission line Simulation of real and reactive power flow Assessment with UPFC connected to a Single/double transmission line Nitin goel 1, Shilpa 2, Shashi yadav 3 Assistant Professor, Dept. of E.E, YMCA University

More information

POWER FACTOR REBATE-BOLD DECISION FROM REGULATOR

POWER FACTOR REBATE-BOLD DECISION FROM REGULATOR 16th NATIONAL POWER SYSTEMS CONFERENCE, 15th-17th DECEMBER, 2010 153 POWER FACTOR REBATE-BOLD DECISION FROM REGULATOR Shefali K.Talati, S.B.Modi, U.C.Trivedi, K.M.Dave # Electrical Research and Development

More information

A COMPUTER CALCULATION FOR TENTATIVE ELECTRICAL SYSTEM IMPROVEMENT BY REACTIVE POWER COMPENSATION CONSIDERING SYSTEM UNBALANCED

A COMPUTER CALCULATION FOR TENTATIVE ELECTRICAL SYSTEM IMPROVEMENT BY REACTIVE POWER COMPENSATION CONSIDERING SYSTEM UNBALANCED A COMPUTER CALCULATION FOR TENTATIVE ELECTRICAL SYSTEM IMPROVEMENT BY REACTIVE POWER COMPENSATION CONSIDERING SYSTEM UNBALANCED Agus Ulinuha 1) Hasyim Asy ari 2) Agus Supardi 3) Department of Electrical

More information

Implementation SVC and TCSC to Improvement the Efficacy of Diyala Electric Network (132 kv).

Implementation SVC and TCSC to Improvement the Efficacy of Diyala Electric Network (132 kv). American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-4, Issue-5, pp-163-170 www.ajer.org Research Paper Open Access Implementation SVC and TCSC to Improvement the

More information

Enhancing the Voltage Profile in Distribution System with 40GW of Solar PV rooftop in Indian grid by 2022: A review

Enhancing the Voltage Profile in Distribution System with 40GW of Solar PV rooftop in Indian grid by 2022: A review Enhancing the Voltage Profile in Distribution System with 40GW of Solar PV rooftop in Indian grid by 2022: A review P. Sivaraman Electrical Engineer TECh Engineering Services Agenda Introduction Objective

More information

Experience on Technical Solutions for Grid Integration of Offshore Windfarms

Experience on Technical Solutions for Grid Integration of Offshore Windfarms Experience on Technical Solutions for Grid Integration of Offshore Windfarms Liangzhong Yao Programme Manager AREVA T&D Technology Centre 18 June 2007, DTI Conference Centre, London Agenda The 90MW Barrow

More information

Chapter 3.2: Electric Motors

Chapter 3.2: Electric Motors Part I: Objective type questions and answers Chapter 3.2: Electric Motors 1. The synchronous speed of a motor with 6 poles and operating at 50 Hz frequency is. a) 1500 b) 1000 c) 3000 d) 750 2. The efficiency

More information

International Journal of Emerging Technology and Innovative Engineering Volume 2, Issue 4, April 2016 (ISSN: )

International Journal of Emerging Technology and Innovative Engineering Volume 2, Issue 4, April 2016 (ISSN: ) International Journal of Emerging Technology and Innovative Engineering Volume 2, Issue 4, April 2016 (ISSN: 2394 6598) Date of Publication: 25.04.2016 TRANSIENT FREE TSC COMPENSATOR FOR REACTIVE LOAD

More information

Adaptive Power Flow Method for Distribution Systems With Dispersed Generation

Adaptive Power Flow Method for Distribution Systems With Dispersed Generation 822 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 17, NO. 3, JULY 2002 Adaptive Power Flow Method for Distribution Systems With Dispersed Generation Y. Zhu and K. Tomsovic Abstract Recently, there has been

More information

Simulation evaluation of capacitor bank impact on increasing supply current for alumunium production

Simulation evaluation of capacitor bank impact on increasing supply current for alumunium production Journal of Physics: Conference Series PAPER OPEN ACCESS Simulation evaluation of capacitor bank impact on increasing supply current for alumunium production To cite this article: S Hasan et al 2018 J.

More information

ABB POWER SYSTEMS CONSULTING

ABB POWER SYSTEMS CONSULTING ABB POWER SYSTEMS CONSULTING DOMINION VIRGINIA POWER Offshore Wind Interconnection Study 2011-E7406-1 R1 Summary Report Prepared for: DOMINION VIRGINIA POWER Report No.: 2011-E7406-1 R1 Date: 29 February

More information

Effect of prime mover speed on power factor of Grid Connected low capacity Induction Generator (GCIG)

Effect of prime mover speed on power factor of Grid Connected low capacity Induction Generator (GCIG) Effect of prime mover speed on power factor of Grid Connected low capacity Induction Generator (GCIG) 1 Mali Richa Pravinchandra, 2 Prof. Bijal Mehta, 3 Mihir D. Raval 1 PG student, 2 Assistant Professor,

More information

Power Quality Improvement Using Statcom in Ieee 30 Bus System

Power Quality Improvement Using Statcom in Ieee 30 Bus System Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 6 (2013), pp. 727-732 Research India Publications http://www.ripublication.com/aeee.htm Power Quality Improvement Using

More information

Power Quality and Power Interruption Enhancement by Universal Power Quality Conditioning System with Storage Device

Power Quality and Power Interruption Enhancement by Universal Power Quality Conditioning System with Storage Device Australian Journal of Basic and Applied Sciences, 5(9): 1180-1187, 2011 ISSN 1991-8178 Power Quality and Power Interruption Enhancement by Universal Power Quality Conditioning System with Storage Device

More information

A Transient Free Novel Control Technique for Reactive Power Compensation using Thyristor Switched Capacitor

A Transient Free Novel Control Technique for Reactive Power Compensation using Thyristor Switched Capacitor A Transient Free Novel Control Technique for Reactive Power Compensation using Thyristor Switched Capacitor 1 Chaudhari Krunal R, 2 Prof. Rajesh Prasad 1 PG Student, 2 Assistant Professor, Electrical Engineering

More information

Research on Transient Stability of Large Scale Onshore Wind Power Transmission via LCC HVDC

Research on Transient Stability of Large Scale Onshore Wind Power Transmission via LCC HVDC Research on Transient Stability of Large Scale Onshore Wind Power Transmission via LCC HVDC Rong Cai, Mats Andersson, Hailian Xie Corporate Research, Power and Control ABB (China) Ltd. Beijing, China rong.cai@cn.abb.com,

More information

ELG4125: Flexible AC Transmission Systems (FACTS)

ELG4125: Flexible AC Transmission Systems (FACTS) ELG4125: Flexible AC Transmission Systems (FACTS) The philosophy of FACTS is to use power electronics for controlling power flow in a transmission network, thus allowing the transmission line to be loaded

More information

OPTIMAL Placement of FACTS Devices by Genetic Algorithm for the Increased Load Ability of a Power System

OPTIMAL Placement of FACTS Devices by Genetic Algorithm for the Increased Load Ability of a Power System OPTIMAL Placement of FACTS Devices by Genetic Algorithm for the Increased Load Ability of a Power System A. B.Bhattacharyya, B. S.K.Goswami International Science Index, Electrical and Computer Engineering

More information

powerperfector Voltage Power Optimisation

powerperfector Voltage Power Optimisation powerperfector Voltage Power Optimisation IAN GODDARD powerperfector INTRODUCTION Voltage Power Optimisation is one of Japan s most advanced scientific inventions of recent times. (100V) Principally invented

More information

Lab Validation of PV Solar Inverter Control as STATCOM (PV-STATCOM) Rajiv K. Varma and Ehsan Siavashi

Lab Validation of PV Solar Inverter Control as STATCOM (PV-STATCOM) Rajiv K. Varma and Ehsan Siavashi 1 Lab Validation of PV Solar Inverter Control as STATCOM (PV-STATCOM) Rajiv K. Varma and Ehsan Siavashi The University of Western Ontario London, ON, CANADA rkvarma@uwo.ca Novel Concept Utilization of

More information

Concepts And Application Of Flexible Alternating Current Transmission System (FACTS) In Electric Power Network

Concepts And Application Of Flexible Alternating Current Transmission System (FACTS) In Electric Power Network Concepts And Application Of Flexible Alternating Current Transmission System (FACTS) In Electric Power Network Nwozor Obinna Eugene Department of Electrical and Computer Engineering, Federal University

More information

Georgia Transmission Corporation Georgia Systems Operations Corporation

Georgia Transmission Corporation Georgia Systems Operations Corporation Georgia Transmission Corporation Georgia Systems Operations Corporation Reactive Power Requirements for Generating Facilities Interconnecting to the Georgia Integrated Transmission System with Georgia

More information

Performance Analysis of Transmission Line system under Unsymmetrical Faults with UPFC

Performance Analysis of Transmission Line system under Unsymmetrical Faults with UPFC Int. J. of P. & Life Sci. (Special Issue Engg. Tech.) Performance Analysis of Transmission Line system under Unsymmetrical Faults with UPFC Durgesh Kumar and Sonora ME Scholar Department of Electrical

More information

Impact of Plug-in Electric Vehicles on the Supply Grid

Impact of Plug-in Electric Vehicles on the Supply Grid Impact of Plug-in Electric Vehicles on the Supply Grid Josep Balcells, Universitat Politècnica de Catalunya, Electronics Eng. Dept., Colom 1, 08222 Terrassa, Spain Josep García, CIRCUTOR SA, Vial sant

More information

Relative Power Factor Correction costs

Relative Power Factor Correction costs SSG REF: S026 Friday 19 th October 2007 TO: John Gleadow Senior Adviser Transmission Electricity Commission FROM: David Hume Ranil de Silva System Studies Group NZ Ltd Relative Power Factor Correction

More information

IJRASET 2013: All Rights are Reserved

IJRASET 2013: All Rights are Reserved Power Factor Correction by Implementation of Reactive Power Compensation Methods of 220 KV Substation MPPTCL Narsinghpur Ria Banerjee 1, Prof. Ashish Kumar Couksey 2 1 Department of Energy Technology,

More information

Reactive Power Compensation using 12 MVA Capacitor Bank in 132/33 KV Distribution Substation

Reactive Power Compensation using 12 MVA Capacitor Bank in 132/33 KV Distribution Substation Reactive Power Compensation using 12 MVA Capacitor Bank in 132/33 KV Distribution Substation Yogesh U Sabale 1, Vishal U Mundavare 2, Pravin g Pisote 3, Mr. Vishal K Vaidya 4 1, 2, 3, 4 Electrical Engineering

More information

Implementation of FC-TCR for Reactive Power Control

Implementation of FC-TCR for Reactive Power Control IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 5, Issue 5 (May. - Jun. 2013), PP 01-05 Implementation of FC-TCR for Reactive Power Control

More information

Physical Design of a Volt/Var Implementation

Physical Design of a Volt/Var Implementation 1 Physical Design of a Volt/Var Implementation Hydro-Québec Distribution s approach Prepared by Bruno Fazio 2 Subjects Context Volt control Planning Control strategies and exploitation Var control Planning

More information

kvah Billing - Frequently Asked Questions (FAQs)

kvah Billing - Frequently Asked Questions (FAQs) kvah Billing - Frequently Asked Questions (FAQs) 1. What is kvah billing? a. Electrical Energy has two components viz. Active Energy (kwh) and Reactive Energy (kvarh). Vector sum of these two components

More information

GENERATOR INTERCONNECTION APPLICATION

GENERATOR INTERCONNECTION APPLICATION GENERATOR INTERCONNECTION APPLICATION FOR ALL PROJECTS WITH AGGREGATE GENERATOR OUTPUT OF MORE THAN 150 KW BUT LESS THAN OR EQUAL TO 550 KW Also Serves as Application for Category 3 Net Metering (Note:

More information

LUNERA BALLASTLED TECHNOLOGY AND POWER FACTOR

LUNERA BALLASTLED TECHNOLOGY AND POWER FACTOR LUNERA BALLASTLED TECHNOLOGY AND POWER FACTOR Replacing metal halide lamps in magnetic ballast-driven fi xtures with the Lunera MH HID LED Gen 2, a LED plug-and-play replacement, causes the ballast to

More information

New York Science Journal 2017;10(3)

New York Science Journal 2017;10(3) Improvement of Distribution Network Performance Using Distributed Generation (DG) S. Nagy Faculty of Engineering, Al-Azhar University Sayed.nagy@gmail.com Abstract: Recent changes in the energy industry

More information

POWER FLOW SIMULATION AND ANALYSIS

POWER FLOW SIMULATION AND ANALYSIS 1.0 Introduction Power flow analysis (also commonly referred to as load flow analysis) is one of the most common studies in power system engineering. We are already aware that the power system is made

More information

OPTIMUM ALLOCATION OF DISTRIBUTED GENERATION BY LOAD FLOW ANALYSIS METHOD: A CASE STUDY

OPTIMUM ALLOCATION OF DISTRIBUTED GENERATION BY LOAD FLOW ANALYSIS METHOD: A CASE STUDY OPTIMUM ALLOCATION OF DISTRIBUTED GENERATION BY LOAD FLOW ANALYSIS METHOD: A CASE STUDY Wasim Nidgundi 1, Dinesh Ballullaya 2, Mohammad Yunus M Hakim 3 1 PG student, Department of Electrical & Electronics,

More information

By: Ibrahim Anwar Ibrahim Ihsan Abd Alfattah Omareya. The supervisor: Dr. Maher Khammash

By: Ibrahim Anwar Ibrahim Ihsan Abd Alfattah Omareya. The supervisor: Dr. Maher Khammash Investigations of the effects of supplying Jenin s power distribution network by a PV generator with respect to voltage level, power losses, P.F and harmonics By: Ibrahim Anwar Ibrahim Ihsan Abd Alfattah

More information

Dynamic Control of Grid Assets

Dynamic Control of Grid Assets Dynamic Control of Grid Assets ISGT Panel on Power Electronics in the Smart Grid Prof Deepak Divan Associate Director, Strategic Energy Institute Director, Intelligent Power Infrastructure Consortium School

More information

PSAT Model- Based Voltage Stability Analysis for the Kano 330KV Transmission Line

PSAT Model- Based Voltage Stability Analysis for the Kano 330KV Transmission Line SAT Model- Based Voltage Stability Analysis for the Kano 330KV Transmission ne S.M. Lawan Department of Electrical Engineering, Kano University of Science and Technology, Wudil Nigeria Abstract Voltage

More information

Modeling and Simulation of TSR-based SVC on Voltage Regulation for Three-Bus System

Modeling and Simulation of TSR-based SVC on Voltage Regulation for Three-Bus System International Symposium and Exhibition on Electrical, Electronic and Computer Engineering, (ISEECE-6), pp: 67-7, - 5 Nov. 6, Near East University, Nicosia, TRNC. Modeling and Simulation of TSR-based SVC

More information

Optimizing Drive Systems for Energy Savings

Optimizing Drive Systems for Energy Savings Optimizing Drive Systems for Energy Savings Richard Messer Siemens AG, Industry Sector, Drive Technologies, Motion Control Systems Erlangen, Germany AIMCAL Web Handling Conference 2012 Prague, Czech Republic

More information

CATEGORY 2 GENERATOR INTERCONNECTION APPLICATION

CATEGORY 2 GENERATOR INTERCONNECTION APPLICATION CATEGORY 2 GENERATOR INTERCONNECTION APPLICATION FOR ALL PROJECTS WITH AGGREGATE GENERATOR OUTPUT OF MORE THAN 20 KW BUT LESS THAN OR EQUAL TO 150 KW Also Serves as Application for Category 2 Net Metering

More information

Enhancement of Power System Stability Using Thyristor Controlled Series Compensator (TCSC)

Enhancement of Power System Stability Using Thyristor Controlled Series Compensator (TCSC) Enhancement of Power System Stability Using Thyristor Controlled Series Compensator (TCSC) Pooja Rani P.G. Research Scholar in Department of Electrical Engg. MITM, Hisar, Haryana, India Mamta Singh Assistant

More information

Performance of Low Power Wind-Driven Wound Rotor Induction Generators using Matlab

Performance of Low Power Wind-Driven Wound Rotor Induction Generators using Matlab Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Performance

More information

Is Uncorrected Power Factor Costing You Money?

Is Uncorrected Power Factor Costing You Money? Is Uncorrected Power Factor Costing You Money? Are You Being Overcharged by Your Energy Provider? Find Out! Everyone s trying to lower their energy bill these days. If you re a business owner, facilities

More information

Power Losses Estimation in Distribution Network (IEEE-69bus) with Distributed Generation Using Second Order Power Flow Sensitivity Method

Power Losses Estimation in Distribution Network (IEEE-69bus) with Distributed Generation Using Second Order Power Flow Sensitivity Method Power Losses Estimation in Distribution Network (IEEE-69bus) with Distributed Generation Using Second Order Power Flow Method Meghana.T.V 1, Swetha.G 2, R.Prakash 3 1Student, Electrical and Electronics,

More information

FAULT ANALYSIS OF AN ISLANDED MICRO-GRID WITH DOUBLY FED INDUCTION GENERATOR BASED WIND TURBINE

FAULT ANALYSIS OF AN ISLANDED MICRO-GRID WITH DOUBLY FED INDUCTION GENERATOR BASED WIND TURBINE FAULT ANALYSIS OF AN ISLANDED MICRO-GRID WITH DOUBLY FED INDUCTION GENERATOR BASED WIND TURBINE Yunqi WANG, B.T. PHUNG, Jayashri RAVISHANKAR School of Electrical Engineering and Telecommunications The

More information

Electric Utility Contact Information Indiana Michigan Power

Electric Utility Contact Information Indiana Michigan Power CATEGORY 2 GENERATOR INTERCONNECTION APPLICATION FOR ALL PROJECTS WITH AGGREGATE GENERATOR OUTPUT OF MORE THAN 20 KW BUT LESS THAN OR EQUAL TO 150 KW Also Serves as Application for Category 2 Net Metering

More information

Power Flow Simulation of a 6-Bus Wind Connected System and Voltage Stability Analysis by Using STATCOM

Power Flow Simulation of a 6-Bus Wind Connected System and Voltage Stability Analysis by Using STATCOM Power Flow Simulation of a 6-Bus Wind Connected System and Voltage Stability Analysis by Using STATCOM Shaila Arif 1 Lecturer, Dept. of EEE, Ahsanullah University of Science & Technology, Tejgaon, Dhaka,

More information

LUNERA BALLASTLED TM TECHNOLOGY AND POWER FACTOR

LUNERA BALLASTLED TM TECHNOLOGY AND POWER FACTOR LUNERA BALLASTLED TM TECHNOLOGY AND POWER FACTOR Replacing metal halide lamps in magnetic ballast-driven fi xtures with the Lunera Susan Lamp, a LED plug-and-play replacement, causes the ballast to have

More information

Maintaining Voltage Stability in Power System using FACTS Devices

Maintaining Voltage Stability in Power System using FACTS Devices International Journal of Engineering Science Invention Volume 2 Issue 2 ǁ February. 2013 Maintaining Voltage Stability in Power System using FACTS Devices Asha Vijayan 1, S.Padma 2 1 (P.G Research Scholar,

More information

Developing tools to increase RES penetration in smart grids

Developing tools to increase RES penetration in smart grids Grid + Storage Workshop 9 th February 2016, Athens Developing tools to increase RES penetration in smart grids Grigoris Papagiannis Professor, Director Power Systems Laboratory School of Electrical & Computer

More information

An Alternative to Reduce Medium-Voltage Transient Recovery Voltage Peaks

An Alternative to Reduce Medium-Voltage Transient Recovery Voltage Peaks An Alternative to Reduce Medium-Voltage Transient Recovery Voltage Peaks D. M. Nobre W. L. A. Neves B. A. de Souza Departamento de Engenharia Elétrica - UFPB Av. Aprígio Veloso, 882 Bodocongó 58.109-970,

More information

Battery Energy Storage System addressing the Power Quality Issue in Grid Connected Wind Energy Conversion System 9/15/2017 1

Battery Energy Storage System addressing the Power Quality Issue in Grid Connected Wind Energy Conversion System 9/15/2017 1 Battery Energy Storage System addressing the Power Quality Issue in Grid Connected Wind Energy Conversion System 9/15/2017 1 CONTENTS Introduction Types of WECS PQ problems in grid connected WECS Battery

More information

Microcontroller Based Power Factor Correction Using SCR

Microcontroller Based Power Factor Correction Using SCR Proceedings of International Conference on Innovation & Research in Technology for Sustainable Development (ICIRT 2012), 01-03 November 2012 124 Microcontroller Based Power Factor Correction Using SCR

More information

Improving Power System Transient Stability by using Facts Devices

Improving Power System Transient Stability by using Facts Devices Improving Power System Transient Stability by using Facts Devices Mr. Ketan G. Damor Assistant Professor,EE Department Bits Edu Campus,varnama,vadodara. Mr. Vinesh Agrawal Head and Professor, EE Department

More information

DESIGN CONSIDERATIONS FOR APPLICATION OF SHUNT CAPACITORS IN HEAVY HATER PLANT (TUTICORIN)

DESIGN CONSIDERATIONS FOR APPLICATION OF SHUNT CAPACITORS IN HEAVY HATER PLANT (TUTICORIN) DESIGN CONSIDERATIONS FOR APPLICATION OF SHUNT CAPACITORS IN HEAVY HATER PLANT (TUTICORIN) -A.R. Subraaanian -R.A.A. Palani -J. Thomson A new 3.3 K.V. 4200 KVAR auto switching capacitor bank has been installed

More information

PPHVC Power Quality Solutions. ABB PQC-STATCON Benefits and advantages

PPHVC Power Quality Solutions. ABB PQC-STATCON Benefits and advantages PPHVC Power Quality Solutions ABB PQC-STATCON Benefits and advantages Reasons for investing in power quality Poor power quality costs Sector Financial loss per incident Semi-conductors production(*) 3

More information

Working Principle of Power Saver as per Manufacture:

Working Principle of Power Saver as per Manufacture: Analysis the Truth behind Household Power Savers Introduction: A House hold power saving devices has recently received a lot of attention from both consumers and manufacturers. It is generally used in

More information

International Journal of Advance Engineering and Research Development. Automatic Power Factor Correction in EHV System

International Journal of Advance Engineering and Research Development. Automatic Power Factor Correction in EHV System Scientific Journal of Impact Factor(SJIF): 3.134 e-issn(o): 2348-4470 p-issn(p): 2348-6406 International Journal of Advance Engineering and Research Development Volume 2,Issue 5, May -2015 Automatic Power

More information

Voltage Control Strategies for Distributed Generation

Voltage Control Strategies for Distributed Generation Voltage Control Strategies for Distributed Generation Andrew Keane, Paul Cuffe, Paul Smith, Eknath Vittal Electricity Research Centre, University College Dublin Cigré Seminar 6 th October 2010 Penetrations

More information

Eskisehir Light Train- Correcting Capacitive

Eskisehir Light Train- Correcting Capacitive Case Study-Estram Light Train Eskisehir Light Train- Correcting Capacitive Power Factor Eskisehir, a city in the Anatolia region of Turkey is located in an area inhabited since at least 3500 BCE- the copper

More information

Real-Time Pricing and Energy Storage for Voltage Improvement in a Distribution Feeder

Real-Time Pricing and Energy Storage for Voltage Improvement in a Distribution Feeder International Journal of Mechanical Engineering and Applications 2017; 5(1): 41-46 http://www.sciencepublishinggroup.com/j/ijmea doi: 10.11648/j.ijmea.20170501.15 ISSN: 2330-023X (Print); ISSN: 2330-0248

More information

PQC - STATCON The ultra fast Power Quality Compensator

PQC - STATCON The ultra fast Power Quality Compensator PQC - STATCON The ultra fast Power Quality Compensator PQC - STATCON The ultra fast power quality compensator PQC - STATCON is based on IGBT voltage source inverter technology. It is a shunt connected

More information

Analysis of 440V Radial Agricultural Distribution Networks

Analysis of 440V Radial Agricultural Distribution Networks Analysis of 440V Radial Agricultural Distribution Networks K. V. S. Ramachandra Murthy, and K. Manikanta Abstract : This paper attempts to determine active power losses in the distribution lines which

More information

Okelola, M. O. Department of Electronic & Electrical Engineering, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria

Okelola, M. O. Department of Electronic & Electrical Engineering, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria International Journal of Scientific Research and Management (IJSRM) Volume 6 Issue 7 Pages EC-28-53-58 28 Website: www.ijsrm.in ISSN (e): 232-348 Index Copernicus value (25): 57.47, (26):93.67, DOI:.8535/ijsrm/v6i7.ec

More information

Simulation of Voltage Stability Analysis in Induction Machine

Simulation of Voltage Stability Analysis in Induction Machine International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 6, Number 1 (2013), pp. 1-12 International Research Publication House http://www.irphouse.com Simulation of Voltage

More information

TRANSNATIONAL ACCESS USER PROJECT FACT SHEET

TRANSNATIONAL ACCESS USER PROJECT FACT SHEET TRANSNATIONAL ACCESS USER PROJECT FACT SHEET USER PROJECT Acronym REPRMs Title ERIGrid Reference 01.006-2016 TA Call No. 01 Reliability Enhancement in PV Rich Microgrids with Plug-in-Hybrid Electric Vehicles

More information

CUSTOMER / ACCOUNT INFORMATION Electric Utility Customer Information (As shown on utility bill)

CUSTOMER / ACCOUNT INFORMATION Electric Utility Customer Information (As shown on utility bill) GENERATOR INTERCONNECTION APPLICATION Category 2 (Combined) For All Projects with Aggregate Generator Output of More Than 20 kw but Less Than or Equal to 150 kw Also Serves as Application for Category

More information

Targeted Application of STATCOM Technology in the Distribution Zone

Targeted Application of STATCOM Technology in the Distribution Zone Targeted Application of STATCOM Technology in the Distribution Zone Christopher J. Lee Senior Power Controls Design Engineer Electrical Distribution Division Mitsubishi Electric Power Products Electric

More information

Paper ID: EE19 SIMULATION OF REAL AND REACTIVE POWER FLOW ASSESSMENT WITH FACTS CONNECTED TO A SINGLE TRANSMISSION LINE

Paper ID: EE19 SIMULATION OF REAL AND REACTIVE POWER FLOW ASSESSMENT WITH FACTS CONNECTED TO A SINGLE TRANSMISSION LINE SIMULATION OF REAL AND REACTIVE POWER FLOW ASSESSMENT WITH FACTS CONNECTED TO A SINGLE TRANSMISSION LINE Prof. Mrs. Shrunkhala G. Khadilkar Department of Electrical Engineering Gokhale Education Society.

More information

Dual Voltage Alternator

Dual Voltage Alternator Dual Voltage Alternator J. O Dwyer, C. Patterson & T. Reibe University College Dublin and Delphi Automotive Systems (Luxembourg) 1. Introduction With an ever increasing amount of installed electrical load

More information

Analysis of Low Tension Agricultural Distribution Systems

Analysis of Low Tension Agricultural Distribution Systems International Journal of Engineering and Technology Volume 2 No. 3, March, 2012 Analysis of Low Tension Agricultural Distribution Systems K. V. S. Ramachandra Murthy, K. Manikanta, G. V. Phanindra G. V.

More information

TECHNICAL TERMS AND ABBREVIATIONS

TECHNICAL TERMS AND ABBREVIATIONS THIRD REVISED SHEET NO. 3.1 CANCELS SECOND REVISED SHEET NO. 3.1 TECHNICAL TERMS AND ABBREVIATIONS ALTERNATING CURRENT (A-C): AMPERE: BASE RATES: BRITISH THERMAL UNIT (BTU): CAPACITOR or CAPACITANCE: CAPACITY

More information

Possibilities of Distributed Generation Simulations Using by MATLAB

Possibilities of Distributed Generation Simulations Using by MATLAB Possibilities of Distributed Generation Simulations Using by MATLAB Martin Kanálik, František Lizák ABSTRACT Distributed sources such as wind generators are becoming very imported part of power system

More information

Electrical Transmission System Analysis EE 456 project. Team Members Abdulaziz Almarzouqi Hamzah Abeer

Electrical Transmission System Analysis EE 456 project. Team Members Abdulaziz Almarzouqi Hamzah Abeer Electrical Transmission System Analysis EE 456 project Team Members Abdulaziz Almarzouqi Hamzah Abeer Due December 14, 2012 Changes: 1. 134MW Wind added 2. N-1 Contingency limits changed to.95-1.05 3.

More information

Final Draft Report. Assessment Summary. Hydro One Networks Inc. Longlac TS: Refurbish 115/44 kv, 25/33/ General Description

Final Draft Report. Assessment Summary. Hydro One Networks Inc. Longlac TS: Refurbish 115/44 kv, 25/33/ General Description Final Draft Report Assessment Summary Hydro One Networks Inc. : Refurbish 115/44 kv, 25/33/42 MVA DESN Station CAA ID Number: 2007-EX360 1.0 General Description Hydro One is proposing to replace the existing

More information

White Paper. Application of Resistive/Reactive Load Banks for kva Testing

White Paper. Application of Resistive/Reactive Load Banks for kva Testing White Paper Application of Resistive/Reactive Load Banks for kva Testing Application of Resistive/Reactive Load Banks for kva Testing Resistive load banks are the most commonly used load banks for the

More information

Impacts of distributed photovoltaic generation on Jenin distribution network: voltage level, power losses, power factor and power quality

Impacts of distributed photovoltaic generation on Jenin distribution network: voltage level, power losses, power factor and power quality Impacts of distributed photovoltaic generation on Jenin distribution network: voltage level, power losses, power factor and power quality Maher Jalal Khammash and Marwan Mahmoud Electrical Engineering

More information

Identification of Best Load Flow Calculation Method for IEEE-30 BUS System Using MATLAB

Identification of Best Load Flow Calculation Method for IEEE-30 BUS System Using MATLAB Identification of Best Load Flow Calculation Method for IEEE-30 BUS System Using MATLAB 1 Arshdeep Kaur Kailay, 2 Dr. Yadwinder Singh Brar 1, 2 Department of Electrical Engineering 1, 2 Guru Nanak Dev

More information

Medium Voltage. Power Factor Correction Reactive Compensation Harmonic Filters. Electrical Power Quality Management at its best.

Medium Voltage. Power Factor Correction Reactive Compensation Harmonic Filters. Electrical Power Quality Management at its best. Medium Voltage Power Factor Correction Reactive Compensation Harmonic Filters POWER QUALITY Electrical Power Quality Management at its best. From electricity generation, transmission, thru its distribution

More information

Journal of American Science 2015;11(11) Integration of wind Power Plant on Electrical grid based on PSS/E

Journal of American Science 2015;11(11)   Integration of wind Power Plant on Electrical grid based on PSS/E Integration of wind Power Plant on Electrical grid based on PSS/E S. Othman ; H. M. Mahmud 2 S. A. Kotb 3 and S. Sallam 2 Faculty of Engineering, Al-Azhar University, Cairo, Egypt. 2 Egyptian Electricity

More information

Using Active Customer Participation in Managing Distribution Systems

Using Active Customer Participation in Managing Distribution Systems Using Active Customer Participation in Managing Distribution Systems Visvakumar Aravinthan Assistant Professor Wichita State University PSERC Webinar December 11, 2012 Outline Introduction to distribution

More information

A Method for Determining the Generators Share in a Consumer Load

A Method for Determining the Generators Share in a Consumer Load 1376 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 15, NO. 4, NOVEMBER 2000 A Method for Determining the Generators Share in a Consumer Load Ferdinand Gubina, Member, IEEE, David Grgič, Member, IEEE, and Ivo

More information

VOLTAGE STABILITY IMPROVEMENT IN POWER SYSTEM BY USING STATCOM

VOLTAGE STABILITY IMPROVEMENT IN POWER SYSTEM BY USING STATCOM VOLTAGE STABILITY IMPROVEMENT IN POWER SYSTEM BY USING A.ANBARASAN* Assistant Professor, Department of Electrical and Electronics Engineering, Erode Sengunthar Engineering College, Erode, Tamil Nadu, India

More information

Electrical Power Electric power electrical electric power Electric power electric electric

Electrical Power Electric power electrical electric power Electric power electric electric Power Calculations Electrical Power Electric power is the rate at which electrical energy is transferred by an electric circuit. The SI unit of power is the watt, one joule per second. Electric power is

More information

Power Factor Correction

Power Factor Correction AE9-1249 R10 August 2008 Power Factor Correction Index Page 1. Introduction... 1 2. Electrical Fundamentals... 1 3. Electrical Formulas... 2 4. Apparent Power and Actual Power... 2 5. Effects of Poor Power

More information