Tilt-rotor Ducted Fans and their Applications

Size: px
Start display at page:

Download "Tilt-rotor Ducted Fans and their Applications"

Transcription

1 Tilt-rotor Ducted Fans and their Applications Jacob A. Wilroy University of Alabama, Tuscaloosa, AL Introduction Ducted fans are capable of producing more efficient thrust, as well as decreasing the noise induced by multiple rotating blades. More efficient use of energy can lead to lower fuel consumption and faster speeds. Decreasing noise also has several benefits, whether it is a military aircraft for use in wartime or civilian use such as emergency medical lifts. The inefficiencies of non-ducted blades can arise when tip vortices form on the end of rotating blades. This induced drag can affect the blade creating the vortex as well as the blades rotating behind it. To increase the amount of thrust produced, turning vanes can be used before and after the blades to help straighten the flow and cause the rotating momentum of air to become straight. By creating more efficient thrust, power required to achieve flight can be reduced, and therefore smaller engines can be used or the useful load of the craft can be increased. Using multiple small, ducted fans can also allow for the transformation from lift devices to propulsive devices. This has been given the name tilt-rotor. An advantage to a ducted tilt-rotor is that, like a helicopter, the aircraft does not need a wing to generate lift. Unlike a helicopter, however, a craft with ducted fans cannot auto rotate increasing the risk of operating the craft. Listed below is some of the history of tilt-rotor craft and how the tilt-rotor was evolved.

2 Past Vehicles and Current Technology Bell XV-3 The Bell XV-3 was created to explore convertiplane technologies and was one of the United States first attempts at a tilt-rotor craft. Convertiplane aircraft are capable of vertical takeoff and landing (VTOL) and high-speed forward flight relative to helicopters of the time. The craft was first completed in 1955 and had two wing mounted proprotors capable of rotating the plane of rotation 90 from a vertically upward position, used for takeoff and landing, to a forward position for high-speed forward flight. Power was transmitted from a Pratt & Whitney R-985-AN-1, a radial reciprocating engine, via shafts to the outboard rotors. The rotation of the rotors allowed the craft to hover like a helicopter and fly forward at relatively fast speeds like an airplane, combining the best of both worlds. These characteristics provide great military advantages. They also opened the door to solutions of airport over-crowding problems. As mentioned by Dick Spivey in the book The Dream Machine: The Untold Story of the History of the Notorious V-22 Osprey, this technology would lead to large VTOL crafts capable of carrying large amounts of passengers. 1 The XV-3 made its first rotor conversion from hover to forward flight in During its testing period it made 110 successful transitions before being severely damaged in a wind tunnel accident in The technological breakthroughs brought on by the XV-3 would soon be used by the XV-15, which would then pave the way for the world class V-22 Osprey.

3 Figure 1. The Bell XV-3 during fully converted flight. Hiller X-18 The Hiller X-18 was another attempt at a tiltrotor concept aircraft, except this craft was also capable of rolling short takeoffs making it a Vertical/Short Takeoff and Landing (V/STOL) craft. Instead of only tilting it s rotors, or massive propellers, the X-18 also tilted its large wing, which could be used to generate lift given enough airspeed. Unfortunately, when in the vertical lift mode, the wing tended to act like a sail due to its large planform area making it susceptible to uncontrollable situations due to wind gusts. This meant that a craft without large tilting wings must be used. Another issue with the craft was that its two contra-rotating propellers were not cross-linked, meaning that each set of propellers was connected to its own engine. With this being the case, if one engine failed during hover the craft would become uncontrollable due to loss of thrust on one side. Test engineers also learned that control of thrust levels through throttle control of

4 the engines was not ideal due to the slow-revving nature of turbo machinery. This would lead to the method currently used today of keeping the engines at a constant and optimized revolutions per minute (RPM) and control thrust using the pitch of the blades. Figure 2. The Hiller X-18 in its VTOL orientation. Bell X-22A The Bell X-22A was the next viable attempt at a V/STOL aircraft. Adding yet another stepping-stone to the technological advancement of V/STOL aircraft, the X-22A used four ducted propellers for lift and thrust. Like the VTOL aircraft before it, these propellers were designed such that they could be rotated from a vertically upright position to a fully forward position for forward flight. Unlike the X-18, the X-22A had turbojets that were cross-linked to provide power to all four propellers incase one engine failed. The X-22A was one of the first V/STOL to employ the use of ducts in its propulsion system. The VZ-4 built by Doak in the 1950s was a VTOL that used two ducts to generate lift, but was canceled by the army due to a change in funding interests. Before, aircraft used small open rotors (or large propellers) as a way of generating lift. However, the engineers of the X-22A decided to use small 7 ft. diameter propellers

5 instead of larger diameter rotors like those used on the XV-3 (25 ft.) and X-18 (14 ft.). This increases the disc loading, which put more stress on the blades and also increases the amount of debris throw up during maneuvers near the ground. Ducts can also help to create more efficient thrust and reduce noise due to the elimination of propeller tip vortices. It is stated that the ducts of the X-22A were biased to provide good static and low-speed operation and that they provided very effective aerodynamic lifting surfaces. 4 The ducting system also allowed designers to place elevons inside of the duct to direct the flow of air for control of the craft, but this system was only used during forward flight. Differential control of the blade pitch was used for craft control during hovering. The X-22A was also a test bed for a new variable control and stability system needed for V/STOL aircraft since their transition from hovering to forward flight back to hovering is very unnatural. Figure 3. A rendering of the Bell X-22A showing both the forward flight and VTOL ducted propeller positioning. Bell XV-15 The Bell XV-15 would be a step away from ducted propellers as a means of lift in favor of large proprotors. The achievements and breakthroughs made during the XV-15

6 program would eventually be placed into the well know Bell Boeing V-22 Osprey, which had its first flight in 1989, twelve years after the first flight of the XV-15. The Osprey is where funding is now being placed as this aircraft is seen as a viable solution to the V/STOL problem. All of the V/STOL technologies up until this point have built on themselves to create the V-22, and they continue to build as a Bell plans to produce a V- 280 Valor by The V-280 will be of a similar design to the V-22 but will be lighter, faster, better, and stronger in many ways. Figure 4. The XV-15, predecessor to the V-22, in flight. AgustaWestland Project Zero Another project that was recently finished was the AgustaWestland Project Zero. Since the XV-22A, V/STOL aircraft have moved away from ducted fans/propellers as a means of propulsion in favor of large rotors, presumably for higher efficiency during hover due to lower disc loading (Fig. 6). Large rotors associated with low disc loading do not usually utilize ducts since the large size would create structure challenges that may

7 not benefit the overall propulsion system. Therefore, ducts tend to be used on smaller systems. Figure 5. AgustaWestland Project Zero whose first flight was in December The aircraft uses an in-wing ducted propeller design. Figure 6. Chart produced by Leishman that compares the hovering efficiency with effective disk loading of several aircraft types.

8 Ducted Fan Advantages and Disadvantages Introduction The use of a duct on a fan or propeller is known to provide advantages and disadvantages to the propulsion system. It can be used to produce increases in performance and safety when optimized. By using a duct, tip losses can be greatly reduced by designing a small tip clearance between the blade and duct. 6 Ducts allow for the use of devices like stators and pre-rotators as well to further increase the performance of the system. Ducts can also provide a decrease in the noise produced by a rotating blade. 6, 7 They do, however, have their disadvantages. As stated above for the X-22A, the duct system was designed for low speed and static performance, and this is typically the case since the benefits of a duct can be greatly reduced at higher speeds due to the additional skin friction. 6 Weight can also be a factor when designing a ducted versus an open rotor system. Since weight becomes an issue, the size of the fan also has to be considered and cannot be too large, and an increase in disk loading leads to a decrease in hovering efficiency. To take advantage of the benefits of a ducted system, it would seem that use on low speed crafts would be most suitable. Performance Ducts can provide many performance advantages over open rotors, but they typically require smaller diameter fans or propellers, meaning higher RPMs, which requires stators to remove the flow swirl so that its benefits can be used. By doing a simple analysis and using the techniques produced in Chapter 5 of Leishman, it can be determined that a craft with multiple small rotors will require more power in hover than a

9 craft with one large rotor like typically seen on helicopters of today. Using the Sikorsky UH-60 as an example, the total power required in hover can be as high as 1,715 hp. By changing the propulsion from a main rotor and tail rotor design to four small 7 ft. diameter propellers, the increase in required power can be as twice as high. This can be seen in Fig. 6 where hovering efficiency is presented as a function of disk loading. However, by using a ducted propeller instead of an open system, the required power can be reduced. For material in Chapter 5 of Leishman, many of the equations have been developed from a momentum theory discussed in Chapter 2. In Chapter 6 Section 10 we find a discussion of Other Anti-Torque Devices where the fan-in-fin design is discussed. Here an analysis is presented for determining the thrust produced by one of these systems. Ducts are typically designed with converging and diverging sections before and after the fan, which changes the flow characteristics and requires a slightly different derivation of the momentum analysis used earlier. In an open rotor system, it has been found that the flow naturally converges to a radius that is 70% of the rotor radius (Pg. 63) in the far field wake since the flow is moving at a higher velocity. With a ducted system, the duct has a direct effect on this wake contraction since it provides a boundary for the wake to flow through. Observing this we see that the mass flow rate becomes m = ρav! = ρ a! A w (1) where a! =!!. From Bernoulli s principle and momentum analysis of an open rotor we! know that this value is 0.5. When comparing the induced power of a fan versus a conventional tail rotor and increasing a! to one (no contraction of the wake), then the

10 power required by the ducted fan of the same area will be 30% less than that of an open rotor. This equation is derived in the text on page 323 and is given below. P!!"# (P! )!" = 1 2a! (2) Therefore, by using the duct to modify the far field wake, the power required to produce thrust can be reduced. It is noted that because of the additional structural weight and drag penalties in forward flight, the overall benefits of a fan-in-fin can be reduced. However, tip losses are greatly reduced by the duct decreasing the induced power requirements. The above method and characteristics can be generally applied to any ducted system used on V/STOL aircraft. In a study conducted by Srivastava, it was concluded that the thrust coefficient along the blade of a ducted propeller was slightly less than that of an unducted propeller, except at the tip where it was much higher. 6 His results contradicted two other studies, which showed significant overall improvement. Another study also showed that by using an airfoil shape for the duct, flow can be accelerated through the duct, and additional thrust can be produced from circulation around the airfoil shape. 8 This study also showed that viscous effects diminished thrust produced by the propeller at low RPM, therefore requiring the use of a higher RPM. For V/STOL aircraft, ducts can provide great benefits. It would appear that these benefits are better suited for aircraft flying at low speeds, but an in-depth analysis would provide the results needed to determine the overall gains. For ducted system, stators are typically needed to straighten the flow since the rotor is required to spin at higher RPMs, but this can be a great advantage since all flows tend to rotate due to the spinning rotor. Gilmore et al shows us that by using variable pitch stators and pre-rotators, the efficiency of a duct can be improved by straightening the flow and helping to create symmetric flow

11 over the blade length.9 Ducts also take advantage of modifying the flow through the use of duct geometry and cross-section shape such that it increases or decreases flow velocities for additional thrust. Noise Reduced noise is also another advantage of ducted rotors over unducted systems. By using a duct, pressure waves produced by the fan blades can be shielded.6 Noises that are typically produced from the creation of vortices from the blade tips are eliminated. On the contrary, it was reported by Oleson et al that the use of a duct on a propeller increased the noise by 6 db when compared to an unshrouded propeller.7 They attributed this noise increase to rotor-stator interaction, but stated that further understanding of this interaction could lead to a reduction in noise. It was also stated by Leishman that efforts to reduce the noise of fan-in-fin design through phase modulation using unequal blade spacing have made the fan-in-fin sound subjectively less noisy see Vialle & Arnaud (1993).5 An example of this is show in Fig. 7.

12 Figure 7. This image shows the design of the Fenestron or fan-in-fin. Uneven spacing between the blades can be seen through careful observation. Conclusion Since the 1950s work has been going on to produce the worlds next V/STOL or VTOL aircraft that is capable of efficiently hovering while also being able to fly at fast forward speeds. Aircraft created by companies like AgustaWestland and their Project Zero or Bell and Boeing and their V-22 Osprey lead to further advancement of tilt-rotor technology. Crafts like these and the X-22A take advantage of ducted propulsion systems, but under the current understanding, these systems are limited in their performance to slower speeds, which makes them specifically designed for certain aircraft design goals. Since the creation of the X-22A, V/STOL tilt-rotor craft have moved away from ducted propulsion in favor of proprotors for efficient hovering and high forward flight speeds, but ducted rotors could always make a return if improvement in designs are shown.

13 References 1 Whittle, R., The Dream Machine: The Untold History of the Notorious V-22 Osprey, Simon and Schuster, Bell Helicopter Textron XV-3, National Museum of the US Air Force, URL: [cited 30 November 2014]. 3 Kiley, D., The Tiltrotor. Aviation s square peg?. Flight Safety Information Journal, Special Edition, July Accessed on 30 November Bell X-22A: Analysis of a VTOL research vehicle, Flight International, 23 March 1967, pp Leishman, J. G., Principles of Helicopter Aerodynamics, 2 nd Edition, Cambridge University Press, New York, 2006, Chaps. 2, 5, 6. 6 Srivastava, R., Time-Marching Euler Analysis of Ducted-Propeller, Journal of Propulsion, Vol. 12, No. 1, January-February 1996, pp Oleson, R. D., and Patrick, H., Small Aircraft Propeller Noise with Ducted Propeller, AIAA Journal, 1998, pp Yilmaz, S., Erdem, D., and Kavsaoglu, M. S., Effects of Duct Shape on a Ducted Propeller Performance, AIAA Aerospace Sciences Meeting including the New Horizon Forum and Aerospace Exposition, AIAA, Washington DC, Gilmore, A. W., and Grahame, W. E., Research Studies on a Ducted Fan Equipped with Turning Vanes, Aerophysics Group, Grumman Aircraft Engineering Corporation, IAS 27 th Annual Meeting VTOL Section, New York City, January 1959.

Electric Drive - Magnetic Suspension Rotorcraft Technologies

Electric Drive - Magnetic Suspension Rotorcraft Technologies Electric Drive - Suspension Rotorcraft Technologies William Nunnally Chief Scientist SunLase, Inc. Sapulpa, OK 74066-6032 wcn.sunlase@gmail.com ABSTRACT The recent advances in electromagnetic technologies

More information

Preface. Acknowledgments. List of Tables. Nomenclature: organizations. Nomenclature: acronyms. Nomenclature: main symbols. Nomenclature: Greek symbols

Preface. Acknowledgments. List of Tables. Nomenclature: organizations. Nomenclature: acronyms. Nomenclature: main symbols. Nomenclature: Greek symbols Contents Preface Acknowledgments List of Tables Nomenclature: organizations Nomenclature: acronyms Nomenclature: main symbols Nomenclature: Greek symbols Nomenclature: subscripts/superscripts Supplements

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN BY B.MADHAN KUMAR

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN BY B.MADHAN KUMAR International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 485 FLYING HOVER BIKE, A SMALL AERIAL VEHICLE FOR COMMERCIAL OR. SURVEYING PURPOSES BY B.MADHAN KUMAR Department

More information

Robot Dynamics Rotary Wing UAS: Introduction, Mechanical Design and Aerodynamics

Robot Dynamics Rotary Wing UAS: Introduction, Mechanical Design and Aerodynamics Robot Dynamics Rotary Wing UAS: Introduction, Mechanical Design and Aerodynamics 151-0851-00 V Marco Hutter, Michael Blösch, Roland Siegwart, Konrad Rudin and Thomas Stastny Robot Dynamics: Rotary Wing

More information

A CFD-Based Approach to Coaxial Rotor Hover Performance Using Actuator Disks. Jonathan Chiew

A CFD-Based Approach to Coaxial Rotor Hover Performance Using Actuator Disks. Jonathan Chiew A CFD-Based Approach to Coaxial Rotor Hover Performance Using Actuator Disks Jonathan Chiew AE4699 - Spring 007 Dr. Lakshmi Sankar Georgia Institute of Technology Table of Contents Table of Contents Introduction

More information

Propeller blade shapes

Propeller blade shapes 31 1 Propeller blade shapes and Propeller Tutorials 2 Typical Propeller Blade Shape 3 M Flight M. No. Transonic Propeller Airfoil 4 Modern 8-bladed propeller with transonic airfoils near the tip and swept

More information

How the V-22 Osprey Works

How the V-22 Osprey Works How the V-22 Osprey Works It has long been a dream of aircraft designers to create an airplane that not only can fly long ranges at high speeds and carry heavy cargo, but can also take off, hover and land

More information

PROJECT PORTFOLIO. A list of projects completed by Sukra Helitek and their briefs Sukra Helitek 1 P a g e 33

PROJECT PORTFOLIO. A list of projects completed by Sukra Helitek and their briefs Sukra Helitek 1 P a g e 33 PROJECT PORTFOLIO A list of projects completed by Sukra Helitek and their briefs 2017 Sukra Helitek 1 P a g e 33 contact@sukra-helitek.com OUR VALUABLE CUSTOMERS 2017 Sukra Helitek 2 P a g e 33 contact@sukra-helitek.com

More information

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

INDIAN INSTITUTE OF TECHNOLOGY KANPUR INDIAN INSTITUTE OF TECHNOLOGY KANPUR INDIAN INSTITUTE OF TECHNOLOGY KANPUR Removable, Low Noise, High Speed Tip Shape Tractor Configuration, Cant angle, Low Maintainence Hingelesss, Good Manoeuverability,

More information

High aspect ratio for high endurance. Mechanical simplicity. Low empty weight. STOVL or STOL capability. And for the propulsion system:

High aspect ratio for high endurance. Mechanical simplicity. Low empty weight. STOVL or STOL capability. And for the propulsion system: Idealized tilt-thrust (U) All of the UAV options that we've been able to analyze suffer from some deficiency. A diesel, fixed-wing UAV could possibly satisfy the range and endurance objectives, but integration

More information

AERONAUTICAL ENGINEERING

AERONAUTICAL ENGINEERING AERONAUTICAL ENGINEERING SHIBIN MOHAMED Asst. Professor Dept. of Mechanical Engineering Al Ameen Engineering College Al- Ameen Engg. College 1 Aerodynamics-Basics These fundamental basics first must be

More information

THE INVESTIGATION OF CYCLOGYRO DESIGN AND THE PERFORMANCE

THE INVESTIGATION OF CYCLOGYRO DESIGN AND THE PERFORMANCE 25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES THE INVESTIGATION OF CYCLOGYRO DESIGN AND THE PERFORMANCE Hu Yu, Lim Kah Bin, Tay Wee Beng Department of Mechanical Engineering, National University

More information

The following slideshow and talk were presented at the Uber Elevate Summit on April 25 th, The text included here is an approximate transcript

The following slideshow and talk were presented at the Uber Elevate Summit on April 25 th, The text included here is an approximate transcript The following slideshow and talk were presented at the Uber Elevate Summit on April 25 th, 2017. The text included here is an approximate transcript of the speech given by Jay Carter, founder and CEO of

More information

A Framework for Energy Saving Device (ESD) Decision Making

A Framework for Energy Saving Device (ESD) Decision Making A Framework for Energy Saving Device (ESD) Decision Making Authors: J. H. de Jong, G.J.D. Zondervan Presented by J.H. de Jong Contents 1. Background 2. Propulsion improvement 3. Practical application of

More information

Design Analysis of Hoverbike Prototype

Design Analysis of Hoverbike Prototype IJSRD International Journal for Scientific Research & Development Vol. 5, Issue 02, 2017 ISSN (online): 23210613 Design Analysis of Hoverbike Prototype Ninad R. Patil 1 Ashish A. Ramugade 2 1,2 Research

More information

The Skycar 400 High-speed, 4-passenger VTOL aircraft

The Skycar 400 High-speed, 4-passenger VTOL aircraft The Skycar 400 High-speed, 4-passenger VTOL aircraft THE MOLLER SKYCAR 400 Over the past 30+ years Moller International and it predecessor companies have been working on the development of the technologies

More information

Lip wing Lift at zero speed

Lip wing Lift at zero speed Lip wing Lift at zero speed Dusan Stan, July 2014 http://hypertriangle.com/lipwing.php dusan.stan@hypertriangle.com HyperTriangle 2014 Lip_wing_Lift_at_zero_speed_R2.doc Page 1 of 7 1. Introduction There

More information

AE 451 Aeronautical Engineering Design I Propulsion and Fuel System Integration. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017

AE 451 Aeronautical Engineering Design I Propulsion and Fuel System Integration. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017 AE 451 Aeronautical Engineering Design I Propulsion and Fuel System Integration Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017 Propulsion system options 2 Propulsion system options 3

More information

Chapter 11: Flow over bodies. Lift and drag

Chapter 11: Flow over bodies. Lift and drag Chapter 11: Flow over bodies. Lift and drag Objectives Have an intuitive understanding of the various physical phenomena such as drag, friction and pressure drag, drag reduction, and lift. Calculate the

More information

New Design Concept of Compound Helicopter

New Design Concept of Compound Helicopter New Design Concept of Compound Helicopter PRASETYO EDI, NUKMAN YUSOFF and AZNIJAR AHMAD YAZID Department of Engineering Design & Manufacture, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur,

More information

Reducing Landing Distance

Reducing Landing Distance Reducing Landing Distance I've been wondering about thrust reversers, how many kinds are there and which are the most effective? I am having a debate as to whether airplane engines reverse, or does something

More information

A Technical Essay on the Gyroplane

A Technical Essay on the Gyroplane A Technical Essay on the Gyroplane Anand Saxena * Abstract A study of "Gyroplane" and its historical evolution, general characteristics, flight characteristics, various designs, potential applications

More information

Stomp Rockets. Flight aboard the USS Hornet. From the USS Hornet Museum Education Department. Sue Renner and Alissa Doyle (rev.

Stomp Rockets. Flight aboard the USS Hornet. From the USS Hornet Museum Education Department. Sue Renner and Alissa Doyle (rev. Stomp Rockets Flight aboard the USS Hornet From the USS Hornet Museum Education Department Sue Renner and Alissa Doyle (rev. May 2018) Alissa.Doyle@uss-hornet.org USS Hornet Museum Education Department

More information

Exploration 2: How Do Rotorcraft Fly?

Exploration 2: How Do Rotorcraft Fly? Exploration 2: How Do Rotorcraft Fly? Students choose a model and use it to explore rotorcraft flight. They use a fair test and conclude that a spinning rotor is required for a rotorcraft to fly. Main

More information

FanWing -- Developments and Applications

FanWing -- Developments and Applications 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES FanWing -- Developments and Applications George R Seyfang Formerly Principal Concepts Engineer ~ BAE Systems, UK Keywords: STOL, VTOL, High Lift,

More information

850. Design and numerical analysis of a novel coaxial rotorcraft UAV

850. Design and numerical analysis of a novel coaxial rotorcraft UAV 850. Design and numerical analysis of a novel coaxial rotorcraft UAV Liu Long 1, Ang Haisong 2, Ge Xun 3 College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics Mailbox 172,

More information

Prof. João Melo de Sousa Instituto Superior Técnico Aerospace & Applied Mechanics. Part B Acoustic Emissions 4 Airplane Noise Sources

Prof. João Melo de Sousa Instituto Superior Técnico Aerospace & Applied Mechanics. Part B Acoustic Emissions 4 Airplane Noise Sources Prof. João Melo de Sousa Instituto Superior Técnico Aerospace & Applied Mechanics Part B Acoustic Emissions 4 Airplane Noise Sources The primary source of noise from an airplane is its propulsion system.

More information

XIV.C. Flight Principles Engine Inoperative

XIV.C. Flight Principles Engine Inoperative XIV.C. Flight Principles Engine Inoperative References: FAA-H-8083-3; POH/AFM Objectives The student should develop knowledge of the elements related to single engine operation. Key Elements Elements Schedule

More information

Wind Tunnel Test Results of a 1/8-Scale Fan-in-Wing Model

Wind Tunnel Test Results of a 1/8-Scale Fan-in-Wing Model NASA Technical Memorandum 471 ATCOM Technical Report 96-A-5 Wind Tunnel Test Results of a 1/8-Scale Fan-in-Wing Model John C. Wilson Joint Research Program Office, Aeroflightdynamics Directorate U.S. Army

More information

Design and Test of Transonic Compressor Rotor with Tandem Cascade

Design and Test of Transonic Compressor Rotor with Tandem Cascade Proceedings of the International Gas Turbine Congress 2003 Tokyo November 2-7, 2003 IGTC2003Tokyo TS-108 Design and Test of Transonic Compressor Rotor with Tandem Cascade Yusuke SAKAI, Akinori MATSUOKA,

More information

A practical investigation of the factors affecting lift produced by multi-rotor aircraft. Aaron Bonnell-Kangas

A practical investigation of the factors affecting lift produced by multi-rotor aircraft. Aaron Bonnell-Kangas A practical investigation of the factors affecting lift produced by multi-rotor aircraft Aaron Bonnell-Kangas Bonnell-Kangas i Table of Contents Introduction! 1 Research question! 1 Background! 1 Definitions!

More information

How Do Helicopters Fly? An Introduction to Rotor Aeromechanics

How Do Helicopters Fly? An Introduction to Rotor Aeromechanics Audience: Grades 9-10 Module duration: 75 minutes How Do Helicopters Fly? An Introduction to Rotor Aeromechanics Instructor Guide Concepts: Airfoil lift, angle of attack, rotary wing aerodynamics, hover

More information

Die Lösungen müssen manuell überpüft werden. Die Buchstaben stimmen nicht mehr überein.

Die Lösungen müssen manuell überpüft werden. Die Buchstaben stimmen nicht mehr überein. HELI Final Test 2015, Winterthur 17.06.2015 NAME: Mark the best answer. A B C D A B C D Die Lösungen müssen manuell überpüft werden. Die Buchstaben stimmen nicht mehr überein. 1 1 Principles of Flight

More information

(1) Keywords: CFD, helicopter fuselage, main rotor, disc actuator

(1) Keywords: CFD, helicopter fuselage, main rotor, disc actuator SIMULATION OF FLOW AROUND FUSELAGE OF HELICOPTER USING ACTUATOR DISC THEORY A.S. Batrakov *, A.N. Kusyumov *, G. Barakos ** * Kazan National Research Technical University n.a. A.N.Tupolev, ** School of

More information

Design and Development of Hover bike

Design and Development of Hover bike Available online at www.ijiere.com International Journal of Innovative and Emerging Research in Engineering e-issn: 2394-3343 p-issn: 2394-5494 Design and Development of Hover bike Umesh Carpenter (Asst.

More information

POWER ESTIMATION FOR FOUR SEATER HELICOPTER

POWER ESTIMATION FOR FOUR SEATER HELICOPTER Jurnal Mekanikal December 2008, No. 27, 78-90 POWER ESTIMATION FOR FOUR SEATER HELICOPTER Ahmad Azlan Shah B. Ibrahim Mohammad Nazri Mohd Jaafar * Faculty of Mechanical Engineering University Technology

More information

Experimental Testing of a Rotating Detonation Engine Coupled to Nozzles at Conditions Approaching Flight

Experimental Testing of a Rotating Detonation Engine Coupled to Nozzles at Conditions Approaching Flight 25 th ICDERS August 2 7, 205 Leeds, UK Experimental Testing of a Rotating Detonation Engine Coupled to Nozzles at Conditions Approaching Flight Matthew L. Fotia*, Fred Schauer Air Force Research Laboratory

More information

SIMULATION OF PROPELLER EFFECT IN WIND TUNNEL

SIMULATION OF PROPELLER EFFECT IN WIND TUNNEL SIMULATION OF PROPELLER EFFECT IN WIND TUNNEL J. Červinka*, R. Kulhánek*, Z. Pátek*, V. Kumar** *VZLÚ - Aerospace Research and Test Establishment, Praha, Czech Republic **C-CADD, CSIR-NAL, Bangalore, India

More information

Running head: GYROSCOPIC STABILIZATION VS. STABILIZATION FINS 1

Running head: GYROSCOPIC STABILIZATION VS. STABILIZATION FINS 1 Running head: GYROSCOPIC STABILIZATION VS. STABILIZATION FINS 1 Gyroscopic Stabilization vs. Stabilization fins in Model Rocketry Donald S. Corp, Maccoy G. Merrell Waxahachie Global High School January

More information

Investigation of converging slot-hole geometry for film cooling of gas turbine blades

Investigation of converging slot-hole geometry for film cooling of gas turbine blades Project Report 2010 MVK160 Heat and Mass Transport May 12, 2010, Lund, Sweden Investigation of converging slot-hole geometry for film cooling of gas turbine blades Tobias Pihlstrand Dept. of Energy Sciences,

More information

Design and aerodynamic considerations about the civil VTOL aircraft Ray

Design and aerodynamic considerations about the civil VTOL aircraft Ray 1 Design and aerodynamic considerations about the civil VTOL aircraft Ray David Posva Ray Research AG - Switzerland info@rayaircraft.com Pierre Wilhelm Swiss Federal Institute of Technology Lausanne (EPFL)

More information

CarterCopters. Cleaner Greener. Safer. Your affordable environmentally-friendly VTOL technology Carter Aviation Technologies, LLC

CarterCopters. Cleaner Greener. Safer. Your affordable environmentally-friendly VTOL technology Carter Aviation Technologies, LLC CarterCopters Cleaner Greener Your affordable environmentally-friendly VTOL technology Safer 2018 Carter Aviation Technologies, LLC Carter Aviation Is a green VTOL possible? Genesis & Mission: The company

More information

Wichita State University Libraries Department of Special Collections UNIVERSITY ARCHIVES University of Wichita Engineering Reports (UWER)

Wichita State University Libraries Department of Special Collections UNIVERSITY ARCHIVES University of Wichita Engineering Reports (UWER) Wichita State University Libraries Department of Special Collections UNIVERSITY ARCHIVES 06-12-00-05 University of Wichita Engineering Reports (UWER) Box 1 Index 0-3 List of Publications 005 Turning Radius

More information

Designing and Development of Prototype Hover Bike

Designing and Development of Prototype Hover Bike Designing and Development of Prototype Hover Bike B.Lokesh 1, Chava Navyasree 2, Karthik D C 3, Momon Singha 4, Dr.E.Madhusudhan 5 U G Student, Department of Aeronautical Engineering, SCE, Chikkaballapura,

More information

Wind Tunnel Measurement Of Aerodynamic Characteristics Of A Generic Eurocopter Helicopter

Wind Tunnel Measurement Of Aerodynamic Characteristics Of A Generic Eurocopter Helicopter Wind Tunnel Measurement Of Aerodynamic Characteristics Of A Generic Eurocopter Helicopter by Engr. Assoc. Prof. Dr Shuhaimi Mansor, MIEM, P. Eng. Experimental aerodynamic studies on a generic model of

More information

Performance means how fast will it go? How fast will it climb? How quickly it will take-off and land? How far it will go?

Performance means how fast will it go? How fast will it climb? How quickly it will take-off and land? How far it will go? Performance Concepts Speaker: Randall L. Brookhiser Performance means how fast will it go? How fast will it climb? How quickly it will take-off and land? How far it will go? Let s start with the phase

More information

FLY IN ATMOSPHERE BY DRAG FORCE EASY THRUST GENERATION - NEXT GENERATION TECHNOLOGY -

FLY IN ATMOSPHERE BY DRAG FORCE EASY THRUST GENERATION - NEXT GENERATION TECHNOLOGY - International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 903 FLY IN ATMOSPHERE BY DRAG FORCE EASY THRUST GENERATION - NEXT GENERATION TECHNOLOGY - Mwizerwa Pierre Celestin

More information

Design and Experimental Study on a New Concept of Preswirl Stator as an Efficient Energy-Saving Device for Slow Speed Full Body Ship

Design and Experimental Study on a New Concept of Preswirl Stator as an Efficient Energy-Saving Device for Slow Speed Full Body Ship 2004 SNAME Annual Meeting Design and Experimental Study on a New Concept of Preswirl Stator as an Efficient Energy-Saving Device for Slow Speed Full Body Ship M. C. Kim(V), Pusan National University, H.

More information

Figure 1: Forces Are Equal When Both Their Magnitudes and Directions Are the Same

Figure 1: Forces Are Equal When Both Their Magnitudes and Directions Are the Same Moving and Maneuvering 1 Cornerstone Electronics Technology and Robotics III (Notes primarily from Underwater Robotics Science Design and Fabrication, an excellent book for the design, fabrication, and

More information

SILENT SUPERSONIC TECHNOLOGY DEMONSTRATION PROGRAM

SILENT SUPERSONIC TECHNOLOGY DEMONSTRATION PROGRAM 25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES SILENT SUPERSONIC TECHNOLOGY DEMONSTRATION PROGRAM Akira Murakami* *Japan Aerospace Exploration Agency Keywords: Supersonic, Flight experiment,

More information

Click to edit Master title style

Click to edit Master title style AVIATION OPERATIONAL MEASURES FOR FUEL AND EMISSIONS REDUCTION WORKSHOP Fuel Conservation Third Airframe level Maintenance for Environmental Performance Dave Anderson Flight Operations Engineer Boeing

More information

Flight Stability and Control of Tailless Lambda Unmanned Aircraft

Flight Stability and Control of Tailless Lambda Unmanned Aircraft IJUSEng 2013, Vol. 1, No. S2, 1-4 http://dx.doi.org/10.14323/ijuseng.2013.5 Editor s Technical Note Flight Stability and Control of Tailless Lambda Unmanned Aircraft Pascual Marqués Unmanned Vehicle University,

More information

Welcome to Aerospace Engineering

Welcome to Aerospace Engineering Welcome to Aerospace Engineering DESIGN-CENTERED INTRODUCTION TO AEROSPACE ENGINEERING Notes 5 Topics 1. Course Organization 2. Today's Dreams in Various Speed Ranges 3. Designing a Flight Vehicle: Route

More information

Development of an Advanced Rotorcraft Preliminary Design Framework

Development of an Advanced Rotorcraft Preliminary Design Framework 134 Int l J. of Aeronautical & Space Sciences, Vol. 10, No. 2, November 2009 Development of an Advanced Rotorcraft Preliminary Design Framework Jaehoon Lim* and SangJoon Shin** School of Mechanical and

More information

Performance of Advanced Heavy-Lift, High-Speed Rotorcraft Configurations

Performance of Advanced Heavy-Lift, High-Speed Rotorcraft Configurations Performance of Advanced Heavy-Lift, High-Speed Rotorcraft Configurations Wayne Johnson*, Hyeonsoo Yeo**, and C.W. Acree, Jr.* *Aeromechanics Branch, NASA **Aeroflightdynamics Directorate (AMRDEC), U.S.

More information

Revisiting the Calculations of the Aerodynamic Lift Generated over the Fuselage of the Lockheed Constellation

Revisiting the Calculations of the Aerodynamic Lift Generated over the Fuselage of the Lockheed Constellation Eleventh LACCEI Latin American and Caribbean Conference for Engineering and Technology (LACCEI 2013) International Competition of Student Posters and Paper, August 14-16, 2013 Cancun, Mexico. Revisiting

More information

Exploration 4: Rotorcraft Flight and Lift

Exploration 4: Rotorcraft Flight and Lift Exploration 4: Rotorcraft Flight and Lift Students use appropriate terminology to describe the various stages of flight and discover that the lift force changes with the amount of air moved by the rotor

More information

1/10 th Scale Model Tests of a Centre-line Tiltrotor:

1/10 th Scale Model Tests of a Centre-line Tiltrotor: 1/10 th Scale Model Tests of a Centre-line Tiltrotor: Conversion between rotary and fixed wing modes Bob Burrage Director Rotorcraft Operations Ltd., Oxfordshire, United Kingdom bob.burrage@ntlworld.com

More information

Propeller Blade Bearings for Aircraft Open Rotor Engine

Propeller Blade Bearings for Aircraft Open Rotor Engine NTN TECHNICAL REVIEW No.84(2016) [ New Product ] Guillaume LEFORT* The Propeller Blade Bearings for Open Rotor Engine SAGE2 were developed by NTN-SNR in the frame of the Clean Sky aerospace programme.

More information

Electric VTOL Aircraft

Electric VTOL Aircraft Electric VTOL Aircraft Subscale Prototyping Overview Francesco Giannini fgiannini@aurora.aero 1 08 June 8 th, 2017 Contents Intro to Aurora Motivation & approach for the full-scale vehicle Technical challenges

More information

DESIGN AND EXPERIMENT OF TWO-ROTORED UAV CYCLOCOPTER

DESIGN AND EXPERIMENT OF TWO-ROTORED UAV CYCLOCOPTER Choong Hee Lee*, Seung Yong Min**, Jong Won Lee**, Seung Jo Kim* *Seoul National University, **Korea Aerospace Research Institute Keywords: Cyclocopter, Cyclogyro, UAV, VTOL Abstract This paper describes

More information

AE 452 Aeronautical Engineering Design II Installed Engine Performance. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering March 2016

AE 452 Aeronautical Engineering Design II Installed Engine Performance. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering March 2016 AE 452 Aeronautical Engineering Design II Installed Engine Performance Prof. Dr. Serkan Özgen Dept. Aerospace Engineering March 2016 Propulsion 2 Propulsion F = ma = m V = ρv o S V V o ; thrust, P t =

More information

TAKEOFF PERFORMANCE ground roll

TAKEOFF PERFORMANCE ground roll TAKEOFF PERFORMANCE An airplane is motionless at the end of a runway. This is denoted by location O. The pilot releases the brakes and pushes the throttle to maximum takeoff power, and the airplane accelerates

More information

Chapter 4 Engine characteristics (Lectures 13 to 16)

Chapter 4 Engine characteristics (Lectures 13 to 16) Chapter 4 Engine characteristics (Lectures 13 to 16) Keywords: Engines for airplane applications; piston engine; propeller characteristics; turbo-prop, turbofan and turbojet engines; choice of engine for

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Propulsion Systems for Robotics Dr. Kostas Alexis (CSE) Propulsion Systems for Robotics How do I move? Understanding propulsion systems is about knowing how a mobile

More information

Configuration Selection

Configuration Selection GRIFFIN Configuration Selection Vehicle Defining Challenges 240 knots Cruise Speed 6000 m Altitude Maximizing Prop-Rotor Efficiency Reduction of Wind Download Maximizing Fuel Storage Minimizing Weight

More information

F-35 Class Hovercraft Propulsion. Amber Deja December 2, 2014 AEM 495

F-35 Class Hovercraft Propulsion. Amber Deja December 2, 2014 AEM 495 F-35 Class Hovercraft Propulsion Amber Deja December 2, 2014 AEM 495 Goal Determine whether the University of Alabama Hoverteam F-35 Class hovercraft propulsion system should use a non-ducted propeller,

More information

Appenidix E: Freewing MAE UAV analysis

Appenidix E: Freewing MAE UAV analysis Appenidix E: Freewing MAE UAV analysis The vehicle summary is presented in the form of plots and descriptive text. Two alternative mission altitudes were analyzed and both meet the desired mission duration.

More information

Remote Control Helicopter. Engineering Analysis Document

Remote Control Helicopter. Engineering Analysis Document Remote Control Helicopter By Abdul Aldulaimi, Travis Cole, David Cosio, Matt Finch, Jacob Ruechel, Randy Van Dusen Team 04 Engineering Analysis Document Submitted towards partial fulfillment of the requirements

More information

characteristics, including the ability to turn through 180 degrees for an increase in backing thrust.

characteristics, including the ability to turn through 180 degrees for an increase in backing thrust. 6 Turning CRP Azipod gives a boost to point marine propulsion efficiency Tomi Veikonheimo, Matti Turtiainen Almost as old as the invention of the screw propeller itself, the concept of contra-rotating

More information

Development of Contra-Rotating Propeller with Tip-Raked Fins

Development of Contra-Rotating Propeller with Tip-Raked Fins Second International Symposium on Marine Propulsors smp, Hamburg, Germany, June 2 Development of Contra-Rotating Propeller with Tip-Raked Fins Yasuhiko Inukai IHI Marine United Inc., Tokyo, Japan ABSTRACT

More information

EFFECT OF SURFACE ROUGHNESS ON PERFORMANCE OF WIND TURBINE

EFFECT OF SURFACE ROUGHNESS ON PERFORMANCE OF WIND TURBINE Chapter-5 EFFECT OF SURFACE ROUGHNESS ON PERFORMANCE OF WIND TURBINE 5.1 Introduction The development of modern airfoil, for their use in wind turbines was initiated in the year 1980. The requirements

More information

ELECTRIC POWER TRAINS THE KEY ENABLER FOR CONTRA ROTATING PROPELLERS IN GENERAL AVIATION (& VICE VERSA)

ELECTRIC POWER TRAINS THE KEY ENABLER FOR CONTRA ROTATING PROPELLERS IN GENERAL AVIATION (& VICE VERSA) ELECTRIC POWER TRAINS THE KEY ENABLER FOR CONTRA ROTATING PROPELLERS IN GENERAL AVIATION (& VICE VERSA) ATI D3 EVENT 8 TH MAY 2018 THE EMERGENCE OF ELECTRIFICATION IN AEROSPACE NICK SILLS, CONTRA ELECTRIC

More information

Designing evtol for the Mission NDARC NASA Design and Analysis of Rotorcraft. Wayne Johnson From VTOL to evtol Workshop May 24, 2018

Designing evtol for the Mission NDARC NASA Design and Analysis of Rotorcraft. Wayne Johnson From VTOL to evtol Workshop May 24, 2018 Designing evtol for the Mission NDARC NASA Design and Analysis of Rotorcraft Wayne Johnson From VTOL to evtol Workshop May 24, 2018 1 Conceptual Design of evtol Aircraft Conceptual design Define aircraft

More information

Design Considerations for Stability: Civil Aircraft

Design Considerations for Stability: Civil Aircraft Design Considerations for Stability: Civil Aircraft From the discussion on aircraft behavior in a small disturbance, it is clear that both aircraft geometry and mass distribution are important in the design

More information

I!"#$%&'"#(')$*+($+$,+-.(/"-$0-!&-00#$

I!#$%&'#(')$*+($+$,+-.(/-$0-!&-00#$ Igor Sikorsky s Inventive Genius Produced 66 Patents Awarded In America. This issue is devoted to his unique conceptual designs that did not progress to production. I!"#$%&'"#(')$*+($+$,+-.(/"-$0-!&-00#$

More information

2 Technical Background

2 Technical Background 2 Technical Background Vibration In order to understand some of the most difficult R- 2800 development issues, we must first briefly digress for a quick vibration tutorial. The literature concerning engine

More information

Slipstream Measurements of Small-Scale Propellers at Low Reynolds Numbers

Slipstream Measurements of Small-Scale Propellers at Low Reynolds Numbers AIAA Aviation 2-2265 22-26 June 2, Dallas, TX 33rd AIAA Applied Aerodynamics Conference Slipstream Measurements of Small-Scale Propellers at Low Reynolds Numbers Robert W. Deters Embry-Riddle Aeronautical

More information

Clean Sky 2. LifeCraft Demonstrationt (IADP RC 2 & ITDs) Consultation meetings Brussels th December 2012 OUTLINE

Clean Sky 2. LifeCraft Demonstrationt (IADP RC 2 & ITDs) Consultation meetings Brussels th December 2012 OUTLINE Clean Sky 2 LifeCraft Demonstrationt (IADP RC 2 & ITDs) Consultation meetings Brussels 10-14 th December 2012 1 1 LifeCraft - The Compound Demo OUTLINE Presentation of the Compound R/C Concept Impact &

More information

DESIGN AND PERFORMANCE ANALYSIS OF SINGLE INLET MULTIPLE OUTLET JET NOZZLE WITH THRUST VECTOR CONTROL

DESIGN AND PERFORMANCE ANALYSIS OF SINGLE INLET MULTIPLE OUTLET JET NOZZLE WITH THRUST VECTOR CONTROL DESIGN AND PERFORMANCE ANALYSIS OF SINGLE INLET MULTIPLE OUTLET JET NOZZLE WITH THRUST VECTOR CONTROL PV Senthiil 1,VS Mirudhuneka 2, Aakash Shirrushti 3 1 Head, Advance Manufacturing Technology, Mechanical

More information

The Sonic Cruiser A Concept Analysis

The Sonic Cruiser A Concept Analysis International Symposium "Aviation Technologies of the XXI Century: New Aircraft Concepts and Flight Simulation", 7-8 May 2002 Aviation Salon ILA-2002, Berlin The Sonic Cruiser A Concept Analysis Dr. Martin

More information

Backgrounder. The Boeing ecodemonstrator Program

Backgrounder. The Boeing ecodemonstrator Program Backgrounder Boeing Commercial Airplanes P.O. Box 3707 MC 21-70 Seattle, Washington 98124-2207 www.boeing.com The Boeing ecodemonstrator Program To support the long-term sustainable growth of aviation,

More information

A FLYING EJECTION SEAT. By R. H. Hollrock* and J. J. Barzda* ABSTRACT

A FLYING EJECTION SEAT. By R. H. Hollrock* and J. J. Barzda* ABSTRACT ijt'9y%., A FLYING EJECTION SEAT By R. H. Hollrock* and J. J. Barzda* ABSTRACT To increase aircrewmen's chances for safe rescue in combat zones, the armed forces are investigating advanced escape and rescue

More information

AE Aircraft Performance and Flight Mechanics

AE Aircraft Performance and Flight Mechanics AE 429 - Aircraft Performance and Flight Mechanics Propulsion Characteristics Types of Aircraft Propulsion Mechanics Reciprocating engine/propeller Turbojet Turbofan Turboprop Important Characteristics:

More information

Performance and Design Investigation of Heavy Lift Tilt-Rotor with Aerodynamic Interference Effects

Performance and Design Investigation of Heavy Lift Tilt-Rotor with Aerodynamic Interference Effects JOURNAL OF AIRCRAFT Vol. 46, No. 4, July August 29 Performance and Design Investigation of Heavy Lift Tilt-Rotor with Aerodynamic Interference Effects Hyeonsoo Yeo and Wayne Johnson NASA Ames Research

More information

CFD on Cavitation around Marine Propellers with Energy-Saving Devices

CFD on Cavitation around Marine Propellers with Energy-Saving Devices 63 CFD on Cavitation around Marine Propellers with Energy-Saving Devices CHIHARU KAWAKITA *1 REIKO TAKASHIMA *2 KEI SATO *2 Mitsubishi Heavy Industries, Ltd. (MHI) has developed energy-saving devices that

More information

Sheffield Hallam University Engineering Masterclass Programme 2015

Sheffield Hallam University Engineering Masterclass Programme 2015 Sheffield Hallam University For more information please contact Helen King Special Projects Officer Engineering and Tel: 0114 225 6459 Email: h.king@shu.ac.uk An overview We are excited to launch Sheffield

More information

7. PRELIMINARY DESIGN OF A SINGLE AISLE MEDIUM RANGE AIRCRAFT

7. PRELIMINARY DESIGN OF A SINGLE AISLE MEDIUM RANGE AIRCRAFT 7. PRELIMINARY DESIGN OF A SINGLE AISLE MEDIUM RANGE AIRCRAFT Students: R.M. Bosma, T. Desmet, I.D. Dountchev, S. Halim, M. Janssen, A.G. Nammensma, M.F.A.L.M. Rommens, P.J.W. Saat, G. van der Wolf Project

More information

Primary control surface design for BWB aircraft

Primary control surface design for BWB aircraft Primary control surface design for BWB aircraft 4 th Symposium on Collaboration in Aircraft Design 2014 Dr. ir. Mark Voskuijl, ir. Stephen M. Waters, ir. Crispijn Huijts Challenge Multiple redundant control

More information

Rotary-Wing Flight Mechanics

Rotary-Wing Flight Mechanics Rotary-Wing Flight Mechanics Simon Newman School of Engineering Sciences, University of Southampton, Southampton, UK 1 Variation of Power Required with Forward Speed 1 2 Climb 3 3 Maximum Range and Endurance

More information

EXPERIMENTAL RESEARCH ON HELICOPTER TAIL SHAKE PHENOMENON

EXPERIMENTAL RESEARCH ON HELICOPTER TAIL SHAKE PHENOMENON EXPERIMENTAL RESEARCH ON HELICOPTER TAIL SHAKE PHENOMENON Iskandar Shah Ishak, Shuhaimi Mansor, Tholudin Mat Lazim Department of Aeronautical Engineering, Faculty of Mechanical Engineering, Universiti

More information

STRUCTURAL DESIGN AND ANALYSIS OF ELLIPTIC CYCLOCOPTER ROTOR BLADES

STRUCTURAL DESIGN AND ANALYSIS OF ELLIPTIC CYCLOCOPTER ROTOR BLADES 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS STRUCTURAL DESIGN AND ANALYSIS OF ELLIPTIC CYCLOCOPTER ROTOR BLADES In Seong Hwang 1, Seung Yong Min 1, Choong Hee Lee 1, Yun Han Lee 1 and Seung Jo

More information

Key Drivers for evtol Design Christopher Silva From VTOL to evtol Workshop May 24, 2018

Key Drivers for evtol Design Christopher Silva From VTOL to evtol Workshop May 24, 2018 Key Drivers for evtol Design Christopher Silva From VTOL to evtol Workshop May 24, 2018 Can we use what we already know? Techniques and processes Aircraft / System design theory: Design Thinking, MDAO,

More information

The Pennsylvania State University The Graduate School College of Engineering A PRELIMINARY ACOUSTIC INVESTIGATION OF A COAXIAL

The Pennsylvania State University The Graduate School College of Engineering A PRELIMINARY ACOUSTIC INVESTIGATION OF A COAXIAL The Pennsylvania State University The Graduate School College of Engineering A PRELIMINARY ACOUSTIC INVESTIGATION OF A COAXIAL HELICOPTER IN HIGH-SPEED FLIGHT A Thesis in Aerospace Engineering by Gregory

More information

Copyrighted material Taylor & Francis Not for resale

Copyrighted material Taylor & Francis Not for resale Contents Preface Acknowledgements xi xiii Chapter 1 The earth s atmosphere 1 Atmospheric composition 1 Gases 2 Atmospheric pressure 2 Pressure measurement 2 Temperature 4 Density 4 International Standard

More information

Are Blended Wing Body Airplanes a Viable Option for Boeing?

Are Blended Wing Body Airplanes a Viable Option for Boeing? Are Blended Wing Body Airplanes a Viable Option for Boeing? (photo courtesy of: http://www.boeing.com/news/feature/paris01/products/bwboverrainer1.jpg) Submitted to: Paul M. Kellermann Submitted by: Nicholas

More information

Jay Gundlach AIAA EDUCATION SERIES. Manassas, Virginia. Joseph A. Schetz, Editor-in-Chief. Blacksburg, Virginia. Aurora Flight Sciences

Jay Gundlach AIAA EDUCATION SERIES. Manassas, Virginia. Joseph A. Schetz, Editor-in-Chief. Blacksburg, Virginia. Aurora Flight Sciences Jay Gundlach Aurora Flight Sciences Manassas, Virginia AIAA EDUCATION SERIES Joseph A. Schetz, Editor-in-Chief Virginia Polytechnic Institute and State University Blacksburg, Virginia Published by the

More information

Aircraft Propulsion Technology

Aircraft Propulsion Technology Unit 90: Aircraft Propulsion Technology Unit code: L/601/7249 QCF level: 4 Credit value: 15 Aim This unit aims to develop learners understanding of the principles and laws of aircraft propulsion and their

More information

On-Demand Mobility Electric Propulsion Roadmap

On-Demand Mobility Electric Propulsion Roadmap On-Demand Mobility Electric Propulsion Roadmap Mark Moore, ODM Senior Advisor NASA Langley Research Center EAA AirVenture, Oshkosh July 22, 2015 NASA Distributed Electric Propulsion Research Rapid, early

More information

CHAPTER 3. A journey of a thousand miles begins with a single step. Confucius

CHAPTER 3. A journey of a thousand miles begins with a single step. Confucius CHAPTER 3 INTRODUCTION... 3-1 TAIL WHEELS... 3-2 TAILDRAGGER ADVANTAGES... 3-3 TAILDRAGGER DISADVANTAGES... 3-3 CONTROLS... 3-4 TAXI AERODYNAMICS... 3-5 GROUND OPERATIONS... 3-7 INTRODUCTION Hangar flying,

More information