Introduction. emissions and fuel consumption for equipped vehicles.

Size: px
Start display at page:

Download "Introduction. emissions and fuel consumption for equipped vehicles."

Transcription

1 Final Results

2 Introduction Cooperative Intelligent Transport Systems (C-ITS) is an ever-growing field within the transport sector. C-ITS systems allow vehicles to communicate with other vehicles, road users and with the road infrastructure. C-ITS services advise drivers on how to act within specific situations to optimise mobility for both people and goods. The European project Compass4D focuses on three services which will increase drivers safety and comfort by reducing the number and severity of road accidents, as well as by optimising the vehicle speed at intersections and by possibly avoiding queues and traffic jams. The three services are: the Energy Efficient Intersection (EEI), the Road Hazard Warning (RHW) and the Red Light Violation Warning (RLVW). Compass4D services also have a positive impact on the local environment by enabling the reduction of CO 2 emissions and fuel consumption for equipped vehicles. As the focus of Compass4D is on actual deployment, these services have been implemented through a combination of established technologies and available pre-commercial equipment. Dedicated short-range communication (ITS-G5) and cellular networks (3G/LTE) have been used, following ETSI TC ITS standards. In addition, Compass4D has identified solutions to deployment barriers and elaborated business models to make the services self-sustainable for a wide commercialisation. This work includes cooperation with standardisation organisations and global partners to achieve interoperability and harmonisation of services. The Compass4D services have been piloted during one year in seven cities: Bordeaux, Copenhagen, Helmond, Newcastle, Thessaloniki, Verona and Vigo. Prior to the pilot operation, the implementation phase lasted more than one year and was a result of teamwork involving all consortium partners. Overall, during the three years of the project duration, Compass4D has installed equipment and implemented cooperative services on almost 300 road side units and traffic lights and on more than 600 vehicles, with over 1200 drivers involved in the pilot operation. The public authorities in the seven pilot cities have been actively driving the Compass4D project with the aim of addressing their challenges and needs in the context of improving traffic management. At the same time, Compass4D has brought together many other key stakeholders such as industry players, public transport operators, fleet operators, users, standardisation and research organisations. In October 2015, the Compass4D partners decided to continue operating the C-ITS services in 2016, for at least one year, beyond the EU funded project life, with the ultimate goal of moving from pilot to large scale deployment to a self-sustained market.

3 7 vehicles 600+ drivers1200+ RSUs 100+ pilot sites

4 Cooperative Services and Pilot Sites The three cooperative services piloted in the frame of Compass4D are as follows: The Energy Efficient Intersection (EEI) Description of the service The Energy Efficient Intersection service provides advice to optimise the way vehicles pass through an intersection. Both energy and emissions are saved by avoiding any unnecessary acceleration or braking by the vehicle driver. To reach this goal, a two-way radio communication system is used between the traffic light control unit and the equipped vehicles. The information on traffic light status is transmitted from the traffic light control unit to the oncoming vehicles. Inside the vehicle the driver receives information on when the traffic light ahead will change, either in the form of a time countdown or as a speed advice. This information allows the driver to anticipate the next manoeuvre and to change his/her driving behaviour, for example by decelerating when a red light is to become green and thus avoiding an unnecessary stop. When a vehicle has to stop because the traffic light is red, the EEI service can then send advice to the driver on whether it is convenient to turn off the vehicle engine. Shortly before the light turns green, the driver is warned to restart the engine. This reduces not only the delay between the green light and the vehicle driving away, but also the chance that other vehicles behind in the same lane have to brake and accelerate again. Information about the oncoming vehicles is detected by cameras on main roads and roadside stations at each equipped intersection and sent via a radio connection to the city s traffic management centre, where traffic managers can take appropriate action, like send out messages to cooperative ITS roadside stations and variable message signs on ongoing events (roadwork, accident, queue, etc.) to alert the drivers as needed. This information includes details such as vehicle type (emergency, bus, truck), location, speed and other parameters. Heavy-goods vehicles or delayed public transport buses can be given green light priority to reduce the number of stops and, hence, travel time and emissions. Vehicles such as ambulances, firefighters trucks or police cars, which are in an emergency status, can send a message to other vehicles and road side stations, so that they can be granted absolute priority by other drivers and by traffic managers, who may turn red traffic lights at the intersections ahead to clear their way as fast as possible. Implementation of the service in Bordeaux, Copenhagen, Helmond, Newcastle, Thessaloniki, Verona, Vigo The Energy Efficient Intersection service provides advice to optimise the way vehicles pass through an intersection. Both energy and emissions are saved by avoiding any unnecessary acceleration or braking by the vehicle driver. To reach this goal, a two-way radio communication system is used between the traffic light control unit and the equipped vehicles. Bordeaux and Helmond cases: The EEI service has been deployed and piloted on 15 intersections in the city centre of Bordeaux sending information on traffic light phases. The service has been made available for free through a public web App for smartphones and includes advice on two different

5 situations: the optimal speed to pass through an intersection with a green light (GLOSA), and the suggestion to switch off the engine while stopped at a red light. In Helmond the service is available on more than 20 intersections, especially for professional users (trucks and emergency vehicles). Copenhagen case: The EEI service has been implemented and tested in 21 equipped intersections with the primary aim of public buses moving through the city faster and more efficiently. By receiving the time-to-green and time-to-red information, bus drivers have been able to drive in a more energy efficient fashion and to secure a higher degree of service towards passengers. Knowing in advance the traffic light s signal phase and timing contributes also to decreasing stress for bus drivers. In addition, a priority service has also been implemented enabling buses to request the extension of the green light phase or the reduction of the red light phase, so as to minimise the waiting time and number of stops at signalised intersections equipped with Compass4D C-ITS systems. The picture above shows the display in the buses in Copenhagen. The Compass4D service has been integrated in the existing IT-system of the buses without the need of installing additional screens. Newcastle case: The EEI service has been performed across 21 equipped intersections in the east of the city and has been piloted on patient transport vehicles and some electric vehicles. The service has been implemented with GLOSA advices and Idle/Stop support as in Bordeaux and with green priority services as in Copenhagen. Thessaloniki case: The EEI service has been provided to more than 600 taxi drivers in the city through a dedicated App, which has been integrated in the taxi fleet dispatching App. The service provides acceleration and deceleration advice to taxis drivers based on the traffic light status, the vehicle s position (relative to the downstream signalised intersection) and speed. By following the speed advice, taxi drivers can minimise the number of stops at equipped signalised intersections (especially when traffic density is moderate) and the vehicle s fuel consumption and emissions. Vigo case: The EEI service has been implemented by providing time-to-green and time-to-red information to drivers of 20 buses, 10 taxi and 13 private users. Priority has been piloted for public buses in Vigo in four areas of the city,

6 providing extended green light phase at equipped intersections, when requested by delayed buses. Priority for emergency vehicles was implemented and tested only at the end of the project and only on few city police vehicles under controlled conditions. Verona case: The EEI service has been implemented in the whole urban network by integrating information from all the traffic lights in the city, both centralised and isolated, into the traffic management centre. The service has been made available for free through a public web App for smartphones giving the following information: timeto-green when stopped at a red light, speed advice for green phase (GLOSA), and road events ahead (incidents, traffic jams). Based on this experience, the city will extend the service and provide an opendata platform to the general public including, in addition to the EEI service, several other information services (parking, variable message signs). The pictures above show time-to-green (left) and speed advice for green phase GLOSA (right) in Verona. The pictures above show the HMI display combining in a map the RHW and EEI services, with countdown of the time-to-green or time-to-red at equipped intersections in the city of Vigo.

7 Description of Compass4D services The Road Hazard Warning (RHW) Description of the service The Road Hazard Warning service uses a radio communication system to provide a variety of safety warnings to vehicles. By doing so, drivers are informed in a timely manner of upcoming, and possibly dangerous, events. The warnings can be transmitted by the roadside stations as well as by stations on-board trusted vehicles (emergency services, road operators - in case of road works). In case of an accident, the information is sent to vehicles in direct proximity, but also to other roadside stations in order to warn distant vehicles travelling towards the event location, to avoid becoming involved in the same accident or to allow them to make a detour. Once received by the unit on-board a vehicle, the warning is assessed by the system and brought to the attention of the driver depending on the risk relevance and impact on routing. In Compass4D, the Road Hazard Warning service is operated for two categories of events: static and dynamic. Static events have a relatively long duration and are related, for example, to road works (such as a lane closed) or to a pedestrian crossing; in this case the same warning message is constantly sent to raise the drivers attention of a known event at a fixed place and time period. Warnings related to dynamic events deliver variable information by reacting on sensors inputs, for example camera s detection of queue s tail in a congested arterial road, or a vehicles detector at the exit of a construction site, or an emergency vehicle emitter sending a signal when its blue light is turned on. Implementation of the service in Bordeaux, Copenhagen, Helmond, Thessaloniki, Verona, Vigo Bordeaux case: The service is deployed both on the ring road and in the city centre of Bordeaux and receives real time road events from the French national Traffic Management Centre TIPI. Radio messages about incoming events are transmitted to equipped vehicles, where they are presented to the driver on the display of the unit on-board the vehicle. Copenhagen case: The thermal detection of pedestrians crossing a non-signalised intersection The picture above shows a feed from one of the thermal cameras located above a pedestrian crossing in the pilot site of Copenhagen. When the rectangles or square detection areas turns white, the system has detected movement in the relevant direction. This detection triggers a message that is sent to equipped vehicles approaching the pedestrian crossing. has been implemented as a part of the RHW service. The system detects when a pedestrian is about to cross the street, and sends this information to equipped vehicles. This gives the drivers an early warning and helps avoid potential hazardous situations. Thessaloniki case: The service provided advice regarding incoming congestion to equipped vehicles based on a network of 15 Bluetooth detectors estimating travel time along the peripheral ring road of Thessaloniki, a three-lane, bi-directional highway with a daily flow of more than 100,000 vehicles. The smartphone App implemented in the framework of Compass4D internally processes the warnings to show only the ones relevant to the vehicle s trajectory. With this advice, drivers can modify their route and leave the ring road in order to avoid a congested stretch.

8 Description of Compass4D services The Red Light Violation Warning (RLVW) Description of the service The RLVW service aims to improve safety at signalised intersections. Based on the information exchanged via radio communication, the situation in the intersection ahead is analysed and visual (and/or audio) warning messages are generated. These messages are context sensitive, depending on the possibility, imminence, and severity of an event. The system can target dangerous situations which occur during normal intersection crossing, such as recognising events involving conflicting turns across a junction, or exceptional situations, such as a vehicle violating a red light. A special case of RLVW is the situation where an alert must be given before the red light is actually violated. If the warning is presented after the offending vehicle has passed the stop-line, it would be too late to effectively inform other vehicles in the vicinity. Therefore, the system must be able to predict if an approaching vehicle will perform a normal, safe stop, or will definitely violate the red light. In the latter case a Red Light Violation Warning is issued. Within the context of Compass4D, the Red Light Violation Warning is currently issued to other vehicles only in the case of emergency vehicles equipped with a Compass4D cooperative system crossing an equipped, signalised intersection. Implementation of the service in Bordeaux, Helmond, Vigo Bordeaux and Helmond case: The emergency vehicles equipped with the Compass4D cooperative on-board unit automatically send out a warning message when their blue lights are turned on. This message is received by other equipped vehicles, whose drivers are alerted that an emergency vehicle is approaching and could potentially pass through the red light. Vigo case: A basic red light warning has been implemented in the whole corridor of Vigo. In this case, the service alerts the driver about his/her own imminent violation of the red light. Display change from EEI (left) service to RHW (right) service in Vigo.

9 Implementation & operation Overall System Compass4D can provide ITS services because it enables different cooperative systems to exchange information. Data and information which are normally only available on-board a vehicle or at a traffic management centre through the road side infrastructure, can now be shared thanks to cooperative ITS systems. Information which is normally available in advance at the traffic light control centre and seen by the driver only when they occur, like the change of a traffic light status (colour), are now available (also in advance) to a system on-board equipped vehicles. By means of cooperative ITS systems, new services can provide support to enhance increased safety and comfort to all road users while reducing the environmental impact of road transport for people and goods. Technology As a vehicle s location changes during a journey, the only means to exchange information is wirelessly. In Compass4D, two wireless technologies are used: a variant of Wi-Fi called ITS-G5, and the mobile internet (3G or LTE). Both technologies have strengths and weaknesses, and that is why within Compass4D the technology selection at a particular site depends on a combination of the existing road network and infrastructure; various site requirements (both technical and non-technical) and road operator priorities, based on defined urban and inter-urban mobility strategies and plans. The ITS-G5 radio network differs from normal Wi- Fi because it allows all systems to communicate with each other without the use of an access point or a password. Vehicles close to each other can exchange messages, for example when one of them suddenly brakes. Roadside stations can use ITS-G5 to broadcast the traffic light status or a road work event (e.g. lane closed) to all vehicles in the vicinity. To create such an open network the messages sent over a radio channel must be standardised and the message contents must be trusted. Both aspects are targeted by the standardisation bodies like ETSI, the European Telecommunications Standards Institute. Compass4D has actively participated in piloting and improving the ITS-G5 standards by bringing together systems from multiple vendors, and by participating in European testing activities on systems interoperability. Installations Inside a vehicle, the Compass4D system is the on-board unit (OBU) or station, which consists of a processor, a radio system, a GNSS 1 receiver and a display. The display is used to provide information to the driver, the GNSS system is used to identify the location and speed of the unit (e.g. the vehicle in which the OBU is installed), the radio system is used to communicate with other Compass4D systems; and finally the processor executes the services. On the other hand, the road side unit (RSU) or station is the Compass4D system installed in the road infrastructure. It consists of a processor, a radio system, a GNSS receiver and often a data network connection (either as mobile or wired IP). The data network is used to connect to other infrastructure systems like traffic control units or sensors, and to connect to a back-office located at the city or regional traffic management centre for operational purposes. 1 Global Navigation Satellite System, for example a GPS.

10 Figure 1 Compass4D on-board unit in an electric vehicle; the information is displayed on a commercial hands-free system. Figure 2 - Radio unit mounted on a traffic light in Bordeaux. Operation To support the verification and validation of the Compass4D services, a large amount of data on vehicle movements and service performance have been collected during one year. The datasets from each site have been collated into a centralised database, then processed, filtered and distilled into a consistent series of cross-site metrics. These metrics have been used to carry out coherent analyses of the operation of the system over the seven pilot sites, giving valuable feedback on performance to operators and stakeholders. The pilot operation was carried out over a period of 12 months, divided into 3 months baseline operation (to collect data without Compass4D services), and 9 months functional operation (to collect data with Compass4D services in use). Figure 3 - Integration of Compass4D in a Mermaid bus system in Copenhagen.

11 The target users of Compass4D have been mainly professional drivers of public buses, emergency vehicles, trucks, taxis, but also drivers of private cars, depending on the priorities of the seven pilot sites.

12 Evaluation Methodology Evaluation Framework Compass4D has been piloted and deployed on public roads and intersections in everyday, real traffic conditions in all seven pilot cities. This has enabled understanding of the actual impact and benefits of the piloted systems and services. As the basis for evaluation, the widely used FESTA methodology 2 was applied, implementing the Compass4D services, and defining impact areas and performance indicators: Compass4D services: Energy Efficient Intersection, Red Light Violation Warning, Road Hazard Warning Impact Areas: fuel consumption, energy savings, traffic efficiency and traffic management (at vehicle level and network level), road safety, driver behaviour, driver acceptance Performance indicators: e.g. distance, duration, speed, S.D. speed, max speed, 15% quartile speed, 85% quartile speed, median speed, stop time, stops, emissions, efficiency, fuel consumption. The evaluation framework has been defined taking into account a subjective and an objective evaluation, the former based on users feedback, the latter based on analysis of data logged from the unit on-board the vehicles to the central project database. Subjective User Feedback Understanding how users of Compass4D cooperative systems react to the services is extremely important. Questionnaires on user acceptance were completed by drivers, fleet operators and local authorities, with the findings being used to build the business cases for Compass4D, and to identify areas for improvement. There was widespread support for the concept and a desire to see the services expanded from the pilot sites to the entire road network. However, there is a clear need to improve the on-board interface and to consider ways in which pre-commercial prototypes can be better integrated with other in-vehicle systems such as satellite navigation units (GPS). Data Analysis & Findings Data from the on-board units and road side units was collected and inserted into local databases at each of the seven pilot sites and automatically transferred to a central server. A set of performance indicators was then generated from this data set using appropriate statistical software analysis, supervised by specialised engineers. It has been possible to calculate the majority of indicators, such as the average speed of a vehicle, the distance travelled per trip, or the journey duration, from data derived from GPS location and timestamp. However, a very detailed analysis was required before any impact could be attributed to the Compass4D services with confidence. Factors to be analysed included pilot site spatial features, RSU/intersection location, trajectory of vehicles within RSU/intersection, vehicle type and emission characteristics (bus, taxi, truck, etc.), date/day/ time of day, and phase (baseline versus functional operation). In addition, the analysis has been supported by the interpretation by local experts at each pilot site with knowledge of specific situations and conditions of the road network as well as by

13 Benefits And Impacts Emissions (in gco 2 ) City Type Baseline Functional % Reduction Operation Operation events simulation, which all lead to the definition and calculation of few, selected key performance indicators (KPI), namely: KPI 1: The length of time needed to cross an intersection KPI 2: The emissions and fuel consumption either directly measured from the vehicle or modelled KPI 3: The number of stops experienced by a vehicle crossing an intersection 2 FESTA (Field operational test support Action) is a widespread, acknowledged methodology providing comprehensive guidance for the conduction of successful Field Operational Tests (FOT). It describes the entire process of planning, preparing, excecuting, analysing and reporting a FOT. 3 The data for Copenhagen (table right) represents a full bus journey across multiple intersections rather than an individual intersection. Bordeaux Light % Heavy % Copenhagen 3 Bus % Helmond Heavy % Bus % Newcastle Heavy % Vigo Light % Bus % Time (in seconds) City Type Baseline Functional % Reduction Operation Operation Bordeaux Light % Heavy % Copenhagen 3 Bus % Helmond Heavy % Bus % Newcastle Heavy % Vigo Light % Bus % The data from Thessaloniki and Verona are not comparable to other sites due to the layout of the system. In addition, the volume of data from Verona is substantially smaller than from other trials and hence Verona was not considered during the overall analysis of results. Regarding Thessaloniki, it was observed that with the traffic in a congested state the system offered no benefits whilst in a non-congested state the system provided a benefit of 1.72% in emmission saving.

14 Benefits And Impacts The base conclusions from Compass4D can be summarised as follows: Light vehicles show a benefit from the cooperative system and services in terms of time saved but the energy efficiency savings are typically small in absolute terms. Heavy vehicles show a much greater saving in energy efficiency, of up to 5-10%. Buses show large savings (up to 10%) depending on the route and, especially, on the position of bus stops relative to the nearest equipped, signalised intersection ahead. The priority service has a greater positive impact than the speed advice (GLOSA) for a wider range of vehicle types. Benefits: For car and taxi drivers Compass4D has demonstrated a varying effect on light vehicles ranging from 10% improvement in energy efficiency (saving approximately 35gCO 2 / km) down to a minimal to non-existent effect. In most pilot sites, an appreciable reduction in stationary time and number of stops has been observed by the drivers, resulting in travel time reduction and increase of driving comfort. For trucks and other heavy vehicles Compass4D generally produced an improvement in energy efficiency of 5-10 % (between 20 and 60 gco 2 /km per vehicle), a reduction in the duration of crossing intersections, and a decrease in time spent stationary. This effect was markedly greater and more consistent than that seen for light vehicles. The effect on buses was dependent on the bus route and the positioning of bus stops relative to the Compass4D equipped intersection. For operators Priority request is likely to be an appropriate method for improving energy efficiency, average speed, and reducing the total time spent stationary at an intersection. The overall energy savings are likely to be considerable - improving the efficiency of trucks or buses by 10% will produce greater overall reductions in emissions compared to improving the efficiency of light vehicles by the same amount. For cities Modelling techniques were used to elicit understanding of possible network- or city-wide effects of the Compass4D system. The GLOSA (Green Light Optimised Speed Advice), part of the EEI service, results in a reduction in emissions and stops. The Compass4D data analysis has shown a significant decrease in the number of stops, resulting in fewer emissions. In general, there is an improvement in the road network performance and capacity with more vehicles equipped and the GLOSA service implemented. Green priority provides a positive effect for the specific vehicle types with a reduction in travel time of up to 10%, fewer stops, reduced emissions and less stress for concerned drivers. However, priority can also cause an increase in delays in the wider network (which can be set as political objective to incentive/discourage people s and goods mobility).

15 Impacts Reduction of stops Compass4D aims to make road traffic more fluid by reducing the number of times a vehicle stops at an intersection, and the total length of time a vehicle is stationary at an intersection. Every time a vehicle stops it decelerates to stop and then accelerates back up to speed. Deceleration itself does not lead to an increase in emissions, however, re-acceleration from a stationary position or lower speed does lead to an overall increase in emissions per km driven. The results of Compass4D at all sites show that there is a strong dependence between the average emission level and the average number of stops at an intersection with the emissions at an intersection increasing approximately linearly as the number of stops increases. The results show that, if the average number of stops at an intersection can be reduced, this will lead to a reduction in emissions. For example, in the pilot site of Bordeaux, with an average of 1.14 stops and of 160 gco 2 emissions per intersection, a 50% reduction in stops would lead to an overall reduction of 20% in emissions (corresponding to approximately 30 gco 2 per vehicle) at that intersection. Fewer stops at an intersection will also mean a decrease in the time spent to cross an intersection as well as in the total travel time for any bus route. Compass4D data analysis shows at all sites a linear decrease in the total time consumed to cross an intersection as the number of stops at that particular intersection decreases, although the effective delay due to a stop varies across the different pilot sites. The benefits in time saved for a single vehicle crossing a single intersection may not be considered significant; however, when a vehicle crosses multiple intersections it may be possible for the small individual time reductions to add up to a substantial decrease in overall duration. This can be seen in Copenhagen with some routes exhibiting savings of up to two minutes over a minute journey. Before versus after stop-line The advice to the driver and the instructions issued to the roadside unit are supplied by the Compass4D system as the vehicle is approaching an intersection. However, if a vehicle does not need to slow down, because of an extended green period, then the vehicle will approach the stop-line faster, without stopping, and will also move away from the intersection faster. Compass4D demonstrates that the cumulative emissions of CO 2 dramatically increase during the acceleration process. Only 25% of total emissions occur before the stop-line, with 75% of the emissions occurring during acceleration phase to move away from the intersection. This not only has an impact on the fuel consumed by a vehicle, but also in any possible pollution impact from the increased emissions near intersections. Therefore, in order to reduce emissions at intersections, the most effective way is to reduce the need for acceleration after the stopline whenever possible.

16 Benefits & impacts Cost Benefit Analysis In order to assess the efficiency of C-ITS services, both direct and indirect costs related to the deployment of the different C-ITS services in the different pilots have been accounted for. The main aim was to evaluate if the benefits exhibited due to the deployment of the system, outweigh or justify the costs for the operation and maintenance for different types of vehicles and road side equipment. To this end, a cost-benefit analysis has been performed taking into account the initial investment and the annual operational costs, weighing them against the measured benefits in terms of energy efficiency and time savings. Since it was not possible to evaluate safety gains, these have not been considered in this analysis. As experienced in past investigations, due to differences in wages and prices, the estimated costs for the implementation of C-ITS services in the frame of Compass4D varied sensibly among different countries and cities. Hence, the overall results of the analysis illustrate that, depending on the different type of services and the vehicle category in each pilot, the estimated gains on an annual basis can vary considerably between different pilots. Generally monetary gains on an annual basis are larger in terms of time savings compared to the achieved fuel efficiency. One of the main conclusions of the cost-benefit analysis is that significant benefits can be achieved provided that the city seeks to integrate all functionalities and services related to C-ITS in its infrastructure. Even in this case, larger benefits may be expected from certain categories of vehicles. In particular, the Compass4D results reveal that the services benefits are larger for heavy trucks, buses and taxis compared to private vehicles. The reason for this is that the benefits in monetary terms of these users categories are directly proportional to the significant amount of hourly costs associated with wages of the persons involved in the field of transporting goods and people on a daily basis and the large scales of the target groups of interest. At the scale of a city, even for small amount of time saving achieved as a result of giving green light priority of the order of 2% can show a significant annual return, of the order of millions of Euros. Last but not least, the results also indicate that the ratio of the achieved benefits versus costs in terms of both time saving and energy efficiency depends heavily on the expansion of the system in terms of number of equipped vehicles and intersections. In the future, assuming that the penetration of the C-ITS systems and services increases so that the majority of vehicles and intersections is equipped with the necessary OBUs and RSUs, the reductions that can be achieved in terms of percentages of time travel and fuel consumption will be multiplied for all vehicle categories. Finally, it should be noted that the analysis conducted in the frame of Compass4D did not quantify the potential benefits on road safety, such as reduction in injuries or fatalities due to road accidents. This is simply due to the fact that it was not possible to measure the impact of the system in this respect in real life conditions, but only in simulations or in a controlled environment and with non-safety-critical conditions. However, after a number of years of running C-ITS services, it will be possible to collect sufficient data from real cases to conduct a statistical analysis and prove that the use of services such as the Road Hazard Warning or the Red Light Violation Warning can contribute to saving lives and prevent serious injuries. Then, the economic and societal benefits are expected to be very high.

17 Enablers For Sustainable Deployment One of the Compass4D objectives has been to ensure the continuation of services after the end of the project. To this end, public and private stakeholders have elaborated business models and exploitation plans for the sustainable deployment of cooperative ITS services. For each of the seven cities, these clarify the respective roles and responsibilities for operating C-ITS systems infrastructure (covering both onboard and road side units), for further maintenance, upgrade and standards compliance, for equipping additional vehicles and fleets in compliance with the local schemes, for running Compass4D cooperative services (including their further evaluation, improvements and expansion), and many other items essential for a sustainable afterproject life. These agreements have been reached on the basis of the successful Compass4D pilot experiences and results. In most cities, public authorities already have long-term framework contracts for operation of traffic management systems with suppliers and providers. The additional challenges of deploying C-ITS services from pilot to large scale after the end of the project will need to be appropriately addressed in adapted or new framework contracts. In some cities, additions to these contracts have already been made in order to ensure that C-ITS remains or becomes a solution for daily traffic management and to ensure its successful maintenance. If, for instance, an on-board unit malfunctions after the end of the project, it will be repaired during a certain period on an actual-cost basis (without profit) by the respective supplier. For irreparable, lost and stolen units, the costs will be incurred by the vehicle owner/fleet operator on the basis of commercial agreements already in place. For acquisition of new units when expanding C-ITS services operation to additional users, other rules might apply. For a large scale deployment of C-ITS, it is essential to ensure the interoperability between different vendor s systems. To tackle this, Compass4D has developed a Certification Framework and has been taking part in Plugtests 4 providing feedback to the main standardisation bodies. Furthermore, several project partners have cooperated with counterparts from the Department of Transportation (US DoT) in the USA, in order to harmonise communication and service protocols between the two continents. An important indication of the strong belief in cooperative systems as future-proof solutions has been the expansion of the pilot sites equipped with C-ITS communication technologies. For example, in both Copenhagen and Helmond additional routes, not co-funded by the pilot, have been already equipped before the end of the project with ITS-G5 communication technologies and Compass4D services. At the same time, the number of users has increased significantly, especially in the city of Thessaloniki, where hundreds of users have been involved in the pilot primarily due to usage of 3G mobile networks and the relatively low costs of operating a service based on smartphone Apps.

18 Enablers For Sustainable Deployment Further expansion of the services is planned in all seven Compass4D cities, along with the introduction of C-ITS services in additional cities having participated in Compass4D as associated partners. In order to reach a suitable cost-benefit situation, infrastructure and on-board unit costs need to decrease. However, when it comes to installation of new ITS-G5 units in the road side, a significant capital investment is related to the actual installation. If installation can be performed alongside other maintenance or installation works, the overall cost for C-ITS deployment will be considerably reduced. Therefore, implementation of services needs to be planned for strategically, giving priority to installation of units at critical intersections on few key corridors, so as to start providing benefits to users from the first day. Further expansion of services may be then rolled-out in combination with other planned intersection works. From professional users and fleet operators there is a specific pre-requisite to integrate Compass4D functionalities in the display already existing onboard their vehicle or on nomadic devices used for professional purposes. While such integration requires initial investment, it has been proven to be the right choice for large fleets, such as public buses in Copenhagen. 4 Plugtests events serve two main purposes: they provide essential feedback to improve international standards and to accelerate the standards-making process. Furthermore, they enable engineers to get together to test the interoperability of their implementations - which can reduce a product s time-to-market.

19 Future Perspectives Citizens wish to be mobile, unimpeded by traffic congestion, unnecessary delays and accidents. New road infrastructure is costly both in financial and environmental terms. Smart cities therefore need to offer smart, connected, safe and clean solutions. C-ITS can be a part of these solutions. Together with good urban planning, intermodal transport integration and cleaner vehicles, local authorities aim to make cities better places to live, pushing unnecessary traffic out of towns and their peripheries, while providing optimised mobility solutions for citizens and good accessibility for economic activities. In the Compass4D project, seven cities have joined forces with industry and research to pilot C-ITS services in real traffic environments with the ultimate aim to ensure a sustainable after-project life of such C-ITS services. The Compass4D project proved that there is no one-size-fits-all solution, but it has extensively trialled three C-ITS services tailormade to the specific needs of the local situation and in line with local mobility policy goals. Copenhagen for example has focused mainly on improving public transport traffic flows, whereas the main focus of Helmond has been on evaluating and proving the benefits for emergency vehicles and urban freight. On the other hand, Thessaloniki and Vigo have concentrated their efforts on taxi fleets and freight transport, the main sources of traffic for the city. Based on the first positive results for users and cities, all seven pilot cities have decided to continue operating the Compass4D C-ITS services in 2016 regardless of European funding opportunities. Thanks to the strong commitment of both public and private stakeholders in the project, and the investment plans already defined or under definition, representatives from the cities are all convinced that C-ITS will help them to reduce road transport related emissions, improve traffic flows and increase road safety. However, in order to achieve a real impact, a concrete boost for large scale deployment is very much needed. It is all about getting more users, more services and more cities involved. This is the most important next step for both cities as well as the C-ITS industry. Only economies of scale and a mature market will ensure a sustainable growth and affordable roll-out of smart C-ITS solutions for smart, connected cities. Given the financial constraints that most cities and transport business operators are confronted with in Europe, cost effective solutions are the real key for success. The initiative of continuing the Compass4D activities in 2016 with the active support of the ERTICO Partnership and of the various associated public partners during the past three years of the project, demonstrates the true commitment shown by cities towards further deployment of C-ITS.

20 Consortium co-funded by Find out more Duration: January 2013 December 2015 Total budget: Visit Compass4D website: Contact Compass4D coordinator: Giacomo Somma, For Media enquiries: Carla Coppola, Follow Compass4D on

Implementation of Cooperative ITS in Europe: the case of Compass4D

Implementation of Cooperative ITS in Europe: the case of Compass4D Implementation of Cooperative ITS in Europe: the case of Compass4D André Perpey, Compass4D Pilot Site Leader Bordeaux, Giacomo Somma, Compass4D Project Coordinator, g.somma@mail.ertico.com 11 th AASHTO

More information

Compass4D Deployment

Compass4D Deployment Compass4D Deployment Bordeaux Pilot Site Project presentation The European project Compass4D focuses on services which will : Increase drivers safety and comfort Have a positive impact on the local environment

More information

Potential of Intelligent Transport Systems to reduce greenhouse gas emissions in road freight transport

Potential of Intelligent Transport Systems to reduce greenhouse gas emissions in road freight transport Potential of Intelligent Transport Systems to reduce greenhouse gas emissions in road freight transport Andrew Winder Project Manager, Clean Mobility ERTICO, Brussels Contents Background and scope In-vehicle

More information

Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU) Frequently Asked Questions

Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU) Frequently Asked Questions Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU) Frequently Asked Questions Background information: The Fuel Cells and Hydrogen Joint Undertaking was established in 2008-2013, as the first publicprivate

More information

PORTUGUESE NETWORK FOR C-ITS

PORTUGUESE NETWORK FOR C-ITS PORTUGUESE NETWORK FOR C-ITS Rui Alves 28/11/2017 22.12.2017 www.c-roads.eu 1 Agenda GMV in ITS GMV in C-ROADS C-ITS perspective for the future 22.12.2017 www.c-roads.eu 2 Agenda GMV in ITS GMV in C-ROADS

More information

Session: Connected Vehicles Status of C-ITS Deployment in Europe

Session: Connected Vehicles Status of C-ITS Deployment in Europe Session: Connected Vehicles Status of C-ITS Deployment in Europe Vincent BLERVAQUE Independent Consultant and ITS Expert Member of European C-ITS Deployment Platform C-The Difference Pilot Project Manager

More information

imobilitychallenge @imobchallenge www.imobilitychallenge.eu Our economic and environmental future depends on smart solutions for transport: we need to seize every technological opportunity we can get.

More information

Connected Vehicles. V2X technology.

Connected Vehicles. V2X technology. EN Kapsch TrafficCom Connected Vehicles. V2X technology. Cooperative Intelligent Transportation Systems (C-ITS) are based on the communication between vehicles and infrastructure (V2I, or vehicle to infrastructure

More information

The fact that SkyToll is able to deliver quality results has been proven by its successful projects.

The fact that SkyToll is able to deliver quality results has been proven by its successful projects. www.skytoll.com At present, an efficient and well-functioning transport sector and the quality of transport infrastructure itself are a prerequisite for the further growth of the economy and ensure the

More information

Smart cities & effective mobility management solutions - 25 th March, San Paulo ViajeoPLUS Latin American Innovation week.

Smart cities & effective mobility management solutions - 25 th March, San Paulo ViajeoPLUS Latin American Innovation week. Smart cities & effective mobility management solutions - 25 th March, San Paulo ViajeoPLUS Latin American Innovation week. SWARCO AG Content Global changes & Challenges Smart City Effective Mobility solutions

More information

Connected vehicles on European roads: benefits for safety and traffic management

Connected vehicles on European roads: benefits for safety and traffic management Connected vehicles on European roads: benefits for safety and traffic management Luciano Altomare Centro Ricerche Fiat Workshop Klimamobility 2017 April, 20 th 2017 Index V2X evolution in Europe: regulatory

More information

Respecting the Rules Better Road Safety Enforcement in the European Union. ACEA s Response

Respecting the Rules Better Road Safety Enforcement in the European Union. ACEA s Response Respecting the Rules Better Road Safety Enforcement in the European Union Commission s Consultation Paper of 6 November 2006 1 ACEA s Response December 2006 1. Introduction ACEA (European Automobile Manufacturers

More information

Electric Vehicles: Moving from trials to widespread adoption in the North East of England

Electric Vehicles: Moving from trials to widespread adoption in the North East of England Electric Vehicles: Moving from trials to widespread adoption in the North East of England Professor Phil Blythe Newcastle University, UK Chief Scientific Advisor, Department for Transport ITS World Congress,

More information

Eco-Signal Operations Concept of Operations

Eco-Signal Operations Concept of Operations Eco-Signal Operations Concept of Operations Applications for the Environment: Real-Time Information Synthesis (AERIS) Adapted from the Eco-Signal Operations Concept of Operations Document AERIS Operational

More information

actsheet Car-Sharing

actsheet Car-Sharing actsheet Car-Sharing This paper was prepared by: SOLUTIONS project This project was funded by the Seventh Framework Programme (FP7) of the European Commission Solutions project www.uemi.net The graphic

More information

NHTSA Update: Connected Vehicles V2V Communications for Safety

NHTSA Update: Connected Vehicles V2V Communications for Safety NHTSA Update: Connected Vehicles V2V Communications for Safety Alrik L. Svenson Transportation Research Board Meeting Washington, D.C. January 12, 2015 This is US Government work and may be copied without

More information

Energy Institute Hrvoje Požar on Smart Grid: Past activities and future directions

Energy Institute Hrvoje Požar on Smart Grid: Past activities and future directions Energy Institute Hrvoje Požar on Smart Grid: Past activities and future directions ENERGETSKI INSTITUT HRVOJE POŽAR Hrvoje Keko, dipl.ing. Workshop for Preparation of Croatian Technology Platform for Cooperative

More information

H2020 (ART ) CARTRE SCOUT

H2020 (ART ) CARTRE SCOUT H2020 (ART-06-2016) CARTRE SCOUT Objective Advance deployment of connected and automated driving across Europe October 2016 September 2018 Coordination & Support Action 2 EU-funded Projects 36 consortium

More information

Singapore Autonomous Vehicle Initiative (SAVI)

Singapore Autonomous Vehicle Initiative (SAVI) Singapore Autonomous Vehicle Initiative (SAVI) Copyright 2016 Land Transport Authority Mr Alan Quek Senior Manager, Cooperative & Quality ITS Alan_QUEK@lta.gov.sg 1 ASIA Singapore Land area: 719 km 2 Population:

More information

The deployment of public transport innovation in European cities and regions. Nicolas Hauw, Polis

The deployment of public transport innovation in European cities and regions. Nicolas Hauw, Polis The deployment of public transport innovation in European cities and regions Nicolas Hauw, Polis What is Polis? Network Exchange of experiences 65 European cities & regions European Initiatives Innovation

More information

GEAR 2030 Working Group 1 Project Team 2 'Zero emission vehicles' DRAFT RECOMMENDATIONS

GEAR 2030 Working Group 1 Project Team 2 'Zero emission vehicles' DRAFT RECOMMENDATIONS GEAR 2030 Working Group 1 Project Team 2 'Zero emission vehicles' DRAFT RECOMMENDATIONS Introduction The EU Member States have committed to reducing greenhouse gas emissions by 80-95% by 2050 with an intermediate

More information

Bus The Case for the Bus

Bus The Case for the Bus Bus 2020 The Case for the Bus Bus 2020 The Case for the Bus Introduction by Claire Haigh I am sure we are all pleased that the economy is on the mend. The challenge now is to make sure people, young and

More information

APCO International. Emerging Technology Forum

APCO International. Emerging Technology Forum APCO International Emerging Technology Forum Emerging Vehicle to Vehicle, Vehicle to Infrastructure Communications Cars talking to each other and talking to the supporting highway infrastructure The Regulatory

More information

The Motorcycle Industry in Europe. Powered Two-Wheelers the SMART Choice for Urban Mobility

The Motorcycle Industry in Europe. Powered Two-Wheelers the SMART Choice for Urban Mobility The Motorcycle Industry in Europe Powered Two-Wheelers the SMART Choice for Urban Mobility PTWs: the SMART Choice For Urban Mobility Europe s cities are main engines of economic growth, but today s urbanisation

More information

DG system integration in distribution networks. The transition from passive to active grids

DG system integration in distribution networks. The transition from passive to active grids DG system integration in distribution networks The transition from passive to active grids Agenda IEA ENARD Annex II Trends and drivers Targets for future electricity networks The current status of distribution

More information

1. Thank you for the opportunity to comment on the Low Emissions Economy Issues Paper ( Issues Paper ).

1. Thank you for the opportunity to comment on the Low Emissions Economy Issues Paper ( Issues Paper ). 20 September 2017 Low-emissions economy inquiry New Zealand Productivity Commission PO Box 8036 The Terrace Wellington 6143 info@productivity.govt.nz Dear Commission members, Re: Orion submission on Low

More information

-Mobility Solutions. Electric Taxis

-Mobility Solutions. Electric Taxis -Mobility Solutions Electric Taxis This paper was prepared by: SOLUTIONS project This project was funded by the Seventh Framework Programme (FP7) of the European Commission Solutions project www.uemi.net

More information

Connected Vehicles for Safety

Connected Vehicles for Safety Connected Vehicles for Safety Shelley Row Director Intelligent Transportation Systems Joint Program Office Research and Innovative Technology Administration, USDOT The Problem Safety 32,788 highway deaths

More information

Smart planning to unlock urban mobility innovation

Smart planning to unlock urban mobility innovation Smart planning to unlock urban mobility innovation ITF Summit Leipzig, 31 May 2017 Karen Vancluysen, Polis Secretary General ITF Open Stage Café Smart Planning to unlock urban mobility innovation Karen

More information

Satellite navigation traffic control system for low traffic lines Actual status and future deployment in Romania

Satellite navigation traffic control system for low traffic lines Actual status and future deployment in Romania Satellite navigation traffic control system for low traffic lines Actual status and future deployment in Romania Teodor Gradinariu UIC Burkhard Stadlmann Wels University, Austria Ioan Nodea RCCF, Romania

More information

Contact Want to know more about SmartwayZ.NL? Check out or send an to

Contact Want to know more about SmartwayZ.NL? Check out   or send an  to Contact Want to know more about SmartwayZ.NL? Check out www.smartwayz.nl or send an e-mail to info@smartwayz.nl. The economy in the Netherlands, and especially in the Eindhoven region, is flourishing.

More information

The deployment of public transport innovation in European cities and regions. Nicolas Hauw, Polis

The deployment of public transport innovation in European cities and regions. Nicolas Hauw, Polis The deployment of public transport innovation in European cities and regions Nicolas Hauw, Polis What is Polis? Network Exchange of experiences 65 European cities & regions European Initiatives Innovation

More information

European Bus System of the Future

European Bus System of the Future European Bus System of the Future Project Experience Brussels, 13 th November 2013 1 Research and Innovation in Public Transport Innovation in PT = high investments / bad ROI Financial risk sharing welcome

More information

Downtown Transit Connector. Making Transit Work for Rhode Island

Downtown Transit Connector. Making Transit Work for Rhode Island Downtown Transit Connector Making Transit Work for Rhode Island 3.17.17 Project Evolution Transit 2020 (Stakeholders identify need for better transit) Providence Core Connector Study (Streetcar project

More information

SISCOGA4CAD TEST-BED 18/05/2017. Workshop on Automation Pilots on Public Roads Brussels

SISCOGA4CAD TEST-BED 18/05/2017. Workshop on Automation Pilots on Public Roads Brussels SISCOGA4CAD TEST-BED 18/05/2017 Workshop on Automation Pilots on Public Roads Brussels INDEX 1. INTRODUCTION TO SISCOGA 4CAD TEST BED 2. NEXT ACTIVITES AND PILOTS AT SISCOGA 4CAD 3. SUMMARY Workshop on

More information

G4 Apps. Intelligent Vehicles ITS Canada ATMS Detection Webinar June 13, 2013

G4 Apps. Intelligent Vehicles ITS Canada ATMS Detection Webinar June 13, 2013 Intelligent Vehicles ITS Canada ATMS Detection Webinar June 13, 2013 Reducing costs, emissions. Improving mobility, efficiency. Safe Broadband Wireless Operations Fusion: Vehicles-Agencies Technologies,

More information

AND CHANGES IN URBAN MOBILITY PATTERNS

AND CHANGES IN URBAN MOBILITY PATTERNS TECHNOLOGY-ENABLED MOBILITY: Virtual TEsting of Autonomous Vehicles AND CHANGES IN URBAN MOBILITY PATTERNS Technology-Enabled Mobility In the era of the digital revolution everything is inter-connected.

More information

Stan Caldwell Executive Director Traffic21 Institute Carnegie Mellon University

Stan Caldwell Executive Director Traffic21 Institute Carnegie Mellon University Stan Caldwell Executive Director Traffic21 Institute Carnegie Mellon University Connected Vehicles Dedicated Short Range Communication (DSRC) Safer cars. Safer Drivers. Safer roads. Thank You! Tim Johnson

More information

RE: Comments on Proposed Mitigation Plan for the Volkswagen Environmental Mitigation Trust

RE: Comments on Proposed Mitigation Plan for the Volkswagen Environmental Mitigation Trust May 24, 2018 Oklahoma Department of Environmental Quality Air Quality Division P.O. Box 1677 Oklahoma City, OK 73101-1677 RE: Comments on Proposed Mitigation Plan for the Volkswagen Environmental Mitigation

More information

P1 - Public summary report

P1 - Public summary report 7 th Framework Programme INFSO-ICT 314129 P1 - summary report Workpackage WP1 Project management Editor(s) Andras Kovacs (BroadBit) Status Final Distribution (PU) Issue date 2013-09-10 Creation date 2013-09-05

More information

REPORT TO THE CHIEF ADMINISTRATIVE OFFICER FROM THE DEVELOPMENT AND ENGINEERING SERVICES DEPARTMENT COMPRESSED NATURAL GAS TRANSIT FLEET UPDATE

REPORT TO THE CHIEF ADMINISTRATIVE OFFICER FROM THE DEVELOPMENT AND ENGINEERING SERVICES DEPARTMENT COMPRESSED NATURAL GAS TRANSIT FLEET UPDATE September 7, 2016 REPORT TO THE CHIEF ADMINISTRATIVE OFFICER FROM THE DEVELOPMENT AND ENGINEERING SERVICES DEPARTMENT ON COMPRESSED NATURAL GAS TRANSIT FLEET UPDATE PURPOSE To update Council on Kamloops

More information

WHITE PAPER. Preventing Collisions and Reducing Fleet Costs While Using the Zendrive Dashboard

WHITE PAPER. Preventing Collisions and Reducing Fleet Costs While Using the Zendrive Dashboard WHITE PAPER Preventing Collisions and Reducing Fleet Costs While Using the Zendrive Dashboard August 2017 Introduction The term accident, even in a collision sense, often has the connotation of being an

More information

Urban Mobility Systems - Regulation Across Modes

Urban Mobility Systems - Regulation Across Modes 1st European Intermodal Transport Regulation Forum Urban Mobility Systems - Regulation Across Modes Florence 7 December 12 UITP - The basics - UITP is the global organisation for urban, suburban and regional

More information

FREQUENTLY ASKED QUESTIONS

FREQUENTLY ASKED QUESTIONS FREQUENTLY ASKED QUESTIONS 2018 What is the More MARTA Atlanta program? The More MARTA Atlanta program is a collaborative partnership between MARTA and the City of Atlanta to develop and implement a program

More information

Intelligent Transportation Systems. Secure solutions for smart roads and connected highways. Brochure Intelligent Transportation Systems

Intelligent Transportation Systems. Secure solutions for smart roads and connected highways. Brochure Intelligent Transportation Systems Intelligent Transportation Systems Secure solutions for smart roads and connected highways Secure solutions for smart roads and connected highways Today s technology is delivering new opportunities for

More information

Green Power Feasibility Study Econet Lesotho

Green Power Feasibility Study Econet Lesotho Green Power This document has been written to provide information to mobile operators who are considering or planning to deploy green renewable power resources for base station and transmission sites.

More information

Connecting Europe Facility. Regulation Study for Interoperability in the Adoption of Autonomous Driving in European Urban Nodes

Connecting Europe Facility. Regulation Study for Interoperability in the Adoption of Autonomous Driving in European Urban Nodes Connecting Europe Facility AUTOCITS Regulation Study for Interoperability in the Adoption of Autonomous Driving in European Urban Nodes AUTOCITS PROJECT AUTOCITS is an European Project coordinated by INDRA,

More information

Future of Mobility and Role of E-mobility for Future Sustainable Transport. Petr Dolejší Director Mobility and Sustainable Transport

Future of Mobility and Role of E-mobility for Future Sustainable Transport. Petr Dolejší Director Mobility and Sustainable Transport Future of Mobility and Role of E-mobility for Future Sustainable Transport Petr Dolejší Director Mobility and Sustainable Transport ACEA MEMBERS 3 KEY FIGURES ABOUT THE INDUSTRY 12.1 million direct and

More information

Green emotion Development of a European framework for electromobility

Green emotion Development of a European framework for electromobility Green emotion Development of a European framework for electromobility Green emotion joint forces for joint progress Green emotion overall goals Demonstrating an integrated European approach to deploy electromobility

More information

Deployment status and users willingness to pay results on selected invehicle

Deployment status and users willingness to pay results on selected invehicle Deployment status and users willingness to pay results on selected invehicle ITS systems Background Expectations towards traffic: Reduced burden on environment less CO2 emissions Vision zero of traffic

More information

P2 - Public summary report

P2 - Public summary report 7 th Framework Programme INFSO-ICT 314129 P2 - summary report Workpackage WP1 Project management Editor(s) Andras Kovacs (BroadBit) Status Final Distribution (PU) Issue date 2014-10-8 Creation date 2014-10-4

More information

Dr. Chris Borroni-Bird, VP, Strategic Development, Qualcomm Technologies Incorporated. Enabling Connected and Electric Vehicles

Dr. Chris Borroni-Bird, VP, Strategic Development, Qualcomm Technologies Incorporated. Enabling Connected and Electric Vehicles Dr. Chris Borroni-Bird, VP, Strategic Development, Qualcomm Technologies Incorporated Enabling Connected and Electric Vehicles 1 2 3 4 Introduction DSRC WEVC Summary Agenda 2 Multiple technologies intersect

More information

Kathrine Wilson-Ellis Strategic Safety Team. Phil Proctor Future Technologies

Kathrine Wilson-Ellis Strategic Safety Team. Phil Proctor Future Technologies Kathrine Wilson-Ellis Strategic Safety Team Phil Proctor Future Technologies Who are we? 1 st April 2015 Highways England is a public sector company, owned by the Government Primary role of Highways England

More information

NEW MOBILITIES EMERGING IN PARIS

NEW MOBILITIES EMERGING IN PARIS NEW MOBILITIES EMERGING IN PARIS Roger LAMBERT French ministry of ecology, sustainable development and energy -ITS task force Why Paris must take action Pollutionis a source of concern because, in certain

More information

TRAFFIC CONTROL. in a Connected Vehicle World

TRAFFIC CONTROL. in a Connected Vehicle World TRAFFIC CONTROL in a Connected Vehicle World Preparing for the advent of Connected Vehicles and their impact on traffic management and signalized intersection control. Frank Provenzano, Director of Business

More information

Building smart transport in Moscow

Building smart transport in Moscow Building smart transport in Moscow Moscow addressed its road and public transit congestion problems and developed one of the world s smartest and most-used public transportation systems. Here s how. Maksim

More information

TOWARDS ACCIDENT FREE DRIVING

TOWARDS ACCIDENT FREE DRIVING ETSI SUMMIT: 5G FROM MYTH TO REALITY TOWARDS ACCIDENT FREE DRIVING Niels Peter Skov Andersen, General Manager Car 2 Car Communication Consortium All rights reserved How do we stop the cars colliding First

More information

Case Study STREAMS SMART MOTORWAYS

Case Study STREAMS SMART MOTORWAYS Case Study STREAMS SMART MOTORWAYS One of the key challenges facing road agencies today is maximising road network efficiency while reducing impacts on the community. Increasingly, road agencies are turning

More information

AUTOCITS. Regulation Study for Interoperability in the Adoption the Autonomous Driving in European Urban Nodes. LISBON Pilot

AUTOCITS. Regulation Study for Interoperability in the Adoption the Autonomous Driving in European Urban Nodes. LISBON Pilot Regulation Study for Interoperability in the Adoption the Autonomous Driving in European Urban Nodes AUTOCITS LISBON Pilot Pedro Serra IPN Cristiano Premebida - UC Lisbon, October 10th LISBON PILOT 1.

More information

Strategic Plan

Strategic Plan 2005-2015 Strategic Plan SUMMARY OF THE REVISED PLAN IN 2011 A decade focused on developing mass transit in the Outaouais A updated vision of mass transit in the region The STO is embracing the future

More information

Regulation Study for Interoperability in the Adoption the Autonomous Driving in European Urban Nodes AUTOCITS DEMO. November 2017 INNOVACARRETERA

Regulation Study for Interoperability in the Adoption the Autonomous Driving in European Urban Nodes AUTOCITS DEMO. November 2017 INNOVACARRETERA Regulation Study for Interoperability in the Adoption the Autonomous Driving in European Urban Nodes AUTOCITS DEMO November 2017 INNOVACARRETERA 2 INTRODUCTION Action Overview Acronym: AUTOCITS Title:

More information

CONNECTED AUTOMATION HOW ABOUT SAFETY?

CONNECTED AUTOMATION HOW ABOUT SAFETY? CONNECTED AUTOMATION HOW ABOUT SAFETY? Bastiaan Krosse EVU Symposium, Putten, 9 th of September 2016 TNO IN FIGURES Founded in 1932 Centre for Applied Scientific Research Focused on innovation for 5 societal

More information

Sustainable Mobility Project 2.0 Project Overview. Sustainable Mobility Project 2.0 Mobilitätsbeirat Hamburg 01. July 2015

Sustainable Mobility Project 2.0 Project Overview. Sustainable Mobility Project 2.0 Mobilitätsbeirat Hamburg 01. July 2015 Sustainable Mobility Project 2.0 Project Overview Sustainable Mobility Project 2.0 Mobilitätsbeirat Hamburg 01. July 2015 Agenda Goals of the meeting Who We Are World Business Council for Sustainable Development

More information

Regional activities and FOTs: Connected and automated driving trials in Finland

Regional activities and FOTs: Connected and automated driving trials in Finland Regional activities and FOTs: Connected and automated driving trials in Finland Alina Koskela Special adviser Emerging services and R&D Responsible traffic. @alina_koskela Courage and co-operation. Topics

More information

Ensuring the safety of automated vehicles

Ensuring the safety of automated vehicles Ensuring the safety of automated vehicles Alan Stevens Workshop on Verification and Validation for Autonomous Road Vehicles 4 Nov 2016 1 Agenda / Table of contents 1 2 3 Planning trials and safety Estimating

More information

Test & Validation Challenges Facing ADAS and CAV

Test & Validation Challenges Facing ADAS and CAV Test & Validation Challenges Facing ADAS and CAV Chris Reeves Future Transport Technologies & Intelligent Mobility Low Carbon Vehicle Event 2016 3rd Revolution of the Automotive Sector 3 rd Connectivity

More information

TOWARDS THE ELECTRIFICATION OF PUBLIC TRANSPORT VIA PUBLIC-PRIVATE PARTNERSHIP THE EXAMPLE OF LUXEMBOURG

TOWARDS THE ELECTRIFICATION OF PUBLIC TRANSPORT VIA PUBLIC-PRIVATE PARTNERSHIP THE EXAMPLE OF LUXEMBOURG TOWARDS THE ELECTRIFICATION OF PUBLIC TRANSPORT VIA PUBLIC-PRIVATE PARTNERSHIP THE EXAMPLE OF LUXEMBOURG Marcin Seredynski E-Bus Competence Center, Luxembourg PRESENTATION OUTLINE 2 THE PAST 3 THE PARTNERSHIP

More information

RELEASED UNDER THE OFFICIAL INFORMATION ACT 1982

RELEASED UNDER THE OFFICIAL INFORMATION ACT 1982 Subject MINISTERIAL BRIEFING NOTE Rapid Transit in Auckland Date 1 November 2017 Briefing number BRI-1133 Contact(s) for telephone discussion (if required) Name Position Direct line Cell phone 1 st contact

More information

Summary National behavioural survey: speed Research report N 2013-R-06-SEN

Summary National behavioural survey: speed Research report N 2013-R-06-SEN Summary Research report N 2013-R-06-SEN Author: François Riguelle Responsible editor: Karin Genoe Editor: Belgian Road Safety Institute Knowledge Center Road Safety Date of publication: November 2013 Complete

More information

Connected and Automated Mobility in London Viajeo PLUS City Showcase November 2015, Singapore

Connected and Automated Mobility in London Viajeo PLUS City Showcase November 2015, Singapore Connected and Automated Mobility in London Viajeo PLUS City Showcase 16-17 November 2015, Singapore Natalia de Estevan-Ubeda Transport for London Connected and Automated Mobility in London What it means,

More information

C-ITS status in Europe and Outlook

C-ITS status in Europe and Outlook C-ITS status in Europe and Outlook Car 2 Car Communication Consortium ITU Seminar 7 th June 2018 Car 2 Car Communication Consortium Communication Technology Basis ITS-G5 Dedicated Short-Range Communication

More information

Presentation of the European Electricity Grid Initiative

Presentation of the European Electricity Grid Initiative Presentation of the European Electricity Grid Initiative Contractors Meeting Brussels 25th September 2009 1 Outline Electricity Network Scenario European Electricity Grids Initiative DSOs Smart Grids Model

More information

POSITION PAPER ON TRUCK PLATOONING

POSITION PAPER ON TRUCK PLATOONING POSITION PAPER ON TRUCK PLATOONING Platooning is considered a major advancement towards automation in Europe. It consists in linking two or more trucks in a convoy, one following closely the other. These

More information

ETCS Technical Snapshot From Baseline 2 to Baseline 3 creating a stable framework for ERTMS investments

ETCS Technical Snapshot From Baseline 2 to Baseline 3 creating a stable framework for ERTMS investments ETCS Technical Snapshot From Baseline 2 to Baseline 3 creating a stable framework for ERTMS investments Michel Van Liefferinge, UNISIG General Manager CCRCC 2012 6-7 November 2012, Lille UNIFE & UNISIG

More information

emover AMBIENT MOBILITY Jens Dobberthin Fraunhofer Institute for Industrial Engineering IAO e : t :

emover AMBIENT MOBILITY Jens Dobberthin Fraunhofer Institute for Industrial Engineering IAO e : t : emover Developing an intelligent, connected, cooperative and versatile e-minibus fleet to complement privately owned vehicles and public transit More and more people in cities are consciously choosing

More information

Submission to Greater Cambridge City Deal

Submission to Greater Cambridge City Deal What Transport for Cambridge? 2 1 Submission to Greater Cambridge City Deal By Professor Marcial Echenique OBE ScD RIBA RTPI and Jonathan Barker Introduction Cambridge Futures was founded in 1997 as a

More information

Green Line LRT: Beltline Segment Update April 19, 2017

Green Line LRT: Beltline Segment Update April 19, 2017 Green Line LRT: Beltline Segment Update April 19, 2017 Quick Facts On April 11, 2017, City Council approved Administration s recommendation for the Green Line to be underground in the Beltline from 2 Street

More information

Smart systems. Smart traffic. Siemens Intelligent Traffic Systems

Smart systems. Smart traffic. Siemens Intelligent Traffic Systems Smart systems. Smart traffic. Siemens Intelligent Traffic Systems Unrestricted Siemens AG 2019 siemens.com/traffic The world of mobility is facing tremendous challenges We are facing the next mobility

More information

Electric minibuses. Three new minibuses for Brive, France. Supply contract for 3 electric minibuses. Awarded: February 2016

Electric minibuses. Three new minibuses for Brive, France. Supply contract for 3 electric minibuses. Awarded: February 2016 SPP TENDER MODEL Electric minibuses Three new minibuses for Brive, France Purchasing body: Contract: Communauté d agglomération du Bassin de Brive (CABB) Supply contract for 3 electric minibuses Awarded:

More information

Car Sharing at a. with great results.

Car Sharing at a. with great results. Car Sharing at a Denver tweaks its parking system with great results. By Robert Ferrin L aunched earlier this year, Denver s car sharing program is a fee-based service that provides a shared vehicle fleet

More information

One City, One System: Integrating Public Urban Transportation in Coimbra

One City, One System: Integrating Public Urban Transportation in Coimbra One City, One System: Integrating Public Urban Transportation in Coimbra CIVITAS MODERN Study Tour Luis Santos, SMTUC Luis da Vinha, Municipality of Coimbra 8-9 November 2012 Coimbra Situation before CIVITAS

More information

National Road Safety Action Plan in China

National Road Safety Action Plan in China Sixth SHRP 2 Safety Research Symposium National Road Safety Action Plan in China Dr. Yan Wang July 14, 2011 Washington DC, USA Outline 1 Initiative of Road Safety Action Plan 2 Phase I 3 For Next Phase?

More information

Preventing Road Accidents and Injuries for the Safety of Employees Case Study: ALSA FACTFILE. Company: ALSA

Preventing Road Accidents and Injuries for the Safety of Employees Case Study: ALSA FACTFILE. Company: ALSA PRAISE Preventing Road Accidents and Injuries for the Safety of Employees Case Study: ALSA ETSC s PRAISE project addresses the safety aspects of driving at work and driving to work. Its aim is to promote

More information

DOE s Focus on Energy Efficient Mobility Systems

DOE s Focus on Energy Efficient Mobility Systems DOE s Focus on Energy Efficient Mobility Systems Mark Smith Vehicle Technologies Office NASEO Smart Mobility Webinar October 30, 2017 MOBILITY IS FOUNDATIONAL TO OUR WAY OF LIFE 2 CONVERGING TRENDS ARE

More information

UNINTENDED CONSEQUENCE OF THE ELECTRIC VEHICLE REVOLUTION

UNINTENDED CONSEQUENCE OF THE ELECTRIC VEHICLE REVOLUTION UNINTENDED CONSEQUENCE OF THE ELECTRIC VEHICLE REVOLUTION By Tom Grahamslaw and Paul Marsh THROUGH THE NEWS AND MEDIA, ROAD USERS ARE BECOMING MORE AWARE THAT WE ARE NOW SEEING A TRANSITION FROM THE TRADITIONAL

More information

Interconnected vehicles: the French project

Interconnected vehicles: the French project November 6th - 8th, 2013 Hotel Panamericano City of Buenos Aires, Argentina URBAN MOBILITY, ROADS NETWORK OPERATION AND ITS APPLICATIONS Interconnected vehicles: the French project SCORE@F J. Ehrlich,

More information

Daimler Trucks. Supporting the driver in conserving energy and reducing emissions - Daimler Trucks ecodriver assistance experience - Roland Trauter

Daimler Trucks. Supporting the driver in conserving energy and reducing emissions - Daimler Trucks ecodriver assistance experience - Roland Trauter Roland Trauter Supporting the driver in conserving energy and reducing emissions - Daimler Trucks ecodriver assistance experience - EGVIA Workshop European funded project results: Reduction of CO2 emissions

More information

Motorcycles in connected traffic - a contribution to safety

Motorcycles in connected traffic - a contribution to safety Motorcycles in connected traffic - a contribution to safety Hennes Fischer, Yamaha Motor N.V., Netherlands Oliver Kohlinger, Honda R&D Europe GmbH, Germany 11 th International Motorcycle Conference Cologne,

More information

How to manage large scale infrastructures? Infrastructure planning within Toulouse s SUMP. Alexandre Blaquière. 1st December 2016

How to manage large scale infrastructures? Infrastructure planning within Toulouse s SUMP. Alexandre Blaquière. 1st December 2016 How to manage large scale infrastructures? Infrastructure planning within Toulouse s SUMP Alexandre Blaquière 1st December 2016 The challenges for development and attractiveness of the Greater Toulouse

More information

AUTOPILOT presentation

AUTOPILOT presentation AUTOPILOT presentation François FISCHER, ERTICO Project Coordinator AUTOmated driving Progressed by the Internet Of Things Use IoT technologies to move Automated Driving towards a new dimension Enhance

More information

Putting electric buses at the core of public transport

Putting electric buses at the core of public transport Civitas Forum,Torres Vedras, 27 th Sep 2017 Putting electric buses at the core of public transport Aida Abdulah UITP R&I Decarbonasing public transport Quality of life of citizens ensuring quality of service

More information

An Introduction to Automated Vehicles

An Introduction to Automated Vehicles An Introduction to Automated Vehicles Grant Zammit Operations Team Manager Office of Technical Services - Resource Center Federal Highway Administration at the Purdue Road School - Purdue University West

More information

C-ITS in Taiwan. Michael Li

C-ITS in Taiwan. Michael Li C-ITS in Taiwan Michael Li (hhli@itri.org.tw) Deputy Division Director Division for Telematics and Vehicular Control System Information and Communication Lab. (ICL) Industrial Technology Research Institute

More information

Service Quality: Higher Ridership: Very Affordable: Image:

Service Quality: Higher Ridership: Very Affordable: Image: Over the past decade, much attention has been placed on the development of Bus Rapid Transit (BRT) systems. These systems provide rail-like service, but with buses, and are typically less expensive to

More information

Global Perspectives of ITS

Global Perspectives of ITS ITU-T WORKSHOP ICTs: Building the Green City of the Future United Nations Pavilion, EXPO-2010-14 May 2010, Shanghai, China Building Sustainable Green Smart City of the Future enabled by ICT: Global Perspectives

More information

eurofot - European Large-Scale Field Operational Test on In-Vehicle Systems

eurofot - European Large-Scale Field Operational Test on In-Vehicle Systems eurofot - European Large-Scale Field Operational Test on In-Vehicle Systems 4. Tagung Sicherheit durch Fahrerassistenz 15./16. April 2010, München Aria Etemad, Christoph Kessler Ford Research & Advanced

More information

ELVITEN: #Let sgoelectric

ELVITEN: #Let sgoelectric ELVITEN: #Let sgoelectric Plans for the demo site Berlin Ricarda Mendy, R&D Project Coordinator at Hubject GmbH Wocomoco Rotterdam, 06.11.2018 Table of content 1 3 5 About ELVITEN Berlin Framework Conditions

More information

Late Starter. Tuesday, November 6, 2018

Late Starter. Tuesday, November 6, 2018 Late Starter Tuesday, Please note the following item(s) was not included with your agenda as this item(s) was received after the agenda package was printed. Planning and Works Committee Report TES-RTS-18-09,

More information

Experience on ERTICO s cooperation. the field of ITS. TRA, 25 th April 2012, Athens Vincent Blervaque, Director Development & Deployment

Experience on ERTICO s cooperation. the field of ITS. TRA, 25 th April 2012, Athens Vincent Blervaque, Director Development & Deployment Experience on ERTICO s cooperation with emerging economies (BRICS) in the field of ITS TRA, 25 th April 2012, Athens Vincent Blervaque, Director Development & Deployment 1 Usefulness of International cooperation

More information

Reducing CO 2 emissions from vehicles by encouraging lower carbon car choices and fuel efficient driving techniques (eco-driving)

Reducing CO 2 emissions from vehicles by encouraging lower carbon car choices and fuel efficient driving techniques (eco-driving) Reducing CO 2 emissions from vehicles by encouraging lower carbon car choices and fuel efficient driving techniques (eco-driving) David Pryke, Head of Efficient Driving, Department for Transport, London

More information