Electricity & Electronics 4: The Wheatstone Bridge

Size: px
Start display at page:

Download "Electricity & Electronics 4: The Wheatstone Bridge"

Transcription

1 Electricity & Electronics 4: The Wheatstone ridge Wheatstone ridge IM In this unit we are going to consider a network of four resistors called a Wheatstone ridge. The principles involved have applications in digital balances, strain gauges, light detectors, smoke detectors, etc. OJECTIES On completing this unit you should be able to: state the relationship among the resistors in a balanced Wheatstone ridge. carry out calculations involving the resistances in a balanced Wheatstone ridge. State that for an initially balanced Wheatstone ridge, as the value of one resistor is changed by a small amount, the out-of-balance pd is proportional to the change in resistance. Use the term bridge circuit correctly in context. Strathaven cademy Electricity and Electronics

2 Wheatstone ridge Wheatstone ridge Circuit ny method of measuring resistance using an ammeter or voltmeter necessarily involves some error unless the resistances of the meters themselves are taken into account. The use of digital voltmeters largely overcomes this as they tend to have very high resistances. Further error may be introduced if the meter is not correctly calibrated. The only situation where neither of these errors matter is if the meter reading is zero. The Wheatstone bridge circuit is one such example of using a meter as a null deflection indicator. ridge Circuit If O = O there is no p.d. between and hence no current flows. The potentials at and at depend on the ratio of the resistors that make up each of the two voltage dividers. The voltmeter forms a bridge between the two voltage dividers to make up a bridge circuit. alanced ridge No potential difference will exist across when O = 3 4 The bridge is balanced when the voltmeter or galvanometer (milliammeter - basically an uncalibrated and very sensitive moving coil meter) reads zero. 1 3 lternative diamond epresentation with galvanometer 2 4 Example The wheatstone bridge circuit shown is balanced. Find the value of x if the other resistors are as shown. 40 Ω 120 Ω How would you know this circuit is balanced? Solution: x 1 3 = 2 40 = x 80 Ω x x =240 Ω You would know the circuit was balanced as the reading on the galvanometer would be zero. Strathaven cademy Electricity and Electronics

3 Wheatstone ridge CTIITY 5 Title: The alanced Wheatstone ridge pparatus: Wheatstone ridge board, 1.5 cell, µ ammeter, 1 kω/10 kω resistance boxes, set of unknown resistances, and C, decade resistance board. 1 K 1 K m e t e r e s i s t a n c e b o a r d U n k n o w n 1 2, & C 1 K e s i s t a n c e o a r d µ 1 K U n k n o w n Schematic diagram showing position of resistances Circuit diagram Instructions Part Connect the decade resistance board and unknown resistance as shown in the diagram above. y finding the value of resistance of the decade resistance board which exactly balances the Wheatstone ridge, find the value of resistance. epeat to find the value of resistances and C. Strathaven cademy Electricity and Electronics

4 Unbalanced ridge Wheatstone ridge If the bridge is initially balanced, and the resistor X is altered by a small amount X then the out of balance p.d. (reading on ) is directly proportional to the change in resistance, provided the change is small. Hence for small X, reading on X eading on X/ Ω X+X 4 NOTE: The change in resistance must be a small fraction of the overall resistance (for example from 1000 Ω to 990 Ω). When set up in this way a Wheatstone bridge can be used to measure any physical quantity that can cause a change in resistance. One of the resistors can be replaced with a sensor such as an LD, a thermistor, a strain gauge and so on. Strathaven cademy Electricity and Electronics

5 Wheatstone ridge CTIITY 7 Title: The Out-of-alance Wheatstone ridge - pplications pparatus: Wheatstone ridge board, 6 battery, µ ammeter, 1 k Ω/10 kω resistance boxes, decade resistance board, LD, thermistor probe, strain gauge (already set up). Instructions Part - Light Meter Connect the circuit up as shown. alance the Wheatstone ridge circuit with the LD on your bench. There is no need to remove the protective resistor as the circuit is quite sensitive. Take care not to cast shadows over the LD when finding balance. Find the out-of-balance current when the LD is in a light place then in a dark place. Explain why the measured current is greater than zero for one condition and less than zero for the other k Ω 1 1 kk Ω e s i s t a n c e o a r d µ L D L D Part -Thermometer Place the probe in an ice/water mixture in a beaker. (0 C) alance the Wheatstone ridge with the probe in the ice/water mixture. Place the probe in a beaker of boiling water. (100 C) Measure and record the out-of-balance current obtained with the probe in the boiling water. Predict the current obtained when the probe is removed and is measuring room temperature. Calculate the value of room temperature from your results. What assumptions are you making about the temperature of the probe, its resistance, and the out-of-balance current? k Ω 1 kkω e s i s t a n c e o a r d p r o b e µ T h e r m i s t o r p r o b e t Strathaven cademy Electricity and Electronics

6 Wheatstone ridge Wheatstone ridges 25. Calculate the p.d. across 2 in each case (a) (b) (c) 2 kω 1 4 kω 500 Ω t +5 8 kω 2 1 kω Ω Calculate the p.d. across (voltmeter reading) in each case. (a) (b) (c) k Ω 5 k Ω 1 0 k Ω 6 k Ω 2 k Ω 8 k Ω 2 k Ω 4 k Ω (a) Calculate the reading on the voltmeter (b) What alteration could be made to balance the bridge circuit? 6 k Ω 9 k Ω 6 k Ω Strathaven cademy Electricity and Electronics

7 Wheatstone ridge 28. Three pupils are asked to construct balanced Wheatstone bridges. Their attempts are shown Ω 10Ω 9Ω 12Ω 7Ω 14Ω 10Ω 5Ω 12Ω 16Ω 10Ω 20Ω Pupil Pupil Pupil C One of the circuits gives a balanced Wheatstone bridge, one gives an out-of-balance Wheatstone bridge and one is not a Wheatstone bridge. (a) (b) (c) Identify each circuit. How would you test that balance has been obtained? In the off balance Wheatstone bridge: (i) calculate the potential difference across the galvanometer. (ii) in which direction will electron current flow through the galvanometer. 29. Calculate the value of the unknown resistor X in each case Ω x 4 k 1 5 k Ω Ω Ω 9 Ω 1 2 k x Ω 30. The circuit shown opposite is balanced. 1 0 k Ω 2 5 k Ω 3.6 k Ω x (a) What is the value of resistance? 1 0 Ω 2 0 Ω (b) Will the bridge be unbalanced if (i) a 5 Ω resistor is inserted next to the 10 Ω resistor (ii) a 3 supply is used. (c) What is the function of resistor and what is the disadvantage of using it as shown? 5 Ω X Strathaven cademy Electricity and Electronics

8 31. The following Wheatstone bridge circuit is used to monitor the mechanical strain on a girder in an oil rig Wheatstone ridge S train gauges (a) (b) Explain how the circuit can be used to monitor the strain. Sketch the graph of current through the galvanometer against the strain n automotive electrician needed to accurately measure the resistance of a resistor. She set up a circuit using an analogue milliammeter and a digital voltmeter. The two meter readings were: m OO1.3 (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) What are the readings? What is the nominal resistance calculated from these readings? Which reading is likely to cause the greatest uncertainty? What is the smallest division on the milliammeter? What is the absolute uncertainty on the milliammeter? What is the absolute uncertainty on the voltmeter? What is the percentage uncertainty on the milliammeter? What is the percentage uncertainty on the voltmeter? Which is the greatest percentage uncertainty? What is the percentage uncertainty in the resistance? What is the absolute uncertainty in the resistance? Express the final result as (resistance ± uncertainty)ω ound both the result and the uncertainty to the relevant number of significant figures or decimal places. Strathaven cademy Electricity and Electronics

Sensing Devices. Question Paper. Save My Exams! The Home of Revision. International A Level. Exam Board. Current of Electricity.

Sensing Devices. Question Paper. Save My Exams! The Home of Revision. International A Level. Exam Board. Current of Electricity. For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ Sensing evices Question Paper Level Subject Exam oard Topic Sub Topic Paper Type ooklet International Level Physics IE urrent

More information

EMaSM. Principles Of Sensors & transducers

EMaSM. Principles Of Sensors & transducers EMaSM Principles Of Sensors & transducers Introduction: At the heart of measurement of common physical parameters such as force and pressure are sensors and transducers. These devices respond to the parameters

More information

ELECTRICAL MEASURING INSTRUMENT CHAPTER 15 ELECTRICAL MEASURING INSTRUMENTS THE MOVING COIL GALVANOMETER The moving coil galvanometer is a basic electrical instrument. It is used for the detection or measurement

More information

Series-Parallel Circuits

Series-Parallel Circuits Chapter 6 Series-Parallel Circuits Topics Covered in Chapter 6 6-1: Finding R T for Series-Parallel Resistances 6-2: Resistance Strings in Parallel 6-3: Resistance Banks in Series 6-4: Resistance Banks

More information

MEASURING INSTRUMENTS. Basic Electrical Engineering (REE-101) 1

MEASURING INSTRUMENTS. Basic Electrical Engineering (REE-101) 1 MEASURING INSTRUMENTS Basic Electrical Engineering (REE-101) 1 MEASURING INSTRUMENTS The device used for comparing the unknown quantity with the unit of measurement or standard quantity is called a Measuring

More information

SOURCES OF EMF AND KIRCHHOFF S LAWS

SOURCES OF EMF AND KIRCHHOFF S LAWS SOURCES OF EMF AND KIRCHHOFF S LAWS VERY SHORT ANSWER QUESTIONS 1. What is the SI unit of (i) emf (ii) terminal potential difference? 2. When an ammeter is put in series in a circuit, does it read slightly

More information

Experiment 4. Electric circuit (Wheatstone Bridge)

Experiment 4. Electric circuit (Wheatstone Bridge) Experiment 4. Electric circuit (Wheatstone Bridge). Purpose Understand the structure and measurement method of Wheatstone Bridge. Measure unknown electric resistances properly. 2. Principle () Theory As

More information

I Ish. Figure 2 Ammeter made from galvanometer and shunt resistor.

I Ish. Figure 2 Ammeter made from galvanometer and shunt resistor. Page 1/6 Revision 2 1-Jun-10 OBJECTIVES Understand the galvanometer and its limitations. Use circuit laws to build a suitable ammeter and voltmeter from the galvanometer. Understand the loading effect

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 Q1. A battery of emf 9.0 V and internal resistance, r, is connected in the circuit shown in the figure below. (a) The current in the battery is 1.0 A. (i) Calculate the pd between points A and B in the

More information

Circuit Analysis Questions A level standard

Circuit Analysis Questions A level standard 1. (a) set of decorative lights consists of a string of lamps. Each lamp is rated at 5.0 V, 0.40 W and is connected in series to a 230 V supply. Calculate the number of lamps in the set, so that each lamp

More information

Lab 4. DC Circuits II

Lab 4. DC Circuits II Physics 2020, Spring 2005 Lab 4 page 1 of 7 Lab 4. DC Circuits II INTRODUCTION: This week we will continue with DC circuits, but now with an emphasis on current rather than voltage. Of course, in order

More information

LIST OF PRACTICAL FOR IX-X GRADES

LIST OF PRACTICAL FOR IX-X GRADES LIST OF PRACTICAL FOR IX-X GRADES Standard experiments 1 To measure the area of cross section by measuring diameter of a solid cylinder with vernier callipers. 2 To measure the volume of a solid cylinder

More information

Lab 4. DC Circuits II

Lab 4. DC Circuits II Physics 2020, Spring 2005 Lab 4 page 1 of 7 Lab 4. DC Circuits II INTRODUCTION: This week we will continue with DC circuits, but now with an emphasis on current rather than voltage. Of course, in order

More information

Fig There is a current in each wire in a downward direction (into the page).

Fig There is a current in each wire in a downward direction (into the page). 1 (a) Two straight, vertical wires X and Y pass through holes in a horizontal card. Fig. 8.1 shows the card viewed from above. card wire in hole X Y wire in hole Fig. 8.1 There is a current in each wire

More information

Unit P.2, P2.3. Currents in electric circuits E ½. F Fuel gauge indicator. Fuel tank. Ammeter. Float. Battery. Sliding contact. Pivot 12V.

Unit P.2, P2.3. Currents in electric circuits E ½. F Fuel gauge indicator. Fuel tank. Ammeter. Float. Battery. Sliding contact. Pivot 12V. Currents in electric circuits 1. The diagram shows the fuel gauge assembly in a car. The sliding contact touches a coil of wire and moves over it. The sliding contact and the coil form a variable resistor.

More information

Chapter 19. DC Circuits

Chapter 19. DC Circuits Ch-19-1 Chapter 19 Questions DC Circuits 1. Explain why birds can sit on power lines safely, even though the wires have no insulation around them, whereas leaning a metal ladder up against a power line

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Direct Current When the current in a circuit has a constant magnitude and direction, the current is called direct current Because the potential difference between the

More information

General Electrical Information

General Electrical Information Memorial University of Newfoundland Department of Physics and Physical Oceanography Physics 2055 Laboratory General Electrical Information Breadboards The name breadboard comes from the days when electrical

More information

APPARATUS AND MATERIAL REQUIRED Resistor, ammeter, (0-1.5A) voltmeter (0-5V ), battery, one way key, rheostat, sand paper, connecting wires.

APPARATUS AND MATERIAL REQUIRED Resistor, ammeter, (0-1.5A) voltmeter (0-5V ), battery, one way key, rheostat, sand paper, connecting wires. ACTIVITIES ACTIVITY 1 AIM To assemble the components of a given electrical circuit. APPARATUS AND MATERIAL REQUIRED Resistor, ammeter, (0-1.5A) voltmeter (0-5V ), battery, one way key, rheostat, sand paper,

More information

Chapter 9 Basic meters

Chapter 9 Basic meters Chapter 9 Basic meters Core Competency Units UEENEEE003B Solve problems in extra-low voltage single path circuits UEENEEE004B Solve problems in multiple path DC Circuits Essential Knowledge and Associated

More information

Figure 1. Figure

Figure 1. Figure Q1.Figure 1 shows a circuit including a thermistor T in series with a variable resistor R. The battery has negligible internal resistance. Figure 1 The resistance temperature (R θ) characteristic for T

More information

PHYSICS MCQ (TERM-1) BOARD PAPERS

PHYSICS MCQ (TERM-1) BOARD PAPERS GRADE: 10 PHYSICS MCQ (TERM-1) BOARD PAPERS 1 The number of division in ammeter of range 2A is 10 and voltmeter of range 5 V is 20. When the switch of the circuit given below is closed, ammeter reading

More information

34.5 Electric Current: Ohm s Law OHM, OHM ON THE RANGE. Purpose. Required Equipment and Supplies. Discussion. Procedure

34.5 Electric Current: Ohm s Law OHM, OHM ON THE RANGE. Purpose. Required Equipment and Supplies. Discussion. Procedure Name Period Date CONCEPTUAL PHYSICS Experiment 34.5 Electric : Ohm s Law OHM, OHM ON THE RANGE Thanx to Dean Baird Purpose In this experiment, you will arrange a simple circuit involving a power source

More information

Voltmeter. for Experiments with the fischertechnik Expansion Kit. Order No

Voltmeter. for Experiments with the fischertechnik Expansion Kit. Order No Voltmeter for Experiments with the fischertechnik Expansion Kit Order No. 30083 Fischer Werke 7241 Tumlingen Printed in Germany Ref. No. 33-8/70/5 2. Operation of the Moving Coil Meter If a current flows

More information

Let's start our example problems with a D'Arsonval meter movement having a full-scale deflection rating of 1 ma and a coil resistance of 500 Ω:

Let's start our example problems with a D'Arsonval meter movement having a full-scale deflection rating of 1 ma and a coil resistance of 500 Ω: Voltmeter design As was stated earlier, most meter movements are sensitive devices. Some D'Arsonval movements have full-scale deflection current ratings as little as 50 µa, with an (internal) wire resistance

More information

Higher Homework One Part A. 1. Four resistors, each of resistance 20Ω, are connected to a 60V supply as shown.

Higher Homework One Part A. 1. Four resistors, each of resistance 20Ω, are connected to a 60V supply as shown. Higher Homework One Part A 1. Four resistors, each of resistance 20Ω, are connected to a 60V supply as shown. a) Calculate the total resistance of the circuit. b) Calculate the current drawn from the supply.

More information

Academic Year

Academic Year EXCELLENCE INTERNATIONAL SCHOOL First Term, Work sheet (1) Grade (9) Academic Year 2014-2015 Subject: quantities Topics:- Static electricity - Eelectrical NAME: DATE: MULTIPLE CHOICE QUESTIONS: 1 - A circuit

More information

Principles and types of analog and digital ammeters and voltmeters

Principles and types of analog and digital ammeters and voltmeters Principles and types of analog and digital ammeters and voltmeters Electrical voltage and current are two important quantities in an electrical network. The voltage is the effort variable without which

More information

INDIAN SCHOOL MUSCAT

INDIAN SCHOOL MUSCAT INDIAN SCHOOL MUSCAT Department of Physics Class:XII Physics Worksheet-3 (2018-2019) Chapter 3: Current Electricity Section A Conceptual and Application type Questions 1 Two wires of equal length, one

More information

PAPER 2 THEORY QUESTIONS

PAPER 2 THEORY QUESTIONS PAPER 2 THEORY QUESTIONS 1 A plastic rod is rubbed with a cloth and becomes negatively charged. (a) Explain how the rod becomes negatively charged when rubbed with a cloth... [2] (b) An uncharged metal-coated

More information

Circuits-Circuit Analysis

Circuits-Circuit Analysis Base your answers to questions 1 through 3 on the information and diagram below. 4. A 9-volt battery is connected to a 4-ohm resistor and a 5-ohm resistor as shown in the diagram below. A 3.0-ohm resistor,

More information

Special resistors. Book page Syllabus

Special resistors. Book page Syllabus Special resistors Book page 84 87 Syllabus2.12 2.13 Multiple-choice quiz What am I? LDR, LED or thermistor? Starter LDR s and thermistors are both types of resistor which can change their resistances.

More information

QSS Installation & Calibration. Presented by: Joe Gomes Field Service Manager

QSS Installation & Calibration. Presented by: Joe Gomes Field Service Manager QSS Installation & Calibration Presented by: Joe Gomes Field Service Manager 2 Determining a QSS Location The Valve will need to be stroked to determine a QSS location. Then we need to know if the QSS

More information

ELECTRICITY & MAGNETISM - EXAMINATION QUESTIONS (4)

ELECTRICITY & MAGNETISM - EXAMINATION QUESTIONS (4) ELECTRICITY & MAGNETISM - EXAMINATION QUESTIONS (4) 1. Which two electrical quantities are measured in volts? A current and e.m.f. B current and resistance C e.m.f. and potential difference D potential

More information

DC Voltmeters and Ammeters *

DC Voltmeters and Ammeters * OpenStax-CNX module: m55368 1 DC Voltmeters and Ammeters * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 1 Learning Objectives By the end

More information

What does the measure? I

What does the measure? I TOP 17 urrent Electricity 1 Which of the following is a correct unit for electrical energy? 5 The diagrams show the symbols and ranges of five meters. ampere Which meter should be used to measure a current

More information

EXPERIMENT - 1 OHM S LAW

EXPERIMENT - 1 OHM S LAW NOTE: While you copy the practical record see that you are following the note. Write Aim, theory, materials required, procedure, results, discussion and precautions on the right side of your record. While

More information

Busy Ant Maths and the Scottish Curriculum for Excellence Year 6: Primary 7

Busy Ant Maths and the Scottish Curriculum for Excellence Year 6: Primary 7 Busy Ant Maths and the Scottish Curriculum for Excellence Year 6: Primary 7 Number, money and measure Estimation and rounding Number and number processes Including addition, subtraction, multiplication

More information

7.9.2 Potential Difference

7.9.2 Potential Difference 7.9.2 Potential Difference 62 minutes 69 marks Page 1 of 20 Q1. A set of Christmas tree lights is made from twenty identical lamps connected in series. (a) Each lamp is designed to take a current of 0.25

More information

Instrumental technique presentation

Instrumental technique presentation Instrumental technique presentation ammeter Manju 28.10.2017 An ammeter is a measuring instrument used to measure the electric current in a circuit. History I A The relation between electric current, magnetic

More information

Electricity 2 Questions NAT 5

Electricity 2 Questions NAT 5 Electricity 2 Questions NAT 5 1) a) A 25W lamp is designed to be used with the mains voltage. Calculate the resistance of the lamp. b) Four of the lamps are connected in parallel. Calculate the total resistance

More information

Unit 10 Measuring Instruments

Unit 10 Measuring Instruments Objectives: Unit 10 Discuss the operation of a d Arsonval meter movement. Connect a voltmeter to a circuit. Read an analog multimeter. Connect an ammeter. Measure resistance using an ohmmeter. Analog meters

More information

Laboratory Exercise 12 THERMAL EFFICIENCY

Laboratory Exercise 12 THERMAL EFFICIENCY Laboratory Exercise 12 THERMAL EFFICIENCY In part A of this experiment you will be calculating the actual efficiency of an engine and comparing the values to the Carnot efficiency (the maximum efficiency

More information

Q2. The diagram shows a network of four 2 Ω resistors. The effective resistance, in Ω, between X and Y is A 0.5 B 1.2 C 1.7. D 2.

Q2. The diagram shows a network of four 2 Ω resistors. The effective resistance, in Ω, between X and Y is A 0.5 B 1.2 C 1.7. D 2. Q1. Three identical cells, each of internal resistance R, are connected in series with an external resistor of resistance R. The current in the external resistor is I. If one of the cells is reversed in

More information

High Demand Questions QUESTIONSHEET 1 (a) Teresa set up the circuit shown in the diagram. The ammeter reading was 0.4 A.

High Demand Questions QUESTIONSHEET 1 (a) Teresa set up the circuit shown in the diagram. The ammeter reading was 0.4 A. High Demand Questions QUESTIONSHEET 1 (a) Teresa set up the circuit shown in the diagram. The ammeter reading was 0.4 A. A 4 Ω (i) What is the value of the current through the 4Ω resistor? (ii) What is

More information

4.2 Electrical Quantities

4.2 Electrical Quantities For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ 4.2 Electrical Quantities Question Paper Level IGSE Subject Physics (625) Exam oard Topic Sub Topic ooklet ambridge International

More information

Electromagnetic Induction

Electromagnetic Induction Electromagnetic Induction Question Paper Level ubject Exam oard Unit Topic ooklet O Level Physics ambridge International Examinations Electricity and Magnetism Electromagnetic Induction Question Paper

More information

EXPERIMENT 11: FARADAY S LAW OF INDUCTION

EXPERIMENT 11: FARADAY S LAW OF INDUCTION LAB SECTION: NAME: EXPERIMENT 11: FARADAY S LAW OF INDUCTION Introduction: In this lab, you will use solenoids and magnets to investigate the qualitative properties of electromagnetic inductive effects

More information

EXPERIMENT 8 CURRENT AND VOLTAGE MEASUREMENTS

EXPERIMENT 8 CURRENT AND VOLTAGE MEASUREMENTS EXPERMENT 8 CURRENT AND VOLTAGE MEASUREMENTS Structure 8.1 ntroduction 8.2 Aim 8.3 Getting to Know Ammeters and Voltmeters 8.4 Ammeters and Voltmeters in DC Circuits V Characteristics of a Resistor V Characteristics

More information

AP Physics B Ch 18 and 19 Ohm's Law and Circuits

AP Physics B Ch 18 and 19 Ohm's Law and Circuits Name: Period: Date: AP Physics B Ch 18 and 19 Ohm's Law and Circuits MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A device that produces electricity

More information

Voltmeter and Ammeter Design

Voltmeter and Ammeter Design EEE3406 Instrumentation & easurements LABOATOY Experiment 2 Name Class Date Class No. arks Voltmeter and Ammeter Design Objectives: After completing this lab, you will be able to measure the full-scale

More information

16.3 Ohm s Law / Energy and Power / Electric Meters

16.3 Ohm s Law / Energy and Power / Electric Meters 16.3 Ohm s Law / Energy and Power / Electric Meters Voltage Within a battery, a chemical reaction occurs that transfers electrons from one terminal to another terminal. This potential difference across

More information

CLASSIFIED 5 MAGNETISM ELECTROMAGNETIC INDUCTION GENERATOR MOTOR - TRANSFORMER. Mr. Hussam Samir

CLASSIFIED 5 MAGNETISM ELECTROMAGNETIC INDUCTION GENERATOR MOTOR - TRANSFORMER. Mr. Hussam Samir CLASSIFIED 5 MAGNETISM ELECTROMAGNETIC INDUCTION GENERATOR MOTOR - TRANSFORMER Mr. Hussam Samir EXAMINATION QUESTIONS (5) 1. A wire perpendicular to the page carries an electric current in a direction

More information

4.5 Dangers of Electricity

4.5 Dangers of Electricity For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ 4.5 angers of Electricity Question Paper Level IGSE Subject Physics (0625) Exam oard Topic Sub Topic ooklet ambridge International

More information

Experiment 3: Ohm s Law; Electric Power. Don t take circuits apart until the instructor says you don't need to double-check anything.

Experiment 3: Ohm s Law; Electric Power. Don t take circuits apart until the instructor says you don't need to double-check anything. Experiment 3: Ohm s Law; Electric Power. How to use the digital meters: You have already used these for DC volts; turn the dial to "DCA" instead to get DC amps. If the meter has more than two connectors,

More information

INVESTIGATION ONE: WHAT DOES A VOLTMETER DO? How Are Values of Circuit Variables Measured?

INVESTIGATION ONE: WHAT DOES A VOLTMETER DO? How Are Values of Circuit Variables Measured? How Are Values of Circuit Variables Measured? INTRODUCTION People who use electric circuits for practical purposes often need to measure quantitative values of electric pressure difference and flow rate

More information

EKT112 Principles of Measurement and Instrumentation. Power Measurement

EKT112 Principles of Measurement and Instrumentation. Power Measurement EKT112 Principles of Measurement and Instrumentation Power Measurement 1 Outline Power? Power in DC and AC Circuits Power Measurements Power Instrumentation (Wattmeter) 2 Concept of Electric POWER Power

More information

Lab 2 Electrical Measurements and Ohm s Law

Lab 2 Electrical Measurements and Ohm s Law Lab 2 Electrical Measurements and Ohm s Law Safety and Equipment No special safety precautions are necessary for this lab. Computer with PASCO Capstone, PASCO 850 Universal Interface Double banana/alligator

More information

V=I R P=V I P=I 2 R. E=P t V 2 R

V=I R P=V I P=I 2 R. E=P t V 2 R Circuit Concepts Learners should be able to: (a) draw, communicate and analyse circuits using standard circuit symbols using standard convention (b) apply current and voltage rules in series and parallel

More information

1 A strong electromagnet is used to attract pins. core. current. coil. pins. What happens when the current in the coil is halved?

1 A strong electromagnet is used to attract pins. core. current. coil. pins. What happens when the current in the coil is halved? 1 strong electromagnet is used to attract pins. current core pins coil What happens when the current in the coil is halved? No pins are attracted. Some pins are attracted, but not as many. The same number

More information

The graphs show the voltage across two different types of cell as they transfer the last bit of their stored energy through the torch bulb.

The graphs show the voltage across two different types of cell as they transfer the last bit of their stored energy through the torch bulb. Q1. A small torch uses a single cell to make the bulb light up. (a) The graphs show the voltage across two different types of cell as they transfer the last bit of their stored energy through the torch

More information

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY (Approved by A.I.C.T.E & Affiliated to JNTUK,Kakinada) Jonnada, Denkada (M), Vizianagaram Dist 535 005 Phone No. 08922-241111, 241666 E-Mail: lendi_2008@yahoo.com

More information

CHAPTER 19 DC Circuits Units

CHAPTER 19 DC Circuits Units CHAPTER 19 DC Circuits Units EMF and Terminal Voltage Resistors in Series and in Parallel Kirchhoff s Rules EMFs in Series and in Parallel; Charging a Battery Circuits Containing Capacitors in Series and

More information

SECTION 2 SAFETY, TOOLS AND EQUIPMENT, SHOP PRACTICES UNIT 11 CALIBRATING INSTRUMENTS

SECTION 2 SAFETY, TOOLS AND EQUIPMENT, SHOP PRACTICES UNIT 11 CALIBRATING INSTRUMENTS SECTION 2 SAFETY, TOOLS AND EQUIPMENT, SHOP PRACTICES UNIT 11 CALIBRATING INSTRUMENTS UNIT OBJECTIVES After studying this unit, the reader should be able to describe instruments used in heating, air conditioning,

More information

3/12/2012 UNIT OBJECTIVES THE NEED FOR CALIBRATION SECTION 2 SAFETY, TOOLS AND EQUIPMENT, SHOP PRACTICES UNIT 11 CALIBRATING INSTRUMENTS

3/12/2012 UNIT OBJECTIVES THE NEED FOR CALIBRATION SECTION 2 SAFETY, TOOLS AND EQUIPMENT, SHOP PRACTICES UNIT 11 CALIBRATING INSTRUMENTS SECTION 2 SAFETY, TOOLS AND EQUIPMENT, SHOP PRACTICES UNIT 11 CALIBRATING UNIT OBJECTIVES After studying this unit, the reader should be able to describe instruments used in heating, air conditioning,

More information

LAB 7. SERIES AND PARALLEL RESISTORS

LAB 7. SERIES AND PARALLEL RESISTORS Name: LAB 7. SERIES AND PARALLEL RESISTORS Problem How do you measure resistance, voltage, and current in a resistor? How are these quantities related? What is the difference between a series circuit and

More information

EXPERIMENT 4 OHM S LAW, RESISTORS IN SERIES AND PARALLEL

EXPERIMENT 4 OHM S LAW, RESISTORS IN SERIES AND PARALLEL 220 4- I. THEOY EXPEIMENT 4 OHM S LAW, ESISTOS IN SEIES AND PAALLEL The purposes of this experiment are to test Ohm's Law, to study resistors in series and parallel, and to learn the correct use of ammeters

More information

CT325 TEMPERATURE CONTROLLER INSTALLATION AND OPERATING INSTRUCTIONS

CT325 TEMPERATURE CONTROLLER INSTALLATION AND OPERATING INSTRUCTIONS CT325 TEMPERATURE CONTROLLER INSTALLATION AND OPERATING INSTRUCTIONS Heat items with up to 240 watts DC only Up to 60 VDC Signals to display, on your voltmeter, the set point and actual temperatures in

More information

IDEAL INDUSTRIES INC. TECHNICAL MANUAL - SUPPLEMENT MODEL

IDEAL INDUSTRIES INC. TECHNICAL MANUAL - SUPPLEMENT MODEL IDEAL INDUSTRIES INC. TECHNICAL MANUAL - SUPPLEMENT MODEL 61-791 The Service Information provides the following: This is a Supplemental Manual to Megger s DM220 Service Manual and is intended for Performance

More information

RICHLAND COLLEGE School of Engineering Business & Technology Rev. 0 W. Slonecker Rev. 1 (8/26/2012) J. Bradbury

RICHLAND COLLEGE School of Engineering Business & Technology Rev. 0 W. Slonecker Rev. 1 (8/26/2012) J. Bradbury RICHLAND COLLEGE School of Engineering Business & Technology Rev. 0 W. Slonecker Rev. 1 (8/26/2012) J. Bradbury INTC 1307 Instrumentation Test Equipment Teaching Unit 2 Direct Current Meters Unit 2 Direct

More information

Myers Vacuum RD # 2 Box 247A Kittanning, PA Phone: Fax: Instruction Manual For Thermistor Gauge GT-340A

Myers Vacuum RD # 2 Box 247A Kittanning, PA Phone: Fax: Instruction Manual For Thermistor Gauge GT-340A RD # 2 Box 247A Kittanning, PA 16201 Phone: 724-545-8331 Fax: 724-545-8332 For Thermistor Gauge GT-340A TABLE OF CONTENTS SECTION DESCRIPTION 1.0 INTRODUCTION 1.1 Product Description 1.2 Operating Principles

More information

41-747G. Figure 1: Type DGF Relay without case (Photo)

41-747G. Figure 1: Type DGF Relay without case (Photo) Figure 1: Type DGF Relay without case (Photo) 2 183A113 EDSK 205342 Figure 2: Internal Schematic of the Type DGF Relay in the FT21 Case. When a ground appears in the generator field, the dc milliammeter

More information

Electronics Questions NAT 5

Electronics Questions NAT 5 Electronics Questions NAT 5 1) A radio and a computer mouse are examples of electronic systems. a) An electronic system can be represented by a block diagram as shown. Complete the block diagram by filling

More information

Objectives. Materials TI-73 CBL 2

Objectives. Materials TI-73 CBL 2 . Objectives To understand the relationship between dry cell size and voltage Activity 4 Materials TI-73 Unit-to-unit cable Voltage from Dry Cells CBL 2 Voltage sensor New AAA, AA, C, and D dry cells Battery

More information

Sharjah Indian School Sharjah Boys Wing

Sharjah Indian School Sharjah Boys Wing Read the instructions given below carefully before writing the fair record book. The following details are to be written on the LEFT HAND SIDE of the book. CIRCUIT DIAGRAM CALCULATIONS The remaining details

More information

PHYSICS 6 EXTENDED PHYSICS

PHYSICS 6 EXTENDED PHYSICS PHYSICS 6 EXTENDED PHYSICS GRADE 11 TERM 3 PORTFOLIO TASKS 2013-2014 STS\G11\Portfolio\Extended Physics Assessment Booklet\CDAU\ADVETIVersion 1.0 2014 1 31 Unit/Topic Performance Criteria Assess Event

More information

Basic Circuits Notes- THEORY. An electrical circuit is a closed loop conducting path in which electrical current flows

Basic Circuits Notes- THEORY. An electrical circuit is a closed loop conducting path in which electrical current flows Basic Circuits Notes- THEORY NAME: An electrical circuit is a closed loop conducting path in which electrical current flows Now how does a circuit work? In order to get the water flowing, you d need a

More information

to allow a current in one circuit to operate a switch in another circuit to protect a circuit by melting if the current becomes too large

to allow a current in one circuit to operate a switch in another circuit to protect a circuit by melting if the current becomes too large 1 What is the function of a relay? to allow a current in one circuit to operate a switch in another circuit to prevent an electric shock by earthing a metal case to protect a circuit by melting if the

More information

Simple Demonstration of the Seebeck Effect

Simple Demonstration of the Seebeck Effect Simple Demonstration of the Seebeck Effect Arman Molki The Petroleum Institute, Abu Dhabi, United Arab Emirates amolki@pi.ac.ae Abstract In this article we propose a simple and low-cost experimental set-up

More information

LIST OF PRACTICAL FOR GRADE XI Standard experiments

LIST OF PRACTICAL FOR GRADE XI Standard experiments LIST OF PRACTICAL FOR GRADE XI Standard experiments 1- Measure length and diameter of a solid cylinder and hence estimate its volume quoting proper number of significant figures using Vernier callipers.

More information

Which of the following statements is/are correct about the circuit above?

Which of the following statements is/are correct about the circuit above? Name: ( ) Class: Date: Electricity Exercises 1. Which of the following statements is/are correct about the circuit above? (1) Electrons flow from right to left through the bulb A. (2) Charges will be used

More information

PIN LOAD CELL TYPE PR

PIN LOAD CELL TYPE PR Applications: The pin type load cell model PR is mainly foreseen for applications on cranes weighing systems or, in general, where the load applied on a pin have to be measured. Some applications are:

More information

Houghton Mifflin MATHEMATICS. Level 1 correlated to Chicago Academic Standards and Framework Grade 1

Houghton Mifflin MATHEMATICS. Level 1 correlated to Chicago Academic Standards and Framework Grade 1 State Goal 6: Demonstrate and apply a knowledge and sense of numbers, including basic arithmetic operations, number patterns, ratios and proportions. CAS A. Relate counting, grouping, and place-value concepts

More information

Lab #1: Electrical Measurements I Resistance

Lab #1: Electrical Measurements I Resistance Lab #: Electrical Measurements I esistance Goal: Learn to measure basic electrical quantities; study the effect of measurement apparatus on the quantities being measured by investigating the internal resistances

More information

HSC Physics. Module 9.3. Motors and. Generators

HSC Physics. Module 9.3. Motors and. Generators HSC Physics Module 9.3 Motors and Generators 9.3 Motors and Generators (30 indicative hours) Contextual Outline Electricity is a convenient and flexible form of energy. It can be generated and distributed

More information

Union College Winter 2016 Name Partner s Name

Union College Winter 2016 Name Partner s Name Union College Winter 2016 Name Partner s Name Physics 121 Lab 8: Electromagnetic Induction By Faraday s Law, a change in the magnetic flux through a coil of wire results in a current flowing in the wire.

More information

USER MANUAL RHF SERIES

USER MANUAL RHF SERIES Hukseflux Thermal Sensors USER MANUAL RHF SERIES Ring heat flux sensors Copyright by Hukseflux manual v1824 www.hukseflux.com info@hukseflux.com Warning statements Follow the installation instructions

More information

Chapter 3. ECE Tools and Concepts

Chapter 3. ECE Tools and Concepts Chapter 3 ECE Tools and Concepts 31 CHAPTER 3. ECE TOOLS AND CONCEPTS 3.1 Section Overview This section has four exercises. Each exercise uses a prototyping board for building the circuits. Understanding

More information

Chapter Assessment Use with Chapter 22.

Chapter Assessment Use with Chapter 22. Date Period 22 Use with Chapter 22. Current Electricity Understanding Concepts Part A Use each of the following terms once to complete the statements below. ampere electric current potential difference

More information

ni.com Sensor Measurement Fundamentals Series

ni.com Sensor Measurement Fundamentals Series Sensor Measurement Fundamentals Series Load, Pressure, and Torque Measurements Key Takeaways Bridge-based measurement fundamentals Load, pressure, torque fundamentals Transducer Electronic Data Sheet (TEDS)

More information

CHAPTER 2 ELECTRIC CIRCUIT

CHAPTER 2 ELECTRIC CIRCUIT CHAPTE 2 ELECTIC CICUIT 1 Electric charges Two kinds of charges Who carry those charges? Unit of charge 2 Flow of charge and electric current The true picture of a circuit Page 1 The conventional picture

More information

PHA3/W PHYSICS (SPECIFICATION A) Unit 3 Current Electricity and Elastic Properties of Solids

PHA3/W PHYSICS (SPECIFICATION A) Unit 3 Current Electricity and Elastic Properties of Solids Surname Centre Number Other Names Candidate Number Leave blank Candidate Signature General Certificate of Education June 2005 Advanced Subsidiary Examination PHYSICS (SPECIFICATION A) PHA3/W Unit 3 Current

More information

SC10F Circuits Lab Name:

SC10F Circuits Lab Name: SC10F Circuits Lab Name: Purpose: In this lab you will be making, both, series and parallel circuits. You will then be using a millimeter to take readings at various points in these circuits. Using these

More information

POWER SUPPLY MODEL XP-800. TWO AC VARIABLE VOLTAGES; 0-120V and 7A, PLUS UP TO 10A. Instruction Manual. Elenco Electronics, Inc.

POWER SUPPLY MODEL XP-800. TWO AC VARIABLE VOLTAGES; 0-120V and 7A, PLUS UP TO 10A. Instruction Manual. Elenco Electronics, Inc. POWER SUPPLY MODEL XP-800 TWO AC VARIABLE VOLTAGES; 0-120V and 0-40V @ 7A, PLUS 0-28VDC @ UP TO 10A Instruction Manual Elenco Electronics, Inc. Copyright 1991 Elenco Electronics, Inc. Revised 2002 REV-I

More information

Write the term that correctly completes the statement. Use each term once. ampere. electric current. resistor battery.

Write the term that correctly completes the statement. Use each term once. ampere. electric current. resistor battery. Date Period Name CHAPTER 22 Study Guide Current Electricity Vocabulary Review Write the term that correctly completes the statement. Use each term once. ampere electric current resistor battery kilowatt-hour

More information

Figure 1: (a) cables with alligator clips and (b) cables with banana plugs.

Figure 1: (a) cables with alligator clips and (b) cables with banana plugs. Ohm s Law Safety and Equipment Computer with PASCO Capstone, PASCO 850 Universal Interface Double banana/alligator Cable, 2 Alligator Wires PASCO Voltage Sensor Cable Multimeter with probes. Rheostat Ruler

More information

Type CRN-1 Reverse Power Relay 50 and 60 Hertz

Type CRN-1 Reverse Power Relay 50 and 60 Hertz ABB Automation Inc. Substation Automation and Protection Division Coral Springs, FL 33065 Instruction Leaflet 41-251.2P Effective: June 1991 Supersedes I.L. 41-251.2N Dated April 1988 ( )Denotes Change

More information

Busy Ant Maths and the Scottish Curriculum for Excellence Foundation Level - Primary 1

Busy Ant Maths and the Scottish Curriculum for Excellence Foundation Level - Primary 1 Busy Ant Maths and the Scottish Curriculum for Excellence Foundation Level - Primary 1 Number, money and measure Estimation and rounding Number and number processes Fractions, decimal fractions and percentages

More information

Electrical Measuring Instruments

Electrical Measuring Instruments UNIT 12 Electrical Measuring Instruments Learning Objectives After studying this unit, the student will be able Understand different measuring instruments used in electricity Understand the working of

More information

OTHER ELECTRICAL MEASURING DEVICES

OTHER ELECTRICAL MEASURING DEVICES Other measuring devices are used to aid operators in determining the electric plant conditions at a facility, such as the ampere-hour meter, power factor meter, ground detector, and synchroscope. EO 1.2

More information