Preliminary Design of Solar Powered Unmanned Aerial Vehicle Sumit Jashnani a, Prashant Shaholia b, Ali Khamker c, Muhammad Ishfaq d, and Tarek Nada e

Size: px
Start display at page:

Download "Preliminary Design of Solar Powered Unmanned Aerial Vehicle Sumit Jashnani a, Prashant Shaholia b, Ali Khamker c, Muhammad Ishfaq d, and Tarek Nada e"

Transcription

1 Preliminary Design of Solar Powered Unmanned Aerial Vehicle Sumit Jashnani a, Prashant Shaholia b, Ali Khamker c, Muhammad Ishfaq d, and Tarek Nada e Emirates Aviation College, PO Box 53044, Dubai, UAE a sumit.ggs@gmail.com, b pash_shaholia@yahoo.com, c alisajjad110@yahoo.com, d ishfaq.hafiz@gmail.com, e tarek.nada@emirates.com Key Words: Irradiance, Solar Powered Aircraft, Unmanned Aerial Vehicle. Abstract. Applications involving the use of alternate, renewable energy sources are expanding exponentially, and are in high demand. Solar power has long been harnessed for such applications and aviation is no stranger to it with its strong drive towards becoming an environment-friendly industry. This paper describes a straight forward procedure to design and test a solar powered unmanned aerial vehicle that can fly continuously for 24 hours at any day of the year. The paper introduces the modeling and preparation of hardware testing of the propulsion and power sub-system. The main components of this sub-system are solar panels, the electromechanical drive train and the propeller. A design for a thrust stand to measure the performance of the system is also introduced. Nomenclature AR Aspect ratio of the wing E Oswald efficiency factor F Thrust force [N] G Irradiance [W/m 2 ] I Current [A] Component of cell current due to photons [A] I o Minimum saturation current, commonly taken as 1*10-10 [A] Short circuit current [A] K Boltzmann Constant, which is 1.38 I0-23 [J/K] Q Charge of a single photon, which is 1.6*10-19 [coulomb] Wing area [m 2 ] T Cell temperature [K] T a Atmospheric temperature [ C] U Velocity [m/s] V Volt [V] Open circuit volt [V] Airframe weight [kg] Introduction Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long endurance aircrafts. Due to the weight, speed, and altitude constraints imposed on such an aircraft, solar array generated electric power can be a viable alternative to airbreathing engines for certain missions [1]. Moreover, a great interest has arrived at designing and building solar powered platforms that may replace satellites for civil and military applications [2]. Many solar powered UAV s have been built, which are not only

2 capable of long endurance flight but also do not require much maintenance [3]. Possible applications of the UAV include military and classified surveillance flights where small aircrafts are difficult to be detected by radars. Scientific applications include ozone monitoring, and collection of data for weather and global warming studies. Commercial applications include aerial surveying, geological and topographical mapping, and communication links. This paper describes a straight forward procedure to design and test a solar powered unmanned aerial vehicle that can fly continuously for 24 hours at any day of the year. The paper introduces the modeling and preparation for hardware testing of the propulsion and power sub-system. A design for a thrust stand to measure the performance of the system is also introduced. The aircraft is aimed to be used in surveillance and road control applications. Aircraft Sizing and Drag Estimation The mission scenario of the aircraft is to takeoff at morning (sunrise time) at any day of the year, then climb to altitude of about 5km, which is the cruise altitude at which the aircraft will fly for few weeks before it lands. This mission requires the design of the aircraft to be based on the coldest day of the year and the power management system to be able to work on a complete cycle over 24 hours. The cruise flight conditions are considered as the design conditions. The following step by step procedure is followed to estimate the aircraft size and generated lift and drag: Assume a value for the solar panel area. This value will be verified later. Find the dimensions of the available solar panels. Select a chord length such that the solar panels width is 90% of the chord length. Practically, 90% of the wing area can be covered by solar panels; hence the wing area can be estimated. For simplicity, use rectangular wing shape. Thus, the wing span and aspect ratio can be estimated. The practical range for aspect ratio in solar powered aircraft is between 12 and 31 [4]. Select an airfoil section and get the lift and drag polar curves for this airfoil. The airfoil used here was WE , which was specially developed for the Sky-Sailor project [3] As rectangular wing is employed, the Oswald efficiency factor is assigned the minimum value, which is At the cruise altitude, find the air density and kinematic viscosity. Select a reasonable cruise speed for the mission and payload, and estimate Reynolds number. Based on Reynolds number, the coefficient of skin friction drag can be estimated using [5]:, (1), From the airfoil data, estimate the 2D lift coefficient, l, at different angle of attack within the workable limit and then convert them to 3D using: 3

3 The induced drag coefficient is obtained using: 4 For the respective, l, find the C d, and then add C d to C Di to get the total drag coefficient C D. Multiply both C D and C L into (0.5*ρ*V 2 *S) to get the generated lift and drag at each angle of attack. The drag due to fuselage can be ignored when compared to wing drag. Some designs consider flying wing geometry. Using reasonable mounting angle for the wing, the angle of attach for horizontal flight, the generated lift and drag at this angle of attack are identified. For steady horizontal flight, the lift should be equal to the weight and the thrust should be equal to the drag. The required thrust and cruise speed are now known; hence the propulsive power can be estimated. The following section will validate the assumed solar panel area by estimating the available solar power and compare it with the required propulsive power. Solar Panels Dubai is positioned North Latitude, East Longitude and is 16 meters above sea level. At certain irradiance during the day, the current produced by a single cell is function of the cell voltage [6]: 1 5 The cell temperature, T, is the temperature of the solar cell that changes with the amount of irradiance across the duration of the entire day. Each cell has its limiting short circuit current,, and open circuit voltage,. This means that operating outside this envelope may damage the cell. The short circuit current is equal to the current due to light intensity,. To a very good approximation, the cell current is directly proportional to the cell irradiance. Thus, if the cell current is known under standard test conditions, G = 1 kw/m, at air mass, AM = 1.5, then the cell current at any other irradiance, G, is given by: 6 Similarly by setting the current to zero in Eq. 5, open circuit voltage can be estimated using the formula: 7 For variations in ambient temperature and irradiance, the cell temperature, in C, can be estimated quite accurately with the linear approximation:. 8 The Nominal Operating Cell Temperature, NOCT, is the temperature that the cells reaches when operated at open circuit in an ambient temperature of 20 C at air mass = 1.5, irradiance conditions, G=0.8kW/m 2, and a wind speed less than 1 m/s [6]. Information such as the I sc, V oc, and NOCT is provided by the cell manufacturer. The resulting power at different irradiance and voltage is plotted in Fig. 1 for the selected cell (Q6lmxp3, manufactured by Q-

4 cells). This figure shows the power produced by a panel of 30 cells (common number of cells in a single panel) for different levels of irradiance. The minimum and maximum irradiance coincides with the actual available irradiance available in Dubai over the year. Also, it is clear from Fig. 1 that the maximum power at any irradiance occurs at voltage in the range from 17-18V. Figure 2 depicts the hourly energy received from the sun on a horizontal surface in Dubai for the hottest and coldest days of the year [7]. The hottest day is June 8 th, while the coldest day is December 31 st. The total available solar power on the coldest day can be estimated by evaluating the area under the curve in Fig. 2. The drive train behind the propeller consists of the gearbox, motor, inverter, battery, maximum power point tracker, and charge controller. An estimate for the efficiency of each component would be employed. An overall efficiency of about 12% including the solar panel is a typical value [3]. Thus, the required solar panel area can be estimated and compared to the previous assumed value. Iterations may be required until convergence is achieved. Power [W] G= 285G= 400G= 600G= 840G= Voltage [V] Figure 1 Variation of power with voltage at different irradiance levels Solar energy (MJ/m^2) Hotest day Coldest day Hours of the day Figure 2 Available solar energy at the hottest and coldest days of the year Electromechanical Drive Train For a given amount of irradiance, the available technology allows only a limited amount of solar energy to be extracted from the solar cells. It is however desirable to operate these cells at their upper limit in order to extract the maximum amount of energy from this renewable

5 source. The Maximum Power Point Tracker (MPPT) ensures that the solar panels are working at their maximum power points that can be seen in Fig. 1 [8]. The battery voltage is selected to be 18 V, and the MPPT will change the current accordingly to ensure maximum generated power. This obtained power is used firstly to supply the propulsion group and the onboard electronics, and secondly to charge the battery with the surplus energy. The solar panel should be able to provide the battery with enough charge during the day for it to run the propeller through the night. Fig. 3 demonstrates the power management over a full day. The number of hours available to charge the battery will be maximum if the UAV takes-off at sunrise. This number decreases as the takeoff time is delayed and thus more energy has to be initially stored in the battery at the time of takeoff. Thus, sunrise is the recommended takeoff time. The limit line marked in Fig.3 indicates the maximum power needed for the battery to run the propeller for the entire night and contain the exact same initial charge value at the sunrise time of the next day. The stored power in the battery starts with about 50W at takeoff time, reaches maximum of 1550W at noon, and finally ends with the same 50W at the sunrise time of the next day. This guarantees that the system can repeat this cycle many times and its capability will increase if working in a hotter day. For 18V battery, the corresponding current ranges from 2.7 to 86A. This range of current can be easily achieved. In the following section, the total aircraft weight will be estimated and compared to the generated lift output power from the battery Power stored in the battery Power [kw] Battery charging limit Takeoff Hours of the day Figure 3 Power management over 24 hours Weight Estimation The following step by step procedure can be followed to estimate the weight of aircraft components and subsystems, and then the total weight can be summed. The payload of the mission is defined and its weight is determined Due to the sheer number of solar powered aircrafts operational today and the peculiarities involved in the structure of such an aircraft; a unified weight estimation model is hard to find. However, a statistical model has been formulated using data obtained from large number of solar powered UAV [3]:

6 :, 9 The density of Silicon is Kg/m 2, and hence, the weight of solar panels can be estimated from the known area. A 20% weight is added to account for coating and accessories [6]. The maximum expected stored energy can be concluded from Fig. 3. The energy density of batteries employed in solar aircrafts can reach 350Wh/kg such as that used in reference [4]. Using this value along with the maximum expected stored energy, the weight of the battery can be estimated. The propulsion group is composed of control electronics, motor, gearbox and propeller. A model was introduced in reference [3] to estimate the weight of the propulsion group based on curve fitting of data from existing commercial components: The total weight is the sum of all above weights, and this weight should be equal to or less than the generated lift that was estimated before. If the weight is more than the generated lift iteration will be required. Following the above procedures, the weight and size of the aircraft were estimated. Also, the required thrust to be generated by the propeller was obtained. Table 1 summarizes the obtained values. Table 1 Summary of estimated values Parameter Value Parameter Value Solar panel area 3.2 m 2 Airframe weight 75.4 N Solar panel width 0.5 m Weight of solar panels 13.7 N Wing chord 0.55 m Battery weight 43.5 N Wing area 3.55 m 2 Weight of propulsion group 5.1 N Wing span 6.4 m Payload weight 5 N Wing aspect ratio 11.5 Total weight N Cruise speed 12.0 m/s Cruise thrust 5.4 N Propeller Design The propeller is the final component of the mechanical drive train and is responsible for generating thrust required for flight. The concepts of propeller design have been explained by various theories developed over the years [9, 10]. However, the blade element theory is the most sophisticated and detailed of all. Using this theory for propeller design facilitates the selection of an optimum diameter-rpm setting at maximum efficiency and a detailed geometry which includes propeller geometric pitch, blade span-wise chord, and twist angle. This procedure starts with the selection of appropriate section airfoils which are thin, possess a high lift-to-drag ratio and have a large range for the stall angle of attack. The desired ondesign flight condition is the cruise condition. The details of the design procedure can be found in [9]. The propeller efficiency at different RPM for various diameters is plotted in Fig. 4. It is clear from Fig. 4 that with increase in diameter, the propeller efficiency increases due to the reduction in required power for a specific thrust value. Selecting 20in 1900RPM design set is impractical as it produces the highest efficiency but at very high RPM. However, selecting

7 30in 1100RPM design set over 40in 800RPM is more practical as the difference in efficiency is minimal and is easily cancelled out by the weight and size penalty imposed by the latter. Also the power required is well within the available limit and so is the RPM as maximumm allowable from the motor is 1330RPM Efficiency D = 20in D = 30in D = 40in RPM Figure 4 RPM versus efficiency for different propeller diameters at cruise conditions The tip Mach number and the structural/ /mechanical loading limits on the propeller must also be addressed. In the case of this level of thrust, they fall out of the investigated range. Thus, the design RPM is 1100, which corresponds to thrust of 5.4N at 12.0m/s cruise speed. This requires a power of 100W output from the battery at 5.56A and 18V. Thrust Stand It is required to test the output thrust for continuous operation over 24 hours. There are many techniques to simulate and test the propeller operation [11, 12]. After reviewing many techniques, it was decided to employee a simple however reliable method such that described in [13]. The thrust stand is designed and manufactured with the necessary components; namely the motor, S-type load cell and the propeller in the assembly as shown in Fig. 5. Figure 5 Schematic drawing of the thrust stand ( 3D CAD).

8 The gear ratio used is 1:1, which is only done to relocate the position of the main shaft connected to the propeller. This also allows hassle-free placement of the strain gauge. The bearings hold the shaft in place and rest on the pedestal, which is connected to the load cell. As the propeller produces thrust, the shaft tends to move forward and thus makes the pedestal move along. This movement consequently is transferred to the load cell in the form of tension and the readings can be taken. This tension felt by the strain gauge is equal to the effective thrust force being produced by the propeller minus friction force. The amount of friction on the pedestal roller has been reduced greatly using rollers and addition lubrication. Moreover, a calibration is done using dead weights. Conclusions A straight forward procedure for preliminary design of solar powered unmanned aerial vehicle was introduced. The estimation of available daily solar energy over the year in Dubai was done and the required solar panel area and number of cells were evaluated for the desired design conditions. The electromechanical drive train was designed to efficiently manage the available power and provide the propeller with constant power over 24 hours. Finally, the thrust stand that is needed to simulate and test the operation of the propulsion and power subsystem was designed. The system will be integrated and tested in the future and the results of the testing phase will be published later. References [1] Colozza A. J., Scheiman D. A., and Brinker D. J., GaAs/Ge Solar Powered Aircraft, NASA/TM , October [2] Symolon W. E., High-Altitude, Long-Endurance UAV s vs. Satellites: Potential Benefites for US Army Application, MSc thesis, MIT [3] Noth A., Design of Solar Powered Airplanes for Continuous Flight, PhD thesis, ETH ZÜRICH, [4] Mehdi Hajinmaleki, Conceptual Design Method for Solar Powered Aircrafts, AIAA , 49 th AIAA Aerospace Sciences Meeting, January 2011, Orlando, Florida, USA. [5] Rizzo E., and Frediani A., A model for solar powered aircraft preliminary design, The Aeronautical Journal, Vol. 112, No. 2, February 2008, pp [6] Messenger. R and Ventre. J, Photovoltaic System Engineering, second ed., CRS Press, Taylor and Francis E-library, [7] Duffie.J and Bechkman.W, Solar Engineering of Thermal Processes, third ed., John Wiley and Sons, [8] Cohen J. M., Peak Power Tracking for a Solar Buck Charger, MSc thesis, MIT [9] Carpenter H., Aerodynamics, Butterworth Heinemann Inc, [10] GurO., and Rosen A., Comparison between blade-element models of propellers, The Aeronautical Journal, Vol. 112, No. 12, December 2008, pp [11] Merchant M. P., Propeller Performance Measurement for Low Reynolds Number Unmanned Aerial Vehicle Applications, MSc thesis, Wichita State University, 2004 [12] Asson K. M., and Dunn P. F., Compact Dynamometer System That Can Accurately Determine Propeller Performance, Journal of Aircraft, Vol. 29, No 1, [13] Ash R. L., Miley S. J., Landman D., and Hyde K. W., Evolution of Wright Flyer Propellers between 1903 and 1912, AIAA , the 39 th Aerospace Sciences Meeting and Exhibit, 2001.

Solar Based Propulsion System UAV Conceptual Design ( * )

Solar Based Propulsion System UAV Conceptual Design ( * ) Solar Based Propulsion System UAV Conceptual Design ( * ) Avi Ayele*, Ohad Gur, and Aviv Rosen* *Technion Israel Institute of Technology IAI Israel Aerospace Industries (*) Ayele A., Gur O., Rosen A.,

More information

Appenidix E: Freewing MAE UAV analysis

Appenidix E: Freewing MAE UAV analysis Appenidix E: Freewing MAE UAV analysis The vehicle summary is presented in the form of plots and descriptive text. Two alternative mission altitudes were analyzed and both meet the desired mission duration.

More information

Electric Flight Potential and Limitations

Electric Flight Potential and Limitations Electric Flight Potential and Limitations Energy Efficient Aircraft Configurations, Technologies and Concepts of Operation, Sao José dos Campos, 19 21 November 2013 Dr. Martin Hepperle DLR Institute of

More information

THE AERODYNAMIC DESIGN OF AN OPTIMISED PROPELLER FOR A HIGH ALTITUDE LONG ENDURANCE UAV

THE AERODYNAMIC DESIGN OF AN OPTIMISED PROPELLER FOR A HIGH ALTITUDE LONG ENDURANCE UAV ICAS 22 CONGRESS THE AERODYNAMIC DESIGN OF AN OPTIMISED PROPELLER FOR A HIGH ALTITUDE LONG ENDURANCE UAV J. S. Monk CSIR, Pretoria South Africa Keywords: Propeller, UAV, High Altitude, Long Endurance Abstract

More information

Design of a High Altitude Fixed Wing Mini UAV Aerodynamic Challenges

Design of a High Altitude Fixed Wing Mini UAV Aerodynamic Challenges Design of a High Altitude Fixed Wing Mini UAV Aerodynamic Challenges Hemant Sharma 1, C. S. Suraj 2, Roshan Antony 3, G. Ramesh 4, Sajeer Ahmed 5 and Prasobh Narayan 6 1, 2, 3, 4 CSIR National Aerospace

More information

SENSITIVITY ANALYSIS OF DESIGN PARAMETERS OF A SMALL SOLAR-POWERED ELECTRIC UNMANNED AERIAL VEHICLE

SENSITIVITY ANALYSIS OF DESIGN PARAMETERS OF A SMALL SOLAR-POWERED ELECTRIC UNMANNED AERIAL VEHICLE Journal of Engineering Science and Technology Vol. 13, No. 12 (2018) 3922-3931 School of Engineering, Taylor s University SENSITIVITY ANALYSIS OF DESIGN PARAMETERS OF A SMALL SOLAR-POWERED ELECTRIC UNMANNED

More information

Solar Glider. ENG460 Engineering Thesis Final Report. Ben Marshall,

Solar Glider. ENG460 Engineering Thesis Final Report. Ben Marshall, Solar Glider ENG460 Engineering Thesis Final Report Ben Marshall, 30769634 2012 A report submitted to the School of Engineering and Energy, Murdoch University in partial fulfilment of the requirements

More information

Design of Solar Powered UAV

Design of Solar Powered UAV Design of Solar Powered UAV Janardan Prasad Kesari*, Abhishek Shakya Department of Mechanical Engineering, Delhi Technological University, Delhi. India Article Info Article history: Received 25 October2016

More information

A PARAMETRIC STUDY OF THE DEPLOYABLE WING AIRPLANE FOR MARS EXPLORATION

A PARAMETRIC STUDY OF THE DEPLOYABLE WING AIRPLANE FOR MARS EXPLORATION A PARAMETRIC STUDY OF THE DEPLOYABLE WING AIRPLANE FOR MARS EXPLORATION Koji Fujita* * Department of Aerospace Engineering, Tohoku University, Sendai, Japan 6-6-, Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi

More information

FABRICATION OF CONVENTIONAL CYLINDRICAL SHAPED & AEROFOIL SHAPED FUSELAGE UAV MODELS AND INVESTIGATION OF AERODY-

FABRICATION OF CONVENTIONAL CYLINDRICAL SHAPED & AEROFOIL SHAPED FUSELAGE UAV MODELS AND INVESTIGATION OF AERODY- ISSN 232-9135 28 International Journal of Advance Research, IJOAR.org Volume 1, Issue 3, March 213, Online: ISSN 232-9135 FABRICATION OF CONVENTIONAL CYLINDRICAL SHAPED & AEROFOIL SHAPED FUSELAGE UAV MODELS

More information

SILENT SUPERSONIC TECHNOLOGY DEMONSTRATION PROGRAM

SILENT SUPERSONIC TECHNOLOGY DEMONSTRATION PROGRAM 25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES SILENT SUPERSONIC TECHNOLOGY DEMONSTRATION PROGRAM Akira Murakami* *Japan Aerospace Exploration Agency Keywords: Supersonic, Flight experiment,

More information

DESIGN AND PERFORMANCE TEST OF A TWIN- FUSELAGE CONFIGURATION SOLAR-POWERED UAV

DESIGN AND PERFORMANCE TEST OF A TWIN- FUSELAGE CONFIGURATION SOLAR-POWERED UAV DESIGN AND PERFORMANCE TEST OF A TWIN- FUSELAGE CONFIGURATION SOLAR-POWERED UAV Xian-Zhong GAO*, Zhong-Xi HOU*, Zheng GUO* Xiao-Qian CHEN* *College of Aerospace Science and Engineering, National University

More information

DESIGN AND DEVELOPMENT OF A MICRO AIR VEHICLE (µav) CONCEPT: PROJECT BIDULE

DESIGN AND DEVELOPMENT OF A MICRO AIR VEHICLE (µav) CONCEPT: PROJECT BIDULE DESIGN AND DEVELOPMENT OF A MICRO AIR VEHIE (µav) CONCEPT: PROJECT BIDULE Mr T. Spoerry, Dr K.C. Wong School of Aerospace, Mechanical and Mechatronic Engineering University of Sydney NSW 6 Abstract This

More information

Jay Gundlach AIAA EDUCATION SERIES. Manassas, Virginia. Joseph A. Schetz, Editor-in-Chief. Blacksburg, Virginia. Aurora Flight Sciences

Jay Gundlach AIAA EDUCATION SERIES. Manassas, Virginia. Joseph A. Schetz, Editor-in-Chief. Blacksburg, Virginia. Aurora Flight Sciences Jay Gundlach Aurora Flight Sciences Manassas, Virginia AIAA EDUCATION SERIES Joseph A. Schetz, Editor-in-Chief Virginia Polytechnic Institute and State University Blacksburg, Virginia Published by the

More information

DESIGN OF AN ARMAMENT WING FOR A LIGHT CATEGORY HELICOPTER

DESIGN OF AN ARMAMENT WING FOR A LIGHT CATEGORY HELICOPTER International Journal of Engineering Applied Sciences and Technology, 7 Published Online February-March 7 in IJEAST (http://www.ijeast.com) DESIGN OF AN ARMAMENT WING FOR A LIGHT CATEGORY HELICOPTER Miss.

More information

Pulau Pinang, Malaysia Aircraft Design Group, School of Engineering, Cranfield University, MK43 0AL Cranfield, England

Pulau Pinang, Malaysia Aircraft Design Group, School of Engineering, Cranfield University, MK43 0AL Cranfield, England Single Cell Li-Ion Polymer Battery Charge and Discharge Characterizations for Application on Solar-Powered Unmanned Aerial Vehicle Parvathy Rajendran 1,2,a*, Nurul Musfirah Mazlan 1,b* and Howard Smith

More information

AE 451 Aeronautical Engineering Design Final Examination. Instructor: Prof. Dr. Serkan ÖZGEN Date:

AE 451 Aeronautical Engineering Design Final Examination. Instructor: Prof. Dr. Serkan ÖZGEN Date: Instructor: Prof. Dr. Serkan ÖZGEN Date: 11.01.2012 1. a) (8 pts) In what aspects an instantaneous turn performance is different from sustained turn? b) (8 pts) A low wing loading will always increase

More information

Powertrain Design for Hand- Launchable Long Endurance Unmanned Aerial Vehicles

Powertrain Design for Hand- Launchable Long Endurance Unmanned Aerial Vehicles Powertrain Design for Hand- Launchable Long Endurance Unmanned Aerial Vehicles Stuart Boland Derek Keen 1 Justin Nelson Brian Taylor Nick Wagner Dr. Thomas Bradley 47 th AIAA/ASME/SAE/ASEE JPC Outline

More information

31 st National Conference on FMFP, December 16-18, 2004, Jadavpur University, Kolkata

31 st National Conference on FMFP, December 16-18, 2004, Jadavpur University, Kolkata 31 st National Conference on FMFP, December 16-18, 24, Jadavpur University, Kolkata Experimental Characterization of Propulsion System for Mini Aerial Vehicle Kailash Kotwani *, S.K. Sane, Hemendra Arya,

More information

A SOLAR POWERED UAV. 1 Introduction. 2 Requirements specification

A SOLAR POWERED UAV. 1 Introduction. 2 Requirements specification A SOLAR POWERED UAV Students: R. al Amrani, R.T.J.P.A. Cloosen, R.A.J.M. van den Eijnde, D. Jong, A.W.S. Kaas, B.T.A. Klaver, M. Klein Heerenbrink, L. van Midden, P.P. Vet, C.J. Voesenek Project tutor:

More information

10th Australian International Aerospace Congress

10th Australian International Aerospace Congress AUSTRALIAN INTERNATIONAL AEROSPACE CONGRESS Paper presented at the 10th Australian International Aerospace Congress incorporating the 14th National Space Engineering Symposium 2003 29 July 1 August 2003

More information

Y. Lemmens, T. Benoit, J. de Boer, T. Olbrechts LMS, A Siemens Business. Real-time Mechanism and System Simulation To Support Flight Simulators

Y. Lemmens, T. Benoit, J. de Boer, T. Olbrechts LMS, A Siemens Business. Real-time Mechanism and System Simulation To Support Flight Simulators Y. Lemmens, T. Benoit, J. de Boer, T. Olbrechts LMS, A Siemens Business Real-time Mechanism and System Simulation To Support Flight Simulators Smarter decisions, better products. Contents Introduction

More information

External Aerodynamics: Lift of airship created only by buoyancy which doesn t need lift generating surface like an airfoil or a wing

External Aerodynamics: Lift of airship created only by buoyancy which doesn t need lift generating surface like an airfoil or a wing 5.1 AERODYNAMICS: The HAA aerodynamic regime could broadly be categorized into External and Internal Aerodynamics. The External Aerodynamics deals with the Shape of airship and the internal aerodynamics

More information

Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests

Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests Norbert ANGI*,1, Angel HUMINIC 1 *Corresponding author 1 Aerodynamics Laboratory, Transilvania University of Brasov, 29 Bulevardul Eroilor,

More information

Nacelle Chine Installation Based on Wind-Tunnel Test Using Efficient Global Optimization

Nacelle Chine Installation Based on Wind-Tunnel Test Using Efficient Global Optimization Trans. Japan Soc. Aero. Space Sci. Vol. 51, No. 173, pp. 146 150, 2008 Nacelle Chine Installation Based on Wind-Tunnel Test Using Efficient Global Optimization By Masahiro KANAZAKI, 1Þ Yuzuru YOKOKAWA,

More information

ECO-CARGO AIRCRAFT. ISSN: International Journal of Science, Engineering and Technology Research (IJSETR) Volume 1, Issue 2, August 2012

ECO-CARGO AIRCRAFT. ISSN: International Journal of Science, Engineering and Technology Research (IJSETR) Volume 1, Issue 2, August 2012 ECO-CARGO AIRCRAFT Vikrant Goyal, Pankhuri Arora Abstract- The evolution in aircraft industry has brought to us many new aircraft designs. Each and every new design is a step towards a greener tomorrow.

More information

Environmentally Focused Aircraft: Regional Aircraft Study

Environmentally Focused Aircraft: Regional Aircraft Study Environmentally Focused Aircraft: Regional Aircraft Study Sid Banerjee Advanced Design Product Development Engineering, Aerospace Bombardier International Workshop on Aviation and Climate Change May 18-20,

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN BY B.MADHAN KUMAR

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN BY B.MADHAN KUMAR International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 485 FLYING HOVER BIKE, A SMALL AERIAL VEHICLE FOR COMMERCIAL OR. SURVEYING PURPOSES BY B.MADHAN KUMAR Department

More information

Performance means how fast will it go? How fast will it climb? How quickly it will take-off and land? How far it will go?

Performance means how fast will it go? How fast will it climb? How quickly it will take-off and land? How far it will go? Performance Concepts Speaker: Randall L. Brookhiser Performance means how fast will it go? How fast will it climb? How quickly it will take-off and land? How far it will go? Let s start with the phase

More information

EXPERIMENTAL METHOD OF DETERMINING CHARACTERISTICS OF POWER AND TORQUE ENGINE FOR LOW-POWER UNMANNED AERIAL VEHICLES

EXPERIMENTAL METHOD OF DETERMINING CHARACTERISTICS OF POWER AND TORQUE ENGINE FOR LOW-POWER UNMANNED AERIAL VEHICLES Journal of KONES Powertrain and Transport, Vol. 18, No. 3 2011 EXPERIMENTAL METHOD OF DETERMINING CHARACTERISTICS OF POWER AND TORQUE ENGINE FOR LOW-POWER UNMANNED AERIAL VEHICLES Grzegorz Jastrz bski,

More information

The Sonic Cruiser A Concept Analysis

The Sonic Cruiser A Concept Analysis International Symposium "Aviation Technologies of the XXI Century: New Aircraft Concepts and Flight Simulation", 7-8 May 2002 Aviation Salon ILA-2002, Berlin The Sonic Cruiser A Concept Analysis Dr. Martin

More information

DEVELOPMENT OF A MORPHING FLYING PLATFORM FOR ADAPTIVE CONTROL SYSTEM STUDY

DEVELOPMENT OF A MORPHING FLYING PLATFORM FOR ADAPTIVE CONTROL SYSTEM STUDY 27 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES DEVELOPMENT OF A MORPHING FLYING PLATFORM FOR ADAPTIVE CONTROL SYSTEM STUDY Taufiq Mulyanto, M. Luthfi I. Nurhakim, Rianto A. Sasongko Faculty

More information

Modeling, Structural & CFD Analysis and Optimization of UAV

Modeling, Structural & CFD Analysis and Optimization of UAV Modeling, Structural & CFD Analysis and Optimization of UAV Dr Lazaros Tsioraklidis Department of Unified Engineering InterFEA Engineering, Tantalou 7 Thessaloniki GREECE Next Generation tools for UAV

More information

Solar Based Drive System For Aerial Vehicles

Solar Based Drive System For Aerial Vehicles Solar Based Drive System For Aerial Vehicles 1 AMRETHA.A ME(PED), & 2 KRISHNAKUMARM.Tech. 1 Department of Electrical and Electronic Engineering, Meenakshi Engineering College, Chennai, India. 2 Asst. Professor,

More information

Chapter 4 Engine characteristics (Lectures 13 to 16)

Chapter 4 Engine characteristics (Lectures 13 to 16) Chapter 4 Engine characteristics (Lectures 13 to 16) Keywords: Engines for airplane applications; piston engine; propeller characteristics; turbo-prop, turbofan and turbojet engines; choice of engine for

More information

OPTIMAL MISSION ANALYSIS ACCOUNTING FOR ENGINE AGING AND EMISSIONS

OPTIMAL MISSION ANALYSIS ACCOUNTING FOR ENGINE AGING AND EMISSIONS OPTIMAL MISSION ANALYSIS ACCOUNTING FOR ENGINE AGING AND EMISSIONS M. Kelaidis, N. Aretakis, A. Tsalavoutas, K. Mathioudakis Laboratory of Thermal Turbomachines National Technical University of Athens

More information

Propeller Blade Bearings for Aircraft Open Rotor Engine

Propeller Blade Bearings for Aircraft Open Rotor Engine NTN TECHNICAL REVIEW No.84(2016) [ New Product ] Guillaume LEFORT* The Propeller Blade Bearings for Open Rotor Engine SAGE2 were developed by NTN-SNR in the frame of the Clean Sky aerospace programme.

More information

AERONAUTICAL ENGINEERING

AERONAUTICAL ENGINEERING AERONAUTICAL ENGINEERING SHIBIN MOHAMED Asst. Professor Dept. of Mechanical Engineering Al Ameen Engineering College Al- Ameen Engg. College 1 Aerodynamics-Basics These fundamental basics first must be

More information

Flugzeugentwurf / Aircraft Design SS Part 35 points, 70 minutes, closed books. Prof. Dr.-Ing. Dieter Scholz, MSME. Date:

Flugzeugentwurf / Aircraft Design SS Part 35 points, 70 minutes, closed books. Prof. Dr.-Ing. Dieter Scholz, MSME. Date: DEPARTMENT FAHRZEUGTECHNIK UND FLUGZEUGBAU Flugzeugentwurf / Aircraft Design SS 2015 Duration of examination: 180 minutes Last Name: Matrikelnummer: First Name: Prof. Dr.-Ing. Dieter Scholz, MSME Date:

More information

Development of a Variable Stability, Modular UAV Airframe for Local Research Purposes

Development of a Variable Stability, Modular UAV Airframe for Local Research Purposes Development of a Variable Stability, Modular UAV Airframe for Local Research Purposes John Monk Principal Engineer CSIR, South Africa 28 October 2008 Outline A Brief History of UAV Developments at the

More information

PRELIMINARY DESIGN OF A JOINED WING HALE UAV

PRELIMINARY DESIGN OF A JOINED WING HALE UAV 1 26th INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES PRELIMINARY DESIGN OF A JOINED WING HALE UAV D. Verstraete, M. Coatanea, P. Hendrick Université Libre de Bruxelles, Laboratory of AeroThermoMechanics

More information

POWER ESTIMATION FOR FOUR SEATER HELICOPTER

POWER ESTIMATION FOR FOUR SEATER HELICOPTER Jurnal Mekanikal December 2008, No. 27, 78-90 POWER ESTIMATION FOR FOUR SEATER HELICOPTER Ahmad Azlan Shah B. Ibrahim Mohammad Nazri Mohd Jaafar * Faculty of Mechanical Engineering University Technology

More information

Propeller blade shapes

Propeller blade shapes 31 1 Propeller blade shapes and Propeller Tutorials 2 Typical Propeller Blade Shape 3 M Flight M. No. Transonic Propeller Airfoil 4 Modern 8-bladed propeller with transonic airfoils near the tip and swept

More information

Electric Drive - Magnetic Suspension Rotorcraft Technologies

Electric Drive - Magnetic Suspension Rotorcraft Technologies Electric Drive - Suspension Rotorcraft Technologies William Nunnally Chief Scientist SunLase, Inc. Sapulpa, OK 74066-6032 wcn.sunlase@gmail.com ABSTRACT The recent advances in electromagnetic technologies

More information

Design, Fabrication and Testing of an Unmanned Aerial Vehicle Catapult Launcher

Design, Fabrication and Testing of an Unmanned Aerial Vehicle Catapult Launcher ISBN 978-93-84422-40-0 Proceedings of 2015 International Conference on Computing Techniques and Mechanical Engineering (ICCTME 2015) Phuket, October 1-3, 2015, pp. 47-53 Design, Fabrication and Testing

More information

Electric Penguin s philosophy:

Electric Penguin s philosophy: UNMANNED PLATFORMS AND SUBSYSTEMS Datasheet v 1.1 Penguin BE Electric Unmanned Platform Up to 110 minutes of endurance 2 with 2.8 kg payload 23 liters of payload volume Quick replaceable battery cartridge

More information

Evaluation of the Applicability of the Vortex Lattice Method to the Analysis of Human Powered Aircraft

Evaluation of the Applicability of the Vortex Lattice Method to the Analysis of Human Powered Aircraft McNair Scholars Research Journal Volume Article Evaluation of the Applicability of the Vortex Lattice Method to the Analysis of Human Powered Aircraft Armando R. Collazo Garcia III Embry-Riddle Aeronautical

More information

SOLAR-POWERED UNMANNED AERIAL VEHICLES

SOLAR-POWERED UNMANNED AERIAL VEHICLES 964 19 SOLAR-POWERED UNMANNED AERIAL VEHICLES Kitt C. Reinhardt, Thomas R. Lamp, and Jack W. Geis Aero Propulsion and Power Directorate Wright Laboratory Wright Patterson AFB, OH 45433-7251 5 13-255-6235,

More information

CONCEPTUAL DESIGN OF ECOLOGICAL AIRCRAFT FOR COMMUTER AIR TRANSPORTATION

CONCEPTUAL DESIGN OF ECOLOGICAL AIRCRAFT FOR COMMUTER AIR TRANSPORTATION 26 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES CONCEPTUAL DESIGN OF ECOLOGICAL AIRCRAFT FOR COMMUTER AIR TRANSPORTATION Yasuhiro TANI, Tomoe YAYAMA, Jun-Ichiro HASHIMOTO and Shigeru ASO Department

More information

Chapter 10 Miscellaneous topics - 2 Lecture 39 Topics

Chapter 10 Miscellaneous topics - 2 Lecture 39 Topics Chapter 10 Miscellaneous topics - 2 Lecture 39 Topics 10.3 Presentation of results 10.3.1 Presentation of results of a student project 10.3.2 A typical brochure 10.3 Presentation of results At the end

More information

Ironbird Ground Test for Tilt Rotor Unmanned Aerial Vehicle

Ironbird Ground Test for Tilt Rotor Unmanned Aerial Vehicle Technical Paper Int l J. of Aeronautical & Space Sci. 11(4), 313 318 (1) DOI:1.5139/IJASS.1.11.4.313 Ironbird Ground Test for Tilt Rotor Unmanned Aerial Vehicle Soojung Hwang* and Seongwook Choi** Korea

More information

AE 451 Aeronautical Engineering Design I Estimation of Critical Performance Parameters. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering Fall 2015

AE 451 Aeronautical Engineering Design I Estimation of Critical Performance Parameters. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering Fall 2015 AE 451 Aeronautical Engineering Design I Estimation of Critical Performance Parameters Prof. Dr. Serkan Özgen Dept. Aerospace Engineering Fall 2015 Airfoil selection The airfoil effects the cruise speed,

More information

ELECTRIC POWER TRAINS THE KEY ENABLER FOR CONTRA ROTATING PROPELLERS IN GENERAL AVIATION (& VICE VERSA)

ELECTRIC POWER TRAINS THE KEY ENABLER FOR CONTRA ROTATING PROPELLERS IN GENERAL AVIATION (& VICE VERSA) ELECTRIC POWER TRAINS THE KEY ENABLER FOR CONTRA ROTATING PROPELLERS IN GENERAL AVIATION (& VICE VERSA) ATI D3 EVENT 8 TH MAY 2018 THE EMERGENCE OF ELECTRIFICATION IN AEROSPACE NICK SILLS, CONTRA ELECTRIC

More information

Design Analysis of Solar-Powered Unmanned Aerial Vehicle

Design Analysis of Solar-Powered Unmanned Aerial Vehicle doi: 10.5028/jatm.v8i4.666 Design Analysis of Solar-Powered Unmanned Aerial Vehicle Karthik Reddy Buchireddy Sri 1, Poondla Aneesh 1, Kiran Bhanu 1, M Natarajan 1 ABSTRACT: One of the main problems in

More information

INVESTIGATION OF ICING EFFECTS ON AERODYNAMIC CHARACTERISTICS OF AIRCRAFT AT TSAGI

INVESTIGATION OF ICING EFFECTS ON AERODYNAMIC CHARACTERISTICS OF AIRCRAFT AT TSAGI INVESTIGATION OF ICING EFFECTS ON AERODYNAMIC CHARACTERISTICS OF AIRCRAFT AT TSAGI Andreev G.T., Bogatyrev V.V. Central AeroHydrodynamic Institute (TsAGI) Abstract Investigation of icing effects on aerodynamic

More information

Power Estimation for a Two Seater Helicopter

Power Estimation for a Two Seater Helicopter Power Estimation for a Two Seater Helicopter JTSE Mohammad Nazri Mohd Jaafar, a,* Mohd Idham Mohd Nayan, a M.S.A. Ishak, b a Department of Aeronautical Engineering, Faculty of Mechanical Engineering, Universiti

More information

Development of an Advanced Rotorcraft Preliminary Design Framework

Development of an Advanced Rotorcraft Preliminary Design Framework 134 Int l J. of Aeronautical & Space Sciences, Vol. 10, No. 2, November 2009 Development of an Advanced Rotorcraft Preliminary Design Framework Jaehoon Lim* and SangJoon Shin** School of Mechanical and

More information

STUDYING THE POSSIBILITY OF INCREASING THE FLIGHT AUTONOMY OF A ROTARY-WING MUAV

STUDYING THE POSSIBILITY OF INCREASING THE FLIGHT AUTONOMY OF A ROTARY-WING MUAV SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE AFASES2017 STUDYING THE POSSIBILITY OF INCREASING THE FLIGHT AUTONOMY OF A ROTARY-WING MUAV Cristian VIDAN *, Daniel MĂRĂCINE ** * Military Technical

More information

Aeronautical Engineering Design II Sizing Matrix and Carpet Plots. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering Spring 2014

Aeronautical Engineering Design II Sizing Matrix and Carpet Plots. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering Spring 2014 Aeronautical Engineering Design II Sizing Matrix and Carpet Plots Prof. Dr. Serkan Özgen Dept. Aerospace Engineering Spring 2014 Empty weight estimation and refined sizing Empty weight of the airplane

More information

Design and Simulation of New Versions of Tube Launched UAV

Design and Simulation of New Versions of Tube Launched UAV 21st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 Nov to 4 Dec 2015 www.mssanz.org.au/modsim2015 Design and Simulation of New Versions of Tube Launched UAV Y. Zhou and

More information

SOLAR FLAT PLATE COLLECTOR HEAT TRANSFER ANALYSIS IN THE RAISER WITH HELICAL FINS Mohammed Mohsin Shkhair* 1, Dr.

SOLAR FLAT PLATE COLLECTOR HEAT TRANSFER ANALYSIS IN THE RAISER WITH HELICAL FINS Mohammed Mohsin Shkhair* 1, Dr. ISSN 2277-2685 IJESR/May 2015/ Vol-5/Issue-5/352-356 Mohammed Mohsin Shkhair et. al./ International Journal of Engineering & Science Research SOLAR FLAT PLATE COLLECTOR HEAT TRANSFER ANALYSIS IN THE RAISER

More information

Modeling and Performance Analysis for Low Altitude Electric UAVs

Modeling and Performance Analysis for Low Altitude Electric UAVs International Conference on Civil, Transportation and Environment (ICCTE 2016) Modeling and Performance Analysis for Low Altitude Electric UAVs Guangtong Xu1, a, Li Liu2, b and Xiaohui Zhang3, c 1 Beijing

More information

AN ADVANCED COUNTER-ROTATING DISK WING AIRCRAFT CONCEPT Program Update. Presented to NIAC By Carl Grant November 9th, 1999

AN ADVANCED COUNTER-ROTATING DISK WING AIRCRAFT CONCEPT Program Update. Presented to NIAC By Carl Grant November 9th, 1999 AN ADVANCED COUNTER-ROTATING DISK WING AIRCRAFT CONCEPT Program Update Presented to NIAC By Carl Grant November 9th, 1999 DIVERSITECH, INC. Phone: (513) 772-4447 Fax: (513) 772-4476 email: carl.grant@diversitechinc.com

More information

Approche novatrice pour la conception et l exploitation d avions écologiques, sous incertitudes.

Approche novatrice pour la conception et l exploitation d avions écologiques, sous incertitudes. Sylvain Prigent Approche novatrice pour la conception et l exploitation d avions écologiques, sous incertitudes. Challenges Air traffic will double in the next 20 years! *Revenue passenger kilometers (number

More information

The winner team will have the opportunity to perform a wind tunnel test campaign in the transonic/supersonic Wind tunnel at the VKI.

The winner team will have the opportunity to perform a wind tunnel test campaign in the transonic/supersonic Wind tunnel at the VKI. Aircraft Design Competition Request for proposal (RFP) - High speed UAV Objectives: This RFP asks for an original UAV design capable of reaching, in less than 15 minutes, a given target located at 150

More information

Preliminary design of Aircraft Landing Gear Strut

Preliminary design of Aircraft Landing Gear Strut Preliminary design of Aircraft Landing Gear Strut Mainuddin A 1, 2 Abubakar Siddiq S 2, Mohammed Farhaan Shaikh 3, Abdul Falah B 4, Jagadeesh B 5 1,2,3,4 Student, Department of Aeronautical Engineering,

More information

Chapter 4 Estimation of wing loading and thrust loading - 10 Lecture 18 Topics

Chapter 4 Estimation of wing loading and thrust loading - 10 Lecture 18 Topics Chapter 4 Estimation of wing loading and thrust loading - 10 Lecture 18 Topics 4.15.3 Characteristics of a typical turboprop engine 4.15.4 Characteristics of a typical turbofan engine 4.15.5 Characteristics

More information

Electric VTOL Aircraft

Electric VTOL Aircraft Electric VTOL Aircraft Subscale Prototyping Overview Francesco Giannini fgiannini@aurora.aero 1 08 June 8 th, 2017 Contents Intro to Aurora Motivation & approach for the full-scale vehicle Technical challenges

More information

DESIGN THE VTOL AIRCRAFT FOR LAND SURVEYING PURPOSES SHAHDAN BIN AZMAN

DESIGN THE VTOL AIRCRAFT FOR LAND SURVEYING PURPOSES SHAHDAN BIN AZMAN DESIGN THE VTOL AIRCRAFT FOR LAND SURVEYING PURPOSES SHAHDAN BIN AZMAN A report submitted as the first draft of the final year project in semester 1 2016/2017 Faculty of Mechanical Engineering Universiti

More information

1.1 REMOTELY PILOTED AIRCRAFTS

1.1 REMOTELY PILOTED AIRCRAFTS CHAPTER 1 1.1 REMOTELY PILOTED AIRCRAFTS Remotely Piloted aircrafts or RC Aircrafts are small model radiocontrolled airplanes that fly using electric motor, gas powered IC engines or small model jet engines.

More information

AIAA Foundation Undergraduate Team Aircraft Design Competition. RFP: Cruise Missile Carrier

AIAA Foundation Undergraduate Team Aircraft Design Competition. RFP: Cruise Missile Carrier AIAA Foundation Undergraduate Team Aircraft Design Competition RFP: Cruise Missile Carrier 1999/2000 AIAA FOUNDATION Undergraduate Team Aircraft Design Competition I. RULES 1. All groups of three to ten

More information

SIMULATION OF PROPELLER EFFECT IN WIND TUNNEL

SIMULATION OF PROPELLER EFFECT IN WIND TUNNEL SIMULATION OF PROPELLER EFFECT IN WIND TUNNEL J. Červinka*, R. Kulhánek*, Z. Pátek*, V. Kumar** *VZLÚ - Aerospace Research and Test Establishment, Praha, Czech Republic **C-CADD, CSIR-NAL, Bangalore, India

More information

CONCEPTUAL DESIGN OF FLYING VEHICLE

CONCEPTUAL DESIGN OF FLYING VEHICLE International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 6, June 2017, pp. 471 479, Article ID: IJMET_08_06_049 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=6

More information

Conceptual Design of a Model Solar-Powered Unmanned Aerial Vehicle

Conceptual Design of a Model Solar-Powered Unmanned Aerial Vehicle 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 09-12 January 2012, Nashville, Tennessee AIAA 2012-0134 Conceptual Design of a Model Solar-Powered Unmanned

More information

AIRCRAFT DESIGN SUBSONIC JET TRANSPORT

AIRCRAFT DESIGN SUBSONIC JET TRANSPORT AIRCRAFT DESIGN SUBSONIC JET TRANSPORT Analyzed by: Jin Mok Professor: Dr. R.H. Liebeck Date: June 6, 2014 1 Abstract The purpose of this report is to design the results of a given specification and to

More information

A STUDY OF STRUCTURE WEIGHT ESTIMATING FOR HIGH ALTITUDE LONG ENDURENCE (HALE) UNMANNED AERIAL VEHICLE (UAV)

A STUDY OF STRUCTURE WEIGHT ESTIMATING FOR HIGH ALTITUDE LONG ENDURENCE (HALE) UNMANNED AERIAL VEHICLE (UAV) 5 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES A STUDY OF STRUCTURE WEIGHT ESTIMATING FOR HIGH ALTITUDE LONG ENDURENCE (HALE UNMANNED AERIAL VEHICLE (UAV Zhang Yi, Wang Heping School of Aeronautics,

More information

Design Rules and Issues with Respect to Rocket Based Combined Cycles

Design Rules and Issues with Respect to Rocket Based Combined Cycles Respect to Rocket Based Combined Cycles Tetsuo HIRAIWA hiraiwa.tetsuo@jaxa.jp ABSTRACT JAXA Kakuda space center has been studying rocket based combined cycle engine for the future space transportation

More information

CONCEPTUAL STUDY OF AN INNOVATIVE HIGH ALTITUDE SOLAR POWERED FLIGHT VEHICLE

CONCEPTUAL STUDY OF AN INNOVATIVE HIGH ALTITUDE SOLAR POWERED FLIGHT VEHICLE CONCEPTUAL STUDY OF AN INNOVATIVE HIGH ALTITUDE SOLAR POWERED FLIGHT VEHICLE Jiang Hanjie, Duan Zhuoyi, Pu Hongbin, Shang Liying The First Aircraft Institute, Aviation Industry Corporation of China Xi

More information

a) Calculate the overall aerodynamic coefficient for the same temperature at altitude of 1000 m.

a) Calculate the overall aerodynamic coefficient for the same temperature at altitude of 1000 m. Problem 3.1 The rolling resistance force is reduced on a slope by a cosine factor ( cos ). On the other hand, on a slope the gravitational force is added to the resistive forces. Assume a constant rolling

More information

AIRCRAFT DESIGN MADE EASY. Basic Choices and Weights. By Chris Heintz

AIRCRAFT DESIGN MADE EASY. Basic Choices and Weights. By Chris Heintz AIRCRAFT DESIGN MADE EASY By Chris Heintz The following article, which is a first installement of a two-part article, describes a simple method for the preliminary design of an airplane of conventional

More information

Classical Aircraft Sizing I

Classical Aircraft Sizing I Classical Aircraft Sizing I W. H. Mason from Sandusky, Northrop slide 1 Which is 1 st? You need to have a concept in mind to start The concept will be reflected in the sizing by the choice of a few key

More information

Development of an Extended Range, Large Caliber, Modular Payload Projectile

Development of an Extended Range, Large Caliber, Modular Payload Projectile 1 Development of an Extended Range, Large Caliber, Modular Payload Projectile April 12th, 2011 Miami, Florida, USA 46 th Annual Gun & Missile Systems Conference & Exhibition Speaker: Pierre-Antoine Rainville

More information

monthly NEWSLETTER OCTOBER 2015 Copyright 2015 M-Fly

monthly NEWSLETTER OCTOBER 2015 Copyright 2015 M-Fly monthly NEWSLETTER OCTOBER 2015 Copyright 2015 M-Fly mfly@umich.edu IN THIS ISSUE M-Fly spent the summer prototyping advanced class systems and becoming experienced with composite manufacturing. As members

More information

Sizing of Ultracapacitors and Batteries for a High Performance Electric Vehicle

Sizing of Ultracapacitors and Batteries for a High Performance Electric Vehicle 2012 IEEE International Electric Vehicle Conference (IEVC) Sizing of Ultracapacitors and Batteries for a High Performance Electric Vehicle Wilmar Martinez, Member National University Bogota, Colombia whmartinezm@unal.edu.co

More information

FLIGHT TEST RESULTS AT TRANSONIC REGION ON SUPERSONIC EXPERIMENTAL AIRPLANE (NEXST-1)

FLIGHT TEST RESULTS AT TRANSONIC REGION ON SUPERSONIC EXPERIMENTAL AIRPLANE (NEXST-1) 26 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES FLIGHT TEST RESULTS AT TRANSONIC REGION ON SUPERSONIC EXPERIMENTAL AIRPLANE (NEXST-1) Dong-Youn Kwak*, Hiroaki ISHIKAWA**, Kenji YOSHIDA* *Japan

More information

Chapter 4 Lecture 16. Engine characteristics 4. Topics. Chapter IV

Chapter 4 Lecture 16. Engine characteristics 4. Topics. Chapter IV Chapter 4 Lecture 16 Engine characteristics 4 Topics 4.3.3 Characteristics of a typical turboprop engine 4.3.4 Characteristics of a typical turbofan engine 4.3.5 Characteristics of a typical turbojet engines

More information

MINI-REIS A FAMILY OF MULTIFUNCTIONAL UNMANNED LIGHT JET AIRCRAFTS

MINI-REIS A FAMILY OF MULTIFUNCTIONAL UNMANNED LIGHT JET AIRCRAFTS National Aerospace University Kharkiv Aviation Institute KhAI Public Joint Stock Company "Kyiv Radio Plant" Inter-Industry Scientific & Research Institute of the Problems of Aircraft Flight Mode Physical

More information

Design and Simulation of Grid Connected PV System

Design and Simulation of Grid Connected PV System Design and Simulation of Grid Connected PV System Vipul C.Rajyaguru Asst. Prof. I.C. Department, Govt. Engg. College Rajkot, Gujarat, India Abstract: In this paper, a MATLAB based simulation of Grid connected

More information

Flugzeugentwurf / Aircraft Design WS 10/ Klausurteil 30 Punkte, 60 Minuten, ohne Unterlagen. Prof. Dr.-Ing. Dieter Scholz, MSME

Flugzeugentwurf / Aircraft Design WS 10/ Klausurteil 30 Punkte, 60 Minuten, ohne Unterlagen. Prof. Dr.-Ing. Dieter Scholz, MSME DEPARTMENT FAHRZEUGTECHNIK UND FLUGZEUGBAU Prof. Dr.-Ing. Dieter Scholz, MSME Flugzeugentwurf / Aircraft Design WS 10/11 Bearbeitungszeit: 180 Minuten Name: Matrikelnummer.: Vorname: Punkte: von 68 Note:

More information

PHOTOVOLTAIC POWER FOR LONG ENDURANCE UNMANNED AERIAL VEHICLES

PHOTOVOLTAIC POWER FOR LONG ENDURANCE UNMANNED AERIAL VEHICLES PHOTOVOLTAIC POWER FOR LONG ENDURANCE UNMANNED AERIAL VEHICLES Thomas R. Lamp Aero Propulsion and Power Directorate Wright Laboratory Wright Patterson AFB, OH 45433-7251 937-255-6235, Fax: 937-656-4781

More information

DEVELOPMENT OF A CARGO AIRCRAFT, AN OVERVIEW OF THE PRELIMINARY AERODYNAMIC DESIGN PHASE

DEVELOPMENT OF A CARGO AIRCRAFT, AN OVERVIEW OF THE PRELIMINARY AERODYNAMIC DESIGN PHASE ICAS 2000 CONGRESS DEVELOPMENT OF A CARGO AIRCRAFT, AN OVERVIEW OF THE PRELIMINARY AERODYNAMIC DESIGN PHASE S. Tsach, S. Bauminger, M. Levin, D. Penn and T. Rubin Engineering center Israel Aircraft Industries

More information

Flight Test Evaluation of C-130H Aircraft Performance with NP2000 Propellers

Flight Test Evaluation of C-130H Aircraft Performance with NP2000 Propellers Flight Test Evaluation of C-130H Aircraft Performance with NP2000 Propellers Lance Bays Lockheed Martin - C-130 Flight Sciences Telephone: (770) 494-8341 E-Mail: lance.bays@lmco.com Introduction Flight

More information

Design and Development of Hover bike

Design and Development of Hover bike Available online at www.ijiere.com International Journal of Innovative and Emerging Research in Engineering e-issn: 2394-3343 p-issn: 2394-5494 Design and Development of Hover bike Umesh Carpenter (Asst.

More information

Designing evtol for the Mission NDARC NASA Design and Analysis of Rotorcraft. Wayne Johnson From VTOL to evtol Workshop May 24, 2018

Designing evtol for the Mission NDARC NASA Design and Analysis of Rotorcraft. Wayne Johnson From VTOL to evtol Workshop May 24, 2018 Designing evtol for the Mission NDARC NASA Design and Analysis of Rotorcraft Wayne Johnson From VTOL to evtol Workshop May 24, 2018 1 Conceptual Design of evtol Aircraft Conceptual design Define aircraft

More information

AIRCRAFT CONCEPTUAL DESIGN USING MULTI- OBJECTIVE OPTIMISATION.

AIRCRAFT CONCEPTUAL DESIGN USING MULTI- OBJECTIVE OPTIMISATION. AIRCRAFT CONCEPTUAL DESIGN USING MULTI- OBJECTIVE OPTIMISATION. Mehta Gauravkumar Bharatbhai 1 1 Bhagvan mahavir college of engineering and technology, Surat, gauravzzz007@gmail.com Abstract Once the market

More information

blended wing body aircraft for the

blended wing body aircraft for the Feasibility study of a nuclear powered blended wing body aircraft for the Cruiser/Feeder eede concept cept G. La Rocca - TU Delft 11 th European Workshop on M. Li - TU Delft Aircraft Design Education Linköping,

More information

Preface. Acknowledgments. List of Tables. Nomenclature: organizations. Nomenclature: acronyms. Nomenclature: main symbols. Nomenclature: Greek symbols

Preface. Acknowledgments. List of Tables. Nomenclature: organizations. Nomenclature: acronyms. Nomenclature: main symbols. Nomenclature: Greek symbols Contents Preface Acknowledgments List of Tables Nomenclature: organizations Nomenclature: acronyms Nomenclature: main symbols Nomenclature: Greek symbols Nomenclature: subscripts/superscripts Supplements

More information

Mathematical Model of Electric Vehicle Power Consumption for Traveling and Air-Conditioning

Mathematical Model of Electric Vehicle Power Consumption for Traveling and Air-Conditioning Journal of Energy and Power Engineering 9 (215) 269-275 doi: 1.17265/1934-8975/215.3.6 D DAVID PUBLISHING Mathematical Model of Electric Vehicle Power Consumption for Traveling and Air-Conditioning Seishiro

More information

Revisiting the Calculations of the Aerodynamic Lift Generated over the Fuselage of the Lockheed Constellation

Revisiting the Calculations of the Aerodynamic Lift Generated over the Fuselage of the Lockheed Constellation Eleventh LACCEI Latin American and Caribbean Conference for Engineering and Technology (LACCEI 2013) International Competition of Student Posters and Paper, August 14-16, 2013 Cancun, Mexico. Revisiting

More information

Design, Modelling and Measurement of Hybrid Powerplant for Unmanned Aerial Systems (UAS)

Design, Modelling and Measurement of Hybrid Powerplant for Unmanned Aerial Systems (UAS) 5 th Australasian Congress on Applied Mechanics, ACAM 2007 10-12 December 2007, Brisbane, Australia Design, Modelling and Measurement of Hybrid Powerplant for Unmanned Aerial Systems (UAS) Richard Glassock

More information