Freight Bogie Design Measures to Improve the Lifetime Performance of Switches and Curves

Size: px
Start display at page:

Download "Freight Bogie Design Measures to Improve the Lifetime Performance of Switches and Curves"

Transcription

1 Paper 125 Civil-Comp Press, 216 Proceedings of the Third International Conference on Railway Technology: Research, Development and Maintenance, J. Pombo, (Editor), Civil-Comp Press, Stirlingshire, Scotland. Freight Bogie Design Measures to Improve the Lifetime Performance of Switches and Curves M. Hiensch 1,2, M. Linders 2, N. Burgelman 2, W. Hoeding 2 M. Steenbergen 1 and A. Zoeteman 1,3 1 Railway Technology, Technical University Delft, The Netherlands 2 DEKRA Rail, Utrecht, The Netherlands 3 ProRail, Utrecht, The Netherlands Abstract Rail infrastructure in the Netherlands is facing problems of high capacity demands with 24/7 operation, resulting in a limited availability of maintenance windows. This extensive usage demands a robust transport system with track and vehicle interface managed within a systems approach. From the viewpoint of overall system performance, infra manager ProRail has an interest in the level of track friendliness of vehicles that have access to their tracks. Bogie design improvement related to freight transport and their impact on the Dutch track is of special interest here. The research studies, presented in this paper, consider the potential of proposed design measures regarding the improvement in curving behaviour and switch negotiation of freight bogies and related wheel-rail contact stresses. For this purpose a sensitivity analysis has been carried out by means of track-train simulations within the VAMPIRE multi body simulation software. The research shows that the standard Y25L freight bogie design displays rather good track friendliness behaviour. Two of the evaluated bogie design modifications, both targeting the PYS characteristics, show the potential to further improve track friendliness. One other design modification has been shown to reduce the lateral track forces; this will expectedly lead to a reduction of track geometry degradation and related maintenance effort and cost. Keywords: turnout, switch panel, frequency selective stiffness, track friendliness, Y25 bogie. 1 Introduction The Dutch heavy-rail network is one of the busiest networks in the world. Every day, some 1.2 million passengers and 1, tons of freight are transported on nearly 7, km of railway line. The situation on the network is characterised by separated infrastructure management and profit-driven operators, some being paid 1

2 by regional governments through tenders. Netherlands Railways (NS) is by far the largest operator (some 8% of passenger train km). ProRail is the infrastructure manager, responsible for constructing, managing and operating the infrastructure. Infrastructure use is charged on a variable cost basis, which includes the tonnage borne by the infrastructure. The tonnage borne is constantly monitored by Quo Vadis weigh-in-motion (WIM) systems which are located at key points on the network and therefore capture practically all traffic movements in real time. Revenues from track access charges as well as government budgets (still by far the major income) are used by infrastructure managers, including ProRail, for constructing, managing and operating the infrastructure. Maintenance cost associated with wear and fatigue damage at the wheel-rail interface are dominating the budget of many infrastructure manager and train operating company. It can be understood from the occurring wear and fatigue features that damage initiation at rail and wheels is strongly connected to track geometry, especially curved track sections. Consequently the curving behaviour of a vehicle plays an important role in controlling wear and fatigue loading at the wheel-rail interface. Apart from track with radii smaller than 3 m, vehicle curving behaviour is particularly challenged at the diverging route through a turnout. Recent developments within bogie design are aiming, among others, to reduce wear and fatigue loading of track and wheels. Bogies which fulfil these conditions are considered track-friendly. From the viewpoint of overall system performance, ProRail has an interest in the level of track friendliness of the vehicles that have access to the track. Bogie design improvements related to freight transport and their impact to Dutch track are of special interest. The presented study assesses a number of potential measures regarding the improvement of curving behaviour of a railway freight bogie and related wheel-rail contact stresses. For this purpose a sensitivity analyses has been carried out by means of track-train simulations within the VAMPIRE multi body simulation software. The research demonstrates the potential benefits of freight bogie design optimization and associated performance, thereby providing insight in the possible contribution to a more sustainable rail transport. 2 Vehicle curving behaviour When negotiating a moderate radius curve, the rolling radius difference, built up by the lateral displacement of the conical wheels towards the outside of the curve, will create steering forces. These steering forces, when larger than the yaw resistance of the wheelset, lead to a more radial position of the wheelset. However, in sharper curves in general the wheelsets of railway vehicles suffer from under-steer. Because of the angle of attack lateral slip will be generated at the wheel-rail contact patch, where the guiding wheel of the leading axle normally is dominant with respect to tangential stresses and slip levels. Lateral slip of both wheels is directed towards the inner side of the curve. The lateral slip forces are balanced by the resultant flange contact force. These contact forces and resulting stresses can lead to plastic deformation, wear and rolling contact fatigue damage (RCF) at the rail head and wheel tread. Consequently, demanded maintenance is high; e.g. inspection, grinding, 2

3 repair welding and rail replacement at track and wheel re-profiling and replacement at the workshop. Figure 1: Wheel tread with RCF crack damage Figure 2: Severely worn narrow radius track section; wear debris at ballast and collecting magnet 2.1. Freight bogie Y25L In Europe the most commonly used bogie designed for freight wagons is the twoaxle bogie type Y25L-UIC (L stands for the French word Lourd which translates in English to Heavy). The bogie Y25L was developed by the French National Railway SNCF and standardised by the (International Union of Railways) UIC. As described in [1] the bogie Y25L primary suspension consists of a set nested coil springs (with a bi-linear characteristic for tare/laden ride) and a single Lenoir link providing vertical and lateral frictional damping. The friction force depends on the vertical load. The longitudinal axle box clearance is 4 mm, unidirectional, allowing a certain yaw angle. After this small amount of longitudinal clearance has been exceeded, the longitudinal stiffness will rise steeply. Therefore the wheelsets can 3

4 steer themselves in curves as long as the 4 mm clearance is not fully consumed. For curves with a radius below 6 m this clearance is exceeded, and relatively poor curving behaviour as well as high lateral wheel-rail forces are to be expected [2]. From the viewpoint of efficiency, freight wagons are often loaded to their maximum, reaching the allowed track axle load which in the Netherlands is 22,5 ton. Although in absolute numbers the annual freight transport in the Netherlands is relatively low compared to passenger traffic (4 vs. 144 mio. train km), poor narrow curving behaviour in combination with high axle loads can, depending on curve radii distribution, cause a disproportional contribution of freight transport to track degradation. Achieving improved track friendliness of freight bogies therefore can significantly contribute to improving the whole system performance, resulting in a more sustainable rail transport system. Identification and quantification of performance-based design principles can further support this development. Figure 3: The bogie Y25L is admitted for axle loads up to 22,5 ton; the maximum running speed for a wagon fitted with these bogies is 12 km/h when empty and 1 km/h when loaded 3 Measures to improve track friendliness To improve track friendliness of freight bogies, over the years a vast number of bogie design innovations have been considered and reviewed by the industry. A small number have made it to the testing phase and fewer to implementation. The SUSTRAIL project [3] has studied freight bogie design optimisation of the primary suspension by the use of double Lenoir link primary suspension, allowing opposite longitudinal displacement at the wheelset s both primary suspensions, thus facilitating larger yaw angles of the wheelsets while still utilising standard components. Further assessment of wheelset guiding design optimisation included the benefit of linkages providing longitudinal stiffness between the axle boxes using a radial arm. In [4], a study of freight vehicle effects on rail surface damage is presented. Regarding the vehicle design it was concluded that there are significant differences in the resulting rail surface damage between the different types of design. In particular, the characteristics of Primary Yaw Stiffness (PYS) should be determined accurately. An overview of further design optimisation measures is presented in [5]. These include features such as: Inboard bearings, reducing the unsprung mass of the bogie significantly; 4

5 Secondary suspension extended by a rubber ring mounted between the bogie frame and the lower part of the centre pivot, providing a certain amount of elasticity in all translational and rotational directions; Elastic side bearings, soft in lateral direction, to absorb lateral accelerations and allow bogie rotation and self-centering; Application of cross anchors to improve radial steering. The vast number of Europe s 4. strong freight wagon fleet, however, is still fitted with classic bogies. Quantifying the claimed benefits of these innovations in bogie design to the overall rail transport will support decision making and could push implementation Research scope The research presented here focuses on the improvement of switch negotiation and curving performance and related wheel-rail contact stress levels by optimisation of the steering behaviour of Y25 freight wagon bogies. Additionally, a brief study was performed regarding the effect of reducing the bogie unsprung mass on track degradation in terms of RCF and wear. From the above identified design optimisation measures a parametric study has been set up, investigating the effects of several freight bogie design parameters on rail surface damage. A sensitivity analysis was carried out by vehicle dynamic simulations, performed with respect to the characteristics of primary and secondary suspension, unsprung mass and cross anchor application. For some of the evaluated bogie designs, the wheelsets are connected to the bogie frame by so-called radial arms (also called trailer arm). These radial arms are connected to the bogie frame by pivot bushes. For this type of suspension, the primary yaw stiffness (PYS) is dominated by the radial stiffness of the radial arm pivot bush. This rotational stiffness of the wheelset within the bogie frame strongly determines the radial setting of the wheelsets in curves, having a direct effect on the contact conditions, the level of creepage and the lateral forces at the wheel-rail contact patch. Recent developments in bogie design are, among others things, the application of new elastic components with a characteristic that is dependent on loading frequency. As was presented in [6] these so-called Frequency Selective Stiffness (FSS) elements or Hydro bush elements can, when applied at the radial arm pivot bush, lead to a significant reduction of rail and wheel surface damage. For this reason, application of Hydro bush elements at the Y25 bogie is included in the analysis. The impact on running behaviour and track loading of all proposed Y25 bogie design modifications will be discussed in this paper. 4 Assessment of track friendliness Assessment of the level of track friendliness is carried out in terms of the variables curving behaviour, expected wear and RCF loading. The key parameter in this part of the assessment is the parameter Tγ ( T-gamma ), in which longitudinal and lateral tangential forces and creepages are combined to calculate the energy dissipated at the wheel-rail contact patch. Note that spin moment and spin creepage 5

6 terms are not included. The Wear number Tγ is a direct output from the VAMPIRE multibody analysis. Tγ can be used as an output value indicating the expected damage development with respect to wear and RCF development. This damage development can be derived from the damage function as presented in [7,8]. The energy dissipation value Tγ is determined at the first outer wheel for curves with different radii and for switch panel negotiation. The running stability and the impact on track degradation have been assessed through simulations on a tangent track. Figure 4: RCF-damage function for rail grade R22 [7,8] 5 Dynamic simulations input 5.1. Bogie and vehicle models Based on data presented in [9] a model of the Y25L bogie was set up in VAMPIRE. The simulation results presented in [9] were used for the validation of the bogie model. Based on the validated Y25 bogie model, six further bogie vehicle models were set up, in order to assess the following design modifications: 1. Bogie with double Lenoir linkage 2. Bogie with trailer arms, fitted with conventional bushes 3. Bogie with trailer arms, fitted with Hydro bushes 4. Bogie with reduced secondary horizontal stiffness 5. Bogie with reduced unsprung mass 6. Bogie with cross-anchors In order to quantify the benefits of any new design, a benchmark vehicle has been selected based on Y25L bogies and a 6867 HHA coal hopper wagon. The wagon body, including everything except bogies, is defined in terms of mass, inertia and centre of gravity. Both for the tare and laden condition (7 and 22.5t axle load, respectively). The wagon body rests on the bogie s secondary springs. Simulations were carried out in tare and laden condition. The coefficient of friction between block braked wheels and rail is set to f =.45, in correspondence to [4]. 6

7 5.2. Track models The track input for curving behaviour assessment consists of a set of right-hand curves with radii 25, 5, 75, 1, 15, 2 and 25 metres. The cant is set to 5 mm for the radii from 25 m to 1 m, to 3 mm for 15 m, and to mm for 2 m and 25 m. For each simulation the operational speed is set to a value that results in a cant deficiency of 3 mm. No track irregularities were applied to the curving track models (rail inclination 1:4, track gauge 1435 mm). Runs were performed with the UIC54 E5 (anti-head check) rail profile and new (unworn) S12 wheel profiles. The assessment of switch loading was carried out using a track model of the diverging route through a switch panel, with vehicle speed set to 4 km/h. The most common type of turnout applied in Dutch track has been selected. This turnout has a crossing angle 1 over 9, and a switch radius of 195 m as presented in [1]. In this simulation, measured rail profiles were applied in combination with measured S12 wheel profiles. Assessment of the running stability has been carried out using the VAMPIRE library design file Stabilit2, a tangent track with irregularities specially designed to assess running behaviour. For the assessment of the impact of running behaviour to track degradation, 1 m of measured tangent track was used with consisting shortwave vertical and lateral track irregularities. The Power Spectral Density (PSD) of measured track irregularities as a function of wavelength are presented in figures 5a and 5b. 15 a) Wavelength [m] Lateral shift PSD [m 2 /m] Wavelength [m] Vertical shift 1 8 b) PSD [m 2 /m] Figure 5a, b: The Power Spectral Density (PSD) of measured track irregularities, lateral and vertical, as a function of wavelength 7

8 The simulated train speeds varied with a maximum of 1 km/h when fully laden and 12 km/h when tare. Runs were performed with the UIC 54 E1 rail profile, and new (unworn) S12 wheel profiles. 6 Results Over 2 simulation runs were performed for this study. All simulations have been executed in VAMPIRE Pro, Version 6.3. All simulation results have been compared with the simulation results for the Y25L reference bogie. Only those results that produced noteworthy differences are discussed in detail Primary yaw stiffness (PYS) In this section the effect of PYS design modifications is discussed with respect to switch negotiation, curving behaviour and running stability. For the Y25L bogie design the yaw stiffness is determined by the longitudinal stiffness between the axle boxes and bogie frame. When starting the yaw rotation, the first 4 mm of longitudinal play is consumed at a relatively low stiffness value of approx. 1 kn/mm. After this 4 mm displacement, a nominal longitudinal stiffness value of 1 kn/mm is assumed in accordance to [9]. The analysed PYS design modifications are: a) Double Lenoir linkage, b) Trailer arms with conventional bush with linear stiffness of 2 kn/mm, c) Trailer arms with Hydro bush (static stiffness 2,8 kn/mm, dynamic stiffness 15 kn/mm) Switch negotiation Figures 6a to d present the Tγ development for the different PYS design variations at contact patch areas of the first wheelset during switch negotiation in diverging direction. Upon entering the switch, the wheel flange of the leading right wheel comes into contact with the switch rail at approximately,5 m behind the switch toe. This results in a steep increase of Tγ. When comparing the Tγ peak values, it can be seen that these are not influenced by the examined PYS design measures. Significant differences however can be observed at the wheel tread/ flange root contacting area of the switch panel (position 4 to 48 m) and at both the contacting area of flange and wheel tread/ flange root of the closure panel (position 48 to 63 m). For the design variant double Lenoir and trailer arm with Hydro bush flange contact at the closure panel becomes negligible, eliminating side wear loading. The application of trailer arms with conventional bushing leads to an increase of PYS compared to the reference situation, resulting in Tγ values entirely in the region of Wear. By applying the damage function as shown in figure 4, the expected effect of the individual modifications can be understood more clearly. Table 1 presents for each PYS modification the expected damage at switch and closure panel, based on the operational wear number from the guiding right wheel. 8

9 Tgamma leading wheelset, Double Lenoir, 1:9 turnout a) b) 1L 1R 1FL 1FR Tgamma leading wheelset, Reference, 1:9 turnout 1L 1R 1FL 1FR T [J/m] 1 8 T [J/m] Position [m] Position [m] Tgamma leading wheelset, Trailer arm, 1:9 turnout c) d) 1L 1R 1FL 1FR Tgamma leading wheelset, Trailer arm with Hydro-bush, 1:9 turnout 1L 1R 1FL 1FR T [J/m] 1 8 T [J/m] Position [m] Position [m] Figures 6a to d: Tγ development for the different PYS design variations at the contact patch areas of the first wheelset during switch negotiation. The right wheel (R) is guiding, 1R/L: wheel tread/ flange root contact, 1FR/FL: flange contact Modification Switch Panel contact area Closure Panel contact area Flange Tread/ flange root Flange Tread/ flange root Y25 - reference Wear Wear RCF Wear Double Lenoir Wear Wear Below damage RCF threshold Trailer arm with Wear Wear Wear Wear conventional bush Trailer arm with Hydro bush Wear Wear Below damage threshold Wear Table 1: Rail damage development type, based on Tγ loading of the guiding right wheel 9

10 Curving behaviour Figure 7 presents the simulation results for the different PYS design variations and different curve radii. 14 Tgamma flange leading wheelset in curves, cant deficiency = 3 mm RMS Tgamma [J/m] Y25 (reference) Trailer arms Trailer arms with cross anchor Trailer arms with hydro bushes Double Lenoir suspension Reduced unsprung mass Reduced secondary horizontal stiffness Curve radius [m] Figure 7: Tγ development for the different design variations and curve radii It shows the quadratic mean (RMS) Tγ value of the outer wheel of the leading wheelset, determined in the full curve. These RMS Tγ values are plotted against the curve radius for each design modification. The results in figure 7 show that improved curving behaviour, compared to the Y25 reference bogie, only occurs for radii below 75m. This positive effect is only present for two of the evaluated design modifications; the double Lenoir and trailer arm with Hydro bush, and to a lesser extend for the reduced secondary horizontal stiffness. The best narrow radius curving performance is shown by the double Lenoir design, with resulting Tγ values below the damage threshold value down to the 5 m radius curve. As was the case with switch negotiation, it can be seen here that the trailer arm bogie design with conventional bush results in increased Tγ values due to the increased PYS. For the assessed operational conditions, the influence of the cross anchor is negligible Running stability Of the two design modifications with best curving behaviour, being the double Lenoir and the trailer arm with Hydro bush, running stability were evaluated. Figures 8a, b and c present the lateral accelerations for these design variations, laden at km/h. Both the double Lenoir and trailer arm with Hydro bush show an improvement in stability compared to the reference situation. 1

11 4 3 a) Carbody lateral acceleration, Reference, Laden, Stabilit 8 km/h 9 km/h 1 km/h 4 3 b) Carbody lateral acceleration, Double Lenoir, Laden, Stabilit 8 km/h 9 km/h 1 km/h 4 3 c) Carbody lateral acceleration, Hydro-bush, Laden, Stabilit 8 km/h 9 km/h 1 km/h Acceleration [m/s 2 ] 1-1 Acceleration [m/s 2 ] 1-1 Acceleration [m/s 2 ] Position [m] Position [m] Position [m] Figures 8a, b, c: Lateral accelerations for reference and two design modifications 6.2. Reduced secondary horizontal stiffness The impact of a rubber ring mounted between the Y25L bogie frame and the lower part of the centre pivot was examined by introducing a lateral stiffness to the centre bowl set to.2 kn/mm; a limit value proposed in [11]. The resulting Tγ values for switch negotiation are not significantly influenced by this design modification, it has only a minor influence on curving behaviour Reduced unsprung mass The effect of reducing the unsprung mass of the bogies on track degradation is investigated by examining the forces between wheel and rail in lateral and vertical direction. Reduction of the unsprung mass is implemented in the vehicle model by reducing the mass per wheelset with 4 kg; additionally the mass per bogie frame is reduced with 2 kg. This results in a mass reduction of 1 kg for each bogie (approx. 2% reduction) and implies 2 kg of extra freight. As mentioned in section 5.2 the track section applied for this analysis is tangent track with measured track irregularities. The applied vehicle speed is 1 km/h, laden. For the laden condition 22,5 ton axle load is applied. The power spectral density of Tγ as a function of the wavelength is presented in figure 9a. It can be seen that a reduction of the unsprung mass results in a significant reduction in Tγ loading. The dominating wavelength of 9 m corresponds to the wavelength of the Klingel motion of a Y25 wheelset. The lateral forces power spectrum is presented in figure 9b. Reducing the unsprung mass predominantly has resulted in a significant reduction of lateral track forces and associated Tγ. Reduced lateral track forces can expectedly lead to a reduction in track geometry degradation and related maintenance effort and cost. For the vertical track forces, the observed reduction is much smaller. In the simulations the track geometry input data did not comprise lateral wavelengths below 6m and vertical wavelengths below 8m. It should therefore be noted that track geometry as registered by a measurement coach is not a fully adequate parameter to determine the effect of unsprung mass on track degradation. 11

12 T as function of wavelength Reference Reduced unsprung mass 3 1 a) b) Lateral track force as function of wavelength Reference Reduced unsprung mass PSD [N 2 /s] PSD [N 2 /s] Wavelength [m] Wavelength [m] Figure 9a,b: Tγ and lateral force as a function of the wavelength of the leading wheelset for the reference bogie and the bogie with reduced unsprung mass The unsprung mass has a significant effect on the vertical dynamic wheel-rail force for wavelengths that are shorter than or in the same order of magnitude as the wheel circumference, which is about 3 m. This implies that the unsprung mass plays a crucial role in the degradation velocity of points and other switch parts, of insulated joints and potentially of welded connections with insufficient straightness. These components are key assets in the performance of a railway network. For conventional train speeds, the first derivative of the trajectory of the gravity centre of the unsprung mass may exhibit a discontinuity, implying wheel-rail impact conditions (see ref. [12]). This is also true in lateral directions. It has been demonstrated in [12] that in these cases the dynamic contact force is proportional to the mass, which is consistent with both theoretical and field results for P1 peak forces from the literature [13]. The level and frequency content of the dynamic contact force have a direct relationship to the degradation rate of concerned railway structural assets, even apart from the parameter Tγ and induced wear/rcf. It is therefore useful to strive for minimum inertia of unsprung bogie parts Cross anchors A cross anchor is a pair of linkages applied diagonally between the wheelsets. These wheelsets, when yawed by the wheel-rail contact forces, will assume a radial position. Providing diagonal linkages between the wheelsets of the Y25L reference bogie is however not useful, since the combination of these linkages with the single Lenoir dampers would prevent all longitudinal movements of the wheelsets relative to the bogie frame. Therefore, in this research the cross anchor is limited to a combination with the design with trailer arms and conventional bush. The resulting Tγ values do not show a significant influence of this design measure on running behaviour; for the switch negotiation as well as for curving, the found Tγ levels are corresponding to those for the trailer arm without cross anchor. 12

13 7 Discussion To improve track friendliness of freight bogies, over the years a vast number of bogie design innovations have been considered and reviewed by the industry. The proposed modifications especially target curving behaviour, aiming to reduce track loading during curving and while negotiating a turnout in the diverging route. A parametric study has been carried out, investigating the effects of several freight bogie design parameters on rail surface damage. A sensitivity analysis was carried out by vehicle dynamic simulations, performed by varying the characteristics of primary and secondary suspension, unsprung mass and cross anchor application Switch negotiation The track loads resulting from simulations in the switch panel demonstrate wear to be the dominant damage type for the assessed 1:9 turnout. This is the case for they25 reference design, as well as for the assessed design modifications. Clearly the Tγ peak values occurring when entering the switch panel cannot be reduced by lowering the PYS value. At the closure panel, with curve radius 195 m, a significant difference is observed for two of the assessed design modifications, being the double Lenoir linkage and the trailer arm with Hydro bush. For these modifications, wheelrail wear at the flange (gauge face) becomes negligible. Simultaneously the Tγ level at the wheel tread/ flange root contacting area is reduced, shifting from wear into the RCF region for double Lenoir, where the Hydro bush loading level remains in wear. The other investigated design modifications (trailer arm with conventional bush, reduced secondary horizontal stiffness, reduced unsprung mass and the cross anchor application) did not result in a significant optimisation in switch loading Curving behaviour For the assessed operational conditions, the reference Y25 bogie displays excellent curving behaviour for all radii down to the 75 m radius, keeping operational Tγ levels below the RCF damage threshold. At curve radius 5 m Tγ values sharply increase, resulting in RCF damage development for the reference situation. At 5 m radius, only the double Lenoir design remains below the damage threshold. Although the trailer arm with Hydro bush design results in reduced Tγ values compared to the reference bogie, its Tγ level at 5 m radius lays within the RCF region. At 25 m radius, both double Lenoir and Hydro design modifications are experiencing RCF damage development. Of the other investigated design modifications, only the reduced secondary horizontal stiffness leads to improved curving, although minor Vehicle stability/ track degradation Running stability was examined for the two design modifications with the best curving behaviour, being the double Lenoir and the trailer arm with Hydro bush. 13

14 Both modifications show improved stability compared to the reference situation. The effect of reducing the unsprung mass of the bogie on track degradation, has been assessed by evaluating the forces between wheel and rail in lateral and vertical direction. It can be observed that reducing the unsprung mass predominantly has resulted in a significant reduction of the lateral track forces, and related Tγ. The observed reduction is closely related to the Klingel movement of the bogie. Reduced lateral track forces will expectedly lead to reduced track geometry degradation and related maintenance effort and cost. This potential will be quantified in further research. 8 Conclusion The potential of proposed design measures regarding the improvement of curving behaviour and switch negotiation of railway freight bogies and related wheel-rail contact stresses have been studied. For this purpose, a sensitivity analysis has been carried out by means of track-train simulations within the VAMPIRE multi-body simulation software. Curving behaviour of the standard Y25L freight bogie design, with respect to expected wear and RCF development, is shown to be rather good, keeping operational Tγ levels below the RCF damage threshold for a large range of radii. Only for the evaluated curve radii of 5 and 25 m, RCF development can be expected for the standard Y25L design. Two of the six evaluated bogie design modifications, being the double Lenoir linkage and the trailer arm with Hydro bush, deliver a distinctive contribution to track friendliness of the Y25L freight bogie. For the assessed conditions the double Lenoir modification expands the curve radii range with Tγ operational levels below the RCF damage threshold to 5 m. Both double Lenoir and trailer arm with Hydro result in improved switch negotiation, especially for the closure panel at which for the assessed situation flange wear loading is almost eliminated. For the assessed operational conditions, both design modifications also show improved stability compared to the reference situation. Other design modifications, among which the application of cross anchors, did not significantly contribute to improving track friendliness under the evaluated conditions. The research shows that the standard Y25L freight bogie design possesses rather good track friendly behaviour. For two bogie design modifications, both targeting the PYS characteristics, the potential is identified to provide further improved track friendliness. Reducing the unsprung bogie mass has shown to reduce the lateral track forces, which will expectedly lead to a reduction in track geometry degradation and related maintenance effort and cost. The potential benefits of the identified freight bogie design optimisations and associated performance however require further research, providing a more detailed insight in the possible contribution of new bogie designs and their impact on sustainability of railway assets. This insight can then help to determine whether these new designs can result in an improved situation for the whole system. 14

15 Acknowledgements The authors wish to acknowledge the support of ProRail in funding this study. References [1] A. Orlova, Y. Boronenko, Handbook of railway vehicle dynamics, the anatomy of railway vehicle running gear, 26. [2] P-A. Jönsson, Dynamic vehicle track interaction of freight wagons with link suspension, KTH Docteral Thesis, 27. [3] S. Iwnicki et.al, The SUSTRAIL high speed freight vehicle: Simulation of novel running gear design, IAVSD13-3, 2-ID49. [4] T. Tunna, S. Clark, C. Urban, A Study of Freight Vehicle - Effects on Rail Surface Damage, Office of Rail Regulation, UK TTCI(UK), Ltd.31 May 26 [5] D. Scholdan, Freight bogie overview RWTH-IFS-Seminar, Aachen, 214. [6] M. Hiensch et al., Improving track-friendliness of rolling stock, Proceedings of International Heavy Haul Association (IHHA 215), Australia, 215. [7] M.C. Burstow, Whole life rail model application and development for RSSB development of a RCF damage parameter AEATR-ES Issue 1 October 23 [8] M.C. Burstow, Whole life rail model application and development for RSSB continued development of an RCF Damage Parameter, AEATR-ES Issue 2 September 24 [9] M. Molatefi, M. Hecht, M.H. Kadivar, Critical speeds and limit cycles in the empty Y25-freight wagon, Porc. IMechE Vol. 22 Part F: JRRT67, 26. [1] M. Hiensch, P. Wiersma, Improvement of structural performance of the switch panel by enhancing track friendliness of trains, Proceedings of Contact Mechanics (CM215), Colorado, USA, 215. [11] P. Shackleton, Suspension simulation of a rail freight vehicle for LDHV goods, EU Seventh Framework Programme SPECTRUM, presentation Paris, 8th April 215. [12] M. Steenbergen (27). The role of the contact geometry in wheel rail impact due to wheel flats. Veh. Syst. Dyn. 45 (12), [13] H. Jenkins, J. Stephenson, G. Clayton, G. Morland, D. Lyon (1974). The effect of track and vehicle parameters on wheel/rail vertical dynamic forces. Railway Eng. J. 3 (1),

TRACK FRIENDLINESS OF AN INNOVATIVE FREIGHT BOGIE

TRACK FRIENDLINESS OF AN INNOVATIVE FREIGHT BOGIE 11 th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems (CM2018), Delft, The Netherlands, September 24-27, 2018 TRACK FRIENDLINESS OF AN INNOVATIVE FREIGHT BOGIE Andrea Bracciali*,

More information

What is model validation? Overview about DynoTRAIN WP5. O. Polach Final Meeting Frankfurt am Main, September 27, 2013

What is model validation? Overview about DynoTRAIN WP5. O. Polach Final Meeting Frankfurt am Main, September 27, 2013 What is model validation? Overview about DynoTRAIN WP5 O. Polach Final Meeting Frankfurt am Main, September 27, 2013 Contents Introduction State-of-the-art on the railway dynamic modelling Suspension modelling

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 0.0 EFFECTS OF TRANSVERSE

More information

Gauge Face Wear Caused with Vehicle/Track Interaction

Gauge Face Wear Caused with Vehicle/Track Interaction Gauge Face Wear Caused with Vehicle/Track Interaction Makoto ISHIDA*, Mitsunobu TAKIKAWA, Ying JIN Railway Technical Research Institute 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540, Japan Tel: +81-42-573-7291,

More information

Special edition paper

Special edition paper Efforts for Greater Ride Comfort Koji Asano* Yasushi Kajitani* Aiming to improve of ride comfort, we have worked to overcome issues increasing Shinkansen speed including control of vertical and lateral

More information

The SUSTRAIL high speed freight vehicle: Simulation of novel running gear design

The SUSTRAIL high speed freight vehicle: Simulation of novel running gear design The SUSTRAIL high speed freight vehicle: Simulation of novel running gear design Simon Iwnicki, Yann Bezin, Anna Orlova 2, Per-Anders Johnsson 3, Sebastian Stichel 3, Henning Schelle 4, Institute of Railway

More information

Switch design optimisation: Optimisation of track gauge and track stiffness

Switch design optimisation: Optimisation of track gauge and track stiffness 1 Switch design optimisation: Optimisation of track gauge and track stiffness Elias Kassa Professor, Phd Department of Civil and Transport Engineering, NTNU Trondheim, Norway E-mail: elias.kassa@ntnu.no

More information

The track-friendly high-speed bogie developed within Gröna Tåget

The track-friendly high-speed bogie developed within Gröna Tåget The track-friendly high-speed bogie developed within Gröna Tåget A. Orvnäs 1 (former 2), E. Andersson 2, S. Stichel 2, R. Persson 3 1 Mechanical Systems, Interfleet Technology 2 Division of Rail Vehicles,

More information

Simulation of a Narrow Gauge Vehicle using SIMPACK, Model Validation using Scaled Prototypes on Roller-Rig

Simulation of a Narrow Gauge Vehicle using SIMPACK, Model Validation using Scaled Prototypes on Roller-Rig Simulation of a Narrow Gauge Vehicle using SIMPACK, Model Validation using Scaled Prototypes on Roller-Rig Politecnico di Torino Dipartimento di Meccanica N. Bosso, A.Gugliotta, A. Somà Blue Engineering

More information

Interrelation between Wavelengths of Track Geometry Irregularities and Rail Vehicle Dynamic Properties

Interrelation between Wavelengths of Track Geometry Irregularities and Rail Vehicle Dynamic Properties THE ARCHIVES OF TRANSPORT VOL. XXV-XXVI NO 1-2 213 Interrelation between Wavelengths of Track Geometry Irregularities and Rail Vehicle Dynamic Properties Bogdan Sowinski Received January 213 Abstract The

More information

S&C: Understanding Root Causes & Assessing Effective Remedies C4R Final Dissemination Event, Paris 15 th March 2017

S&C: Understanding Root Causes & Assessing Effective Remedies C4R Final Dissemination Event, Paris 15 th March 2017 Capacity for Rail S&C: Understanding Root Causes & Assessing Effective Remedies C4R Final Dissemination Event, Paris 15 th March 2017 Presenter: Dr Yann Bezin Institute of Railway Research, University

More information

Wheel-Rail Contact: GETTING THE RIGHT PROFILE

Wheel-Rail Contact: GETTING THE RIGHT PROFILE Wheel-Rail Contact: GETTING THE RIGHT PROFILE Simon Iwnicki, Julian Stow and Adam Bevan Rail Technology Unit Manchester Metropolitan University The Contact The contact patch between a wheel and a rail

More information

Optimisation of Wheelset Maintenance using Whole System Cost Modelling

Optimisation of Wheelset Maintenance using Whole System Cost Modelling Optimisation of Wheelset Maintenance using Whole System Cost Modelling Adam Bevan, Paul Molyneux-Berry University of Huddersfield Steve Mills Rail Safety & Standards Board Andy Rhodes, Daniel Ling Serco

More information

Optimisation of Railway Wheel Profiles using a Genetic Algorithm

Optimisation of Railway Wheel Profiles using a Genetic Algorithm The Rail Technology Unit Optimisation of Railway Wheel Profiles using a Genetic Algorithm Persson I., Iwnicki S.D. This article was download from the Rail Technology Unit Website at MMU Rail Technology

More information

Permissible Track Forces for Railway Vehicles

Permissible Track Forces for Railway Vehicles British Railways Board Page 1 of 11 Part A Synopsis This document prescribes design and maintenance requirements for traction and rolling stock and for on track plant to ensure that interactive forces

More information

CALCULATING ROLLING RESISTANCE OF FREIGHT WAGONS USING MULTIBODY SIMULATION

CALCULATING ROLLING RESISTANCE OF FREIGHT WAGONS USING MULTIBODY SIMULATION CALCULATING ROLLING RESISTANCE OF FREIGHT WAGONS USING MULTIBODY SIMULATION Anna Komarova*, Yuri Boronenko*, Anna Orlova*, Yuri Romen** * Department of Railway Cars, Petersburg State Transport University

More information

Optimisation of Rolling Stock Wheelset Life through Better Understanding of Wheel Tyre Degradation

Optimisation of Rolling Stock Wheelset Life through Better Understanding of Wheel Tyre Degradation Optimisation of Rolling Stock Wheelset Life through Better Understanding of Wheel Tyre Degradation 1 I. Vermeij, 1 T. Bontekoe, 1 G. Liefting, 1 J. Peen Lloyd s Register Rail Europe, Utrecht, The Netherlands

More information

Journal of Mechanical Systems for Transportation and Logistics

Journal of Mechanical Systems for Transportation and Logistics A Potential of Rail Vehicle Having Bolster with Side Bearers for Improving Curving Performance on Sharp Curves Employing Link-Type Forced Steering Mechanism* Katsuya TANIFUJI **, Naoki YAEGASHI ** and

More information

Optimisation of Rolling Stock Wheelset Life through Better Understanding of Wheel Tyre Degradation

Optimisation of Rolling Stock Wheelset Life through Better Understanding of Wheel Tyre Degradation IJR International Journal of Railway Vol. 1, No. 3 / September 2008, pp. 83-88 The Korean Society for Railway Optimisation of Rolling Stock Wheelset Life through Better Understanding of Wheel Tyre Degradation

More information

WHY RAILS CRACK ISSUE 23 JUNE

WHY RAILS CRACK ISSUE 23 JUNE WEALTH CREATION FEATURE WHY RAILS CRACK Metal fatigue in rails was recently highlighted as the likely cause of the Hatfield train crash. Four key members of the international research group WRISA reveal

More information

Railway Bogies with Radial Elastic Wheelsets

Railway Bogies with Radial Elastic Wheelsets EUROMECH Colloquium 409, University of Hannover, March 6 9, 2000 Railway Bogies with Radial Elastic Wheelsets H. Claus and W. Schiehlen Contents: Introduction MBS Model and Excitation Model Improvements

More information

Updating the horizontal VUC: Progress update

Updating the horizontal VUC: Progress update Updating the horizontal VUC: Progress update Mark Burstow Principal Vehicle Track Dynamics Specialist September 2012 Horizontal VUC update 1 Scope of review 1. Converting damage to cost Can better relationships

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 1.3 CURVE SQUEAL OF

More information

Simulation of railway track maintenance trains at MATISA

Simulation of railway track maintenance trains at MATISA Simulation of railway track maintenance trains at MATISA MultiBody Simulation User Group Meeting Rémi ALLIOT, Solution Consultant, Dassault Systèmes SE Jacques ZUERCHER, Head of Calculation Department,

More information

Railway Engineering: Track and Train Interaction COURSE SYLLABUS

Railway Engineering: Track and Train Interaction COURSE SYLLABUS COURSE SYLLABUS Week 1: Vehicle-Track Interaction When a railway vehicle passes over a track, the interaction between the two yields forces on both vehicle and track. What is the nature of these forces,

More information

Experimental investigation on vibration characteristics and frequency domain of heavy haul locomotives

Experimental investigation on vibration characteristics and frequency domain of heavy haul locomotives Journal of Advances in Vehicle Engineering 3(2) (2017) 81-87 www.jadve.com Experimental investigation on vibration characteristics and frequency domain of heavy haul locomotives Lirong Guo, Kaiyun Wang*,

More information

Vehicle Dynamic Simulation Using A Non-Linear Finite Element Simulation Program (LS-DYNA)

Vehicle Dynamic Simulation Using A Non-Linear Finite Element Simulation Program (LS-DYNA) Vehicle Dynamic Simulation Using A Non-Linear Finite Element Simulation Program (LS-DYNA) G. S. Choi and H. K. Min Kia Motors Technical Center 3-61 INTRODUCTION The reason manufacturers invest their time

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.6 ROLLING NOISE FROM

More information

Technical Report Lotus Elan Rear Suspension The Effect of Halfshaft Rubber Couplings. T. L. Duell. Prepared for The Elan Factory.

Technical Report Lotus Elan Rear Suspension The Effect of Halfshaft Rubber Couplings. T. L. Duell. Prepared for The Elan Factory. Technical Report - 9 Lotus Elan Rear Suspension The Effect of Halfshaft Rubber Couplings by T. L. Duell Prepared for The Elan Factory May 24 Terry Duell consulting 19 Rylandes Drive, Gladstone Park Victoria

More information

PROCEEDINGS. High Tech in Heavy Haul

PROCEEDINGS. High Tech in Heavy Haul PROCEEDINGS International Heavy Haul Conference Specialist Technical Session Kiruna, Sweden June 11-13, 2007 High Tech in Heavy Haul International Heavy Haul Association Hosted by: Conference Sponsors:

More information

THE INFLUENCE OF THE WHEEL CONICITY ON THE HUNTING MOTION CRITICAL SPEED OF THE HIGH SPEED RAILWAY WHEELSET WITH ELASTIC JOINTS

THE INFLUENCE OF THE WHEEL CONICITY ON THE HUNTING MOTION CRITICAL SPEED OF THE HIGH SPEED RAILWAY WHEELSET WITH ELASTIC JOINTS THE INFLUENCE OF THE WHEEL CONICITY ON THE HUNTING MOTION CRITICAL SPEED OF THE HIGH SPEED RAILWAY WHEELSET WITH ELASTIC JOINTS DANIEL BALDOVIN 1, SIMONA BALDOVIN 2 Abstract. The axle hunting is a coupled

More information

ALS (Active Lateral Suspension) By Bernard GAUTIER SNCF

ALS (Active Lateral Suspension) By Bernard GAUTIER SNCF ALS (Active Lateral Suspension) By Bernard GAUTIER SNCF The vertical and lateral motions of a railway vehicle come from the track and the wheel - rail contact dynamics. The motions of the vehicle determinate

More information

A comparative analysis of the performance of heavy vehicle combinations from OECD member countries by computer simulation.

A comparative analysis of the performance of heavy vehicle combinations from OECD member countries by computer simulation. A comparative analysis of the performance of heavy vehicle combinations from OECD member countries by computer simulation. Mr. Adam Ritzinger, B Eng (Mech) Mr. Anthony Germanchev, B Eng (Mech) ARRB Group

More information

Relative ride vibration of off-road vehicles with front-, rear- and both axles torsio-elastic suspension

Relative ride vibration of off-road vehicles with front-, rear- and both axles torsio-elastic suspension Relative ride vibration of off-road vehicles with front-, rear- and both axles torsio-elastic suspension Mu Chai 1, Subhash Rakheja 2, Wen Bin Shangguan 3 1, 2, 3 School of Mechanical and Automotive Engineering,

More information

Development of Advanced Computational Models of Railway Vehicles

Development of Advanced Computational Models of Railway Vehicles Development of Advanced Computational Models of Railway Vehicles Extended Abstract Hugo Miguel Pacheco Magalhães Instituto Superior Técnico Universidade Técnica de Lisboa Abstract In this thesis, multibody

More information

Shape optimisation of a railway wheel profile

Shape optimisation of a railway wheel profile Shape optimisation of a railway wheel profile Coenraad Esveld, Professor of Railway Engineering and Valery L. Markine, Assistant Professor of Railway Engineering and Ivan Y. Shevtsov, Researcher of Railway

More information

Track friendly vehicles - principles, advantages. Sebastian Stichel August 8, 2007

Track friendly vehicles - principles, advantages. Sebastian Stichel August 8, 2007 Track friendly vehicles - principles, advantages Sebastian Stichel August 8, 2007 What is track friendliness A track friendly vehicle is a vehicle that causes low maintenance costs on the track (and on

More information

Simulating Rotary Draw Bending and Tube Hydroforming

Simulating Rotary Draw Bending and Tube Hydroforming Abstract: Simulating Rotary Draw Bending and Tube Hydroforming Dilip K Mahanty, Narendran M. Balan Engineering Services Group, Tata Consultancy Services Tube hydroforming is currently an active area of

More information

Investigating the impact of track gradients on traction energy efficiency in freight transportation by railway

Investigating the impact of track gradients on traction energy efficiency in freight transportation by railway Energy and Sustainability III 461 Investigating the impact of track gradients on traction energy efficiency in freight transportation by railway G. Bureika & G. Vaičiūnas Department of Railway Transport,

More information

ANALYZING THE DYNAMICS OF HIGH SPEED RAIL

ANALYZING THE DYNAMICS OF HIGH SPEED RAIL ANALYZING THE DYNAMICS OF HIGH SPEED RAIL 10 th Hydrail Conference 22 June 2015 George List, NC State Motivation Rail is a very attractive technology for moving people and goods Suspension system is extremely

More information

Switch Life Improvement Through Application of a Water Based, Drying Friction Modifier Richard Stock, Barnaby Temple. L.B. Foster Rail Technologies

Switch Life Improvement Through Application of a Water Based, Drying Friction Modifier Richard Stock, Barnaby Temple. L.B. Foster Rail Technologies Switch Life Improvement Through Application of a Water Based, Drying Friction Modifier Richard Stock, Barnaby Temple L.B. Foster Rail Technologies 1 Outline Definitions Trial at NetworkRail/UK The impact

More information

High Speed S&C Design and Maintenance

High Speed S&C Design and Maintenance High Speed S&C Design and Maintenance Dr Sin Sin Hsu Head of Track Engineering, NRHS 1 st March 2018 What is a High Speed Turnout? Three main parts: Switch Geometry, profile, components Intermediate Part

More information

The Whispering Train Programme. The search for effective and cost neutral noise reduction measures for existing freight wagons.

The Whispering Train Programme. The search for effective and cost neutral noise reduction measures for existing freight wagons. The Whispering Train Programme The search for effective and cost neutral noise reduction measures for existing freight wagons. Ir. Jasper Peen & Ing. Wil van Roij, Lloyd s Register Rail, Utrecht, the Netherlands

More information

MODELING SUSPENSION DAMPER MODULES USING LS-DYNA

MODELING SUSPENSION DAMPER MODULES USING LS-DYNA MODELING SUSPENSION DAMPER MODULES USING LS-DYNA Jason J. Tao Delphi Automotive Systems Energy & Chassis Systems Division 435 Cincinnati Street Dayton, OH 4548 Telephone: (937) 455-6298 E-mail: Jason.J.Tao@Delphiauto.com

More information

University of Huddersfield Repository

University of Huddersfield Repository University of Huddersfield Repository Allen, Paul and Shackleton, Philip Wheels v Rails Original Citation Allen, Paul and Shackleton, Philip (2016) Wheels v Rails. In: IMechE Railway Division Seminar,

More information

Transmission Error in Screw Compressor Rotors

Transmission Error in Screw Compressor Rotors Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2008 Transmission Error in Screw Compressor Rotors Jack Sauls Trane Follow this and additional

More information

KINEMATICAL SUSPENSION OPTIMIZATION USING DESIGN OF EXPERIMENT METHOD

KINEMATICAL SUSPENSION OPTIMIZATION USING DESIGN OF EXPERIMENT METHOD Jurnal Mekanikal June 2014, No 37, 16-25 KINEMATICAL SUSPENSION OPTIMIZATION USING DESIGN OF EXPERIMENT METHOD Mohd Awaluddin A Rahman and Afandi Dzakaria Faculty of Mechanical Engineering, Universiti

More information

Results in rail research using SIMPACK

Results in rail research using SIMPACK Results in rail research using SIMPACK Politecnico di Torino - Dip. di Meccanica IIa Facoltà di Ingegneria (Vercelli) N. Bosso, A. Gugliotta, A. Somà The railway dynamic research group of the Mechanical

More information

Loaded Car Hunting and Suspension Systems

Loaded Car Hunting and Suspension Systems Loaded Car Hunting Mechanical Association Railcar Technical Services Loaded Car Hunting and Suspension Systems 18 September 2009 Jay P. Monaco Vice President Engineering Amsted Rail Company, Inc. Loaded

More information

Speed Limit on Railway Curves. (Use of SuperElevation on Railways)

Speed Limit on Railway Curves. (Use of SuperElevation on Railways) Speed Limit on Railway Curves (Use of SuperElevation on Railways) Introduction When a train rounds a curve, it has a tendency to want to travel in a straight direction and the track must resist this movement,

More information

Improvement of Vehicle Dynamics by Right-and-Left Torque Vectoring System in Various Drivetrains x

Improvement of Vehicle Dynamics by Right-and-Left Torque Vectoring System in Various Drivetrains x Improvement of Vehicle Dynamics by Right-and-Left Torque Vectoring System in Various Drivetrains x Kaoru SAWASE* Yuichi USHIRODA* Abstract This paper describes the verification by calculation of vehicle

More information

SPMM OUTLINE SPECIFICATION - SP20016 issue 2 WHAT IS THE SPMM 5000?

SPMM OUTLINE SPECIFICATION - SP20016 issue 2 WHAT IS THE SPMM 5000? SPMM 5000 OUTLINE SPECIFICATION - SP20016 issue 2 WHAT IS THE SPMM 5000? The Suspension Parameter Measuring Machine (SPMM) is designed to measure the quasi-static suspension characteristics that are important

More information

Multiphysics Modeling of Railway Pneumatic Suspensions

Multiphysics Modeling of Railway Pneumatic Suspensions SIMPACK User Meeting Salzburg, Austria, 18 th and 19 th May 2011 Multiphysics Modeling of Railway Pneumatic Suspensions Nicolas Docquier Université catholique de Louvain, Belgium Institute of Mechanics,

More information

Evaluation of the Fatigue Life of Aluminum Bogie Structures for the Urban Maglev

Evaluation of the Fatigue Life of Aluminum Bogie Structures for the Urban Maglev Evaluation of the Fatigue Life of Aluminum Bogie Structures for the Urban Maglev 1 Nam-Jin Lee, 2 Hyung-Suk Han, 3 Sung-Wook Han, 3 Peter J. Gaede, Hyundai Rotem company, Uiwang-City, Korea 1 ; KIMM, Daejeon-City

More information

Design and Calculation of Fast-Running Shunting Locomotives

Design and Calculation of Fast-Running Shunting Locomotives Design and Calculation of Fast-Running Shunting Locomotives Dipl.-Ing. Claudia Kossmann Stadler Bussnang AG (Switzerland) SIMPACK User Meeting 2011 Shunting Locomotive Ee 922 - Introduction 2007: Swiss

More information

Presented by: Gary Wolf

Presented by: Gary Wolf 1 Basic Rail Vehicle Suspension Parameters Presented by: Gary Wolf Wolf Railway Consulting 2838 Washington Street Avondale Estates, Georgia 30002 404 600 2300 www.wolfrailway.com Rail Vehicle Suspension

More information

SPMM OUTLINE SPECIFICATION - SP20016 issue 2 WHAT IS THE SPMM 5000?

SPMM OUTLINE SPECIFICATION - SP20016 issue 2 WHAT IS THE SPMM 5000? SPMM 5000 OUTLINE SPECIFICATION - SP20016 issue 2 WHAT IS THE SPMM 5000? The Suspension Parameter Measuring Machine (SPMM) is designed to measure the quasi-static suspension characteristics that are important

More information

Development of Motor-Assisted Hybrid Traction System

Development of Motor-Assisted Hybrid Traction System Development of -Assisted Hybrid Traction System 1 H. IHARA, H. KAKINUMA, I. SATO, T. INABA, K. ANADA, 2 M. MORIMOTO, Tetsuya ODA, S. KOBAYASHI, T. ONO, R. KARASAWA Hokkaido Railway Company, Sapporo, Japan

More information

Performance Based Track Geometry: Optimizing Transit System Maintenance

Performance Based Track Geometry: Optimizing Transit System Maintenance Performance Based Track Geometry: Optimizing Transit System Maintenance Charity Duran Ketchum Transportation Technology Center, Inc. Pueblo, Colorado Nicholas Wilson Transportation Technology Center, Inc.

More information

Y25 freight car bogie models properties analysis by means of computer simulations

Y25 freight car bogie models properties analysis by means of computer simulations Y25 freight car bogie models properties analysis by means of computer simulations Tomáš Lack 1,*, Juraj Gerlici 1 1 University of Ţilina, Faculty of Mechanical Engineering, Department of Transport and

More information

Procedia Engineering 00 (2009) Mountain bike wheel endurance testing and modeling. Robin C. Redfield a,*, Cory Sutela b

Procedia Engineering 00 (2009) Mountain bike wheel endurance testing and modeling. Robin C. Redfield a,*, Cory Sutela b Procedia Engineering (29) Procedia Engineering www.elsevier.com/locate/procedia 9 th Conference of the International Sports Engineering Association (ISEA) Mountain bike wheel endurance testing and modeling

More information

Development of Track-Friendly Bogies for High Speed

Development of Track-Friendly Bogies for High Speed Development of Track-Friendly Bogies for High Speed A Simulation Study by Anneli Orvnäs Evert Andersson Rickard Persson ISBN 978-91-7178-726-2 Postal Address Royal Institute of Technology Aeronautical

More information

ENERGY RECOVERY SYSTEM FROM THE VEHICLE DAMPERS AND THE INFLUENCE OF THE TANK PRESSURE

ENERGY RECOVERY SYSTEM FROM THE VEHICLE DAMPERS AND THE INFLUENCE OF THE TANK PRESSURE The 3rd International Conference on Computational Mechanics and Virtual Engineering COMEC 2009 29 30 OCTOBER 2009, Brasov, Romania ENERGY RECOVERY SYSTEM FROM THE VEHICLE DAMPERS AND THE INFLUENCE OF THE

More information

Design and performance analysis of a Tram-Train profile for dual operation running

Design and performance analysis of a Tram-Train profile for dual operation running Design and performance analysis of a Tram-Train profile for dual operation running Crosbee D. & Allen P.D. University of Huddersfield, United Kingdom Carroll R. Stagecoach Supertram ABSTRACT This paper

More information

Freight Gauge Nuances. Presented by Martin Osman 4 th November 2015

Freight Gauge Nuances. Presented by Martin Osman 4 th November 2015 Freight Gauge Nuances Presented by Martin Osman 4 th November 2015 Introduction What s new in the field of freight gauging? Established or Benchmark suspension Standard Vehicle Gauge Data sheets (SVGD)

More information

Bus Handling Validation and Analysis Using ADAMS/Car

Bus Handling Validation and Analysis Using ADAMS/Car Bus Handling Validation and Analysis Using ADAMS/Car Marcelo Prado, Rodivaldo H. Cunha, Álvaro C. Neto debis humaitá ITServices Ltda. Argemiro Costa Pirelli Pneus S.A. José E. D Elboux DaimlerChrysler

More information

REDUCING THE OCCURRENCES AND IMPACT OF FREIGHT TRAIN DERAILMENTS

REDUCING THE OCCURRENCES AND IMPACT OF FREIGHT TRAIN DERAILMENTS REDUCING THE OCCURRENCES AND IMPACT OF FREIGHT TRAIN DERAILMENTS D-Rail Final Workshop 12 th November - Stockholm Monitoring and supervision concepts and techniques for derailments investigation Antonella

More information

Design Calculation and Verification using SIMPACK Wheel/Rail

Design Calculation and Verification using SIMPACK Wheel/Rail Design Calculation and Verification using SIMPACK Wheel/Rail Bombardier Transportation, Site Winterthur Business Unit Bogies Competent for Single Axle Running Gears Bogies for Regional Trains Bogies for

More information

Modeling tire vibrations in ABS-braking

Modeling tire vibrations in ABS-braking Modeling tire vibrations in ABS-braking Ari Tuononen Aalto University Lassi Hartikainen, Frank Petry, Stephan Westermann Goodyear S.A. Tag des Fahrwerks 8. Oktober 2012 Contents 1. Introduction 2. Review

More information

Application of Airborne Electro-Optical Platform with Shock Absorbers. Hui YAN, Dong-sheng YANG, Tao YUAN, Xiang BI, and Hong-yuan JIANG*

Application of Airborne Electro-Optical Platform with Shock Absorbers. Hui YAN, Dong-sheng YANG, Tao YUAN, Xiang BI, and Hong-yuan JIANG* 2016 International Conference on Applied Mechanics, Mechanical and Materials Engineering (AMMME 2016) ISBN: 978-1-60595-409-7 Application of Airborne Electro-Optical Platform with Shock Absorbers Hui YAN,

More information

WHEEL TREAD PROFILE EVOLUTION FOR COMBINED BLOCK BRAKING AND WHEEL-RAIL CONTACT RESULTS FROM DYNAMOMETER EXPERIMENTS

WHEEL TREAD PROFILE EVOLUTION FOR COMBINED BLOCK BRAKING AND WHEEL-RAIL CONTACT RESULTS FROM DYNAMOMETER EXPERIMENTS 1 th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems (CM215) Colorado Springs, Colorado, USA WHEEL TREAD PROFILE EVOLUTION FOR COMBINED BLOCK BRAKING AND WHEEL-RAIL CONTACT

More information

I. Tire Heat Generation and Transfer:

I. Tire Heat Generation and Transfer: Caleb Holloway - Owner calebh@izzeracing.com +1 (443) 765 7685 I. Tire Heat Generation and Transfer: It is important to first understand how heat is generated within a tire and how that heat is transferred

More information

University of Huddersfield Repository

University of Huddersfield Repository University of Huddersfield Repository Iwnicki, S. The Effect of Profiles on Wheel and Rail Damage Original Citation Iwnicki, S. (2009) The Effect of Profiles on Wheel and Rail Damage. International Journal

More information

Research on Skid Control of Small Electric Vehicle (Effect of Velocity Prediction by Observer System)

Research on Skid Control of Small Electric Vehicle (Effect of Velocity Prediction by Observer System) Proc. Schl. Eng. Tokai Univ., Ser. E (17) 15-1 Proc. Schl. Eng. Tokai Univ., Ser. E (17) - Research on Skid Control of Small Electric Vehicle (Effect of Prediction by Observer System) by Sean RITHY *1

More information

Sustainable Rail Strategy The Value of Quality

Sustainable Rail Strategy The Value of Quality Graz University of Technology Institute of Railway Engineering and Transport Economics Sustainable Rail Strategy The Value of Quality Peter Veit June 30 th, 2015 www.ebw.tugraz.at Challenge Graz, Austria

More information

Rigid-Flexible Coupling Dynamics Simulation Analysis of Wheel/Rail Interaction in High-speed Turnout Zone

Rigid-Flexible Coupling Dynamics Simulation Analysis of Wheel/Rail Interaction in High-speed Turnout Zone Rigid-Flexible Coupling Dynamics Simulation Analysis of Wheel/Rail Interaction in High-speed Turnout Zone 1 China Academy of Railway Sciences Beijing, 100081, China E-mail: ym890531@163.com Weidong Wang

More information

Advanced Vehicle Performance by Replacing Conventional Vehicle Wheel with a Carbon Fiber Reinforcement Composite Wheel

Advanced Vehicle Performance by Replacing Conventional Vehicle Wheel with a Carbon Fiber Reinforcement Composite Wheel Advanced Vehicle Performance by Replacing Conventional Vehicle Wheel with a Carbon Fiber Reinforcement Composite Wheel Jyothi Prasad Gooda Technical Manager Spectrus Informatics Pvt..Ltd. No. 646, Ideal

More information

TNO Science and Industry P.O. Box 756, 5700 AT Helmond, The Netherlands Honda R&D Co., Ltd.

TNO Science and Industry P.O. Box 756, 5700 AT Helmond, The Netherlands   Honda R&D Co., Ltd. Proceedings, Bicycle and Motorcycle Dynamics 2010 Symposium on the Dynamics and Control of Single Track Vehicles, 20-22 October 2010, Delft, The Netherlands Application of the rigid ring model for simulating

More information

Characteristics of wheel-rail vibration of the vertical section in high-speed railways

Characteristics of wheel-rail vibration of the vertical section in high-speed railways Journal of Modern Transportation Volume, Number 1, March 12, Page -15 Journal homepage: jmt.swjtu.edu.cn DOI:.07/BF03325771 Characteristics of wheel-rail vibration of the vertical section in high-speed

More information

Axle Load Checkpoints (ALC) in Denmark

Axle Load Checkpoints (ALC) in Denmark Axle Load Checkpoints (ALC) in Denmark 21.05.2013 Presented by Tom E. Thøgersen, Banedanmark, Teknisk Drift IT - Transition & Integration The Annual Danish Rail Convention 2013 Introductions Wheel/rail

More information

NUMERICAL ANALYSIS OF IMPACT BETWEEN SHUNTING LOCOMOTIVE AND SELECTED ROAD VEHICLE

NUMERICAL ANALYSIS OF IMPACT BETWEEN SHUNTING LOCOMOTIVE AND SELECTED ROAD VEHICLE Journal of KONES Powertrain and Transport, Vol. 21, No. 4 2014 ISSN: 1231-4005 e-issn: 2354-0133 ICID: 1130437 DOI: 10.5604/12314005.1130437 NUMERICAL ANALYSIS OF IMPACT BETWEEN SHUNTING LOCOMOTIVE AND

More information

B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY

B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY 1 B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY (Mechanical Engineering) Time: 3 hours Max. Marks: 70 Answer any FIVE questions All questions

More information

Study on System Dynamics of Long and Heavy-Haul Train

Study on System Dynamics of Long and Heavy-Haul Train Copyright c 2008 ICCES ICCES, vol.7, no.4, pp.173-180 Study on System Dynamics of Long and Heavy-Haul Train Weihua Zhang 1, Guangrong Tian and Maoru Chi The long and heavy-haul train transportation has

More information

APPLICATION OF SENSITIVITY ANALYSIS IN DESIGN OF CHARACTERISTICS OF DAMPING JOINTS IN LOCOMOTIVE RUNNING GEAR

APPLICATION OF SENSITIVITY ANALYSIS IN DESIGN OF CHARACTERISTICS OF DAMPING JOINTS IN LOCOMOTIVE RUNNING GEAR Engineering MECHANICS, Vol. 20, 2013, No. 5, p. 369 377 369 APPLICATION OF SENSITIVITY ANALYSIS IN DESIGN OF CHARACTERISTICS OF DAMPING JOINTS IN LOCOMOTIVE RUNNING GEAR Jaromír Zelenka*, Martin Kohout*,

More information

DEFECTS OF FREIGHT LOCOMOTIVE WHEELS AND MEASURES OF WHEEL TYRE LIFE EXTENTION

DEFECTS OF FREIGHT LOCOMOTIVE WHEELS AND MEASURES OF WHEEL TYRE LIFE EXTENTION DEFECTS OF FREIGHT LOCOMOTIVE WHEELS AND MEASURES OF WHEEL TYRE LIFE EXTENTION Sergey M. Zakharov Prof., Dr.Tech,Sci., JSC Railway Research Institute (), Moscow, Russia Ilya A. Zharov Cand. Tech. Sci.

More information

Intelligent Mobility for Smart Cities

Intelligent Mobility for Smart Cities Intelligent Mobility for Smart Cities A/Prof Hussein Dia Centre for Sustainable Infrastructure CRICOS Provider 00111D @HusseinDia Outline Explore the complexity of urban mobility and how the convergence

More information

European Rail Research Advisory Council

European Rail Research Advisory Council MARKET IMPACT EVALUATION ERRAC was set up in 2001 and is the single European body with the competence and capability to help revitalise the European rail sector : To make it more competitive To foster

More information

Modeling of 17-DOF Tractor Semi- Trailer Vehicle

Modeling of 17-DOF Tractor Semi- Trailer Vehicle ISSN 2395-1621 Modeling of 17-DOF Tractor Semi- Trailer Vehicle # S. B. Walhekar, #2 D. H. Burande 1 sumitwalhekar@gmail.com 2 dhburande.scoe@sinhgad.edu #12 Mechanical Engineering Department, S.P. Pune

More information

Modelling Automotive Hydraulic Systems using the Modelica ActuationHydraulics Library

Modelling Automotive Hydraulic Systems using the Modelica ActuationHydraulics Library Modelling Automotive Hydraulic Systems using the Modelica ActuationHydraulics Library Peter Harman Ricardo UK Ltd. Leamington Spa, UK Peter.Harman@ricardo.com Abstract This paper describes applications

More information

QUIET-TRACK: Track optimisation and monitoring for further noise reduction

QUIET-TRACK: Track optimisation and monitoring for further noise reduction QUIET-TRACK: Track optimisation and monitoring for further noise reduction dr.ir. Geert Desanghere Akron, Belgium geert.desanghere@akron.be www.akron.be Quiet-Track: EU-project: Consortium QUIET-TRACK:

More information

AN INVESTIGATION INTO THE RELATION BETWEEN WHEEL/RAIL CONTACT AND BOLT TIGHTNESS OF RAIL JOINTS USING A DYNAMIC FINITE ELEMENT MODEL

AN INVESTIGATION INTO THE RELATION BETWEEN WHEEL/RAIL CONTACT AND BOLT TIGHTNESS OF RAIL JOINTS USING A DYNAMIC FINITE ELEMENT MODEL 9th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems (CM2012), Chengdu, China, August 27-30, 2012 AN INVESTIGATION INTO THE RELATION BETWEEN WHEEL/RAIL CONTACT AND BOLT TIGHTNESS

More information

Racing Tires in Formula SAE Suspension Development

Racing Tires in Formula SAE Suspension Development The University of Western Ontario Department of Mechanical and Materials Engineering MME419 Mechanical Engineering Project MME499 Mechanical Engineering Design (Industrial) Racing Tires in Formula SAE

More information

Skid against Curb simulation using Abaqus/Explicit

Skid against Curb simulation using Abaqus/Explicit Visit the SIMULIA Resource Center for more customer examples. Skid against Curb simulation using Abaqus/Explicit Dipl.-Ing. A. Lepold (FORD), Dipl.-Ing. T. Kroschwald (TECOSIM) Abstract: Skid a full vehicle

More information

CER/EIM Position Paper Ballast Pick-up due to Aerodynamic Effects. October Version 1.0

CER/EIM Position Paper Ballast Pick-up due to Aerodynamic Effects. October Version 1.0 CER/EIM Position Paper Ballast Pick-up due to Aerodynamic Effects October 2015 Version 1.0 Introduction Aerodynamic loads on the trackbed generated by the passing of trains at high speed may cause individual

More information

Design and Analysis of suspension system components

Design and Analysis of suspension system components Design and Analysis of suspension system components Manohar Gade 1, Rayees Shaikh 2, Deepak Bijamwar 3, Shubham Jambale 4, Vikram Kulkarni 5 1 Student, Department of Mechanical Engineering, D Y Patil college

More information

White Paper: The Physics of Braking Systems

White Paper: The Physics of Braking Systems White Paper: The Physics of Braking Systems The Conservation of Energy The braking system exists to convert the energy of a vehicle in motion into thermal energy, more commonly referred to as heat. From

More information

Special edition paper

Special edition paper Development of a Brake System for Shinkansen Speed Increase Hiroshi Arai* Satoru Kanno* Kenji Fujino* Hiroyuki Kato* Koji Asano* In efforts to increase Shinkansen speeds toward a 360 km/h operating speed,

More information

Testing criteria for non-ballasted track and embedded track systems

Testing criteria for non-ballasted track and embedded track systems Testing criteria for non-ballasted track and embedded track systems ABSTRACT André Van Leuven Dynamic Engineering St Louis, MO The EC co funded research project Urban Track aims at reducing the total life

More information

Development of Assist Steering Bogie System for Reducing the Lateral Force

Development of Assist Steering Bogie System for Reducing the Lateral Force Development of Assist Steering Bogie System for Reducing the Lateral Force 1 Shogo Kamoshita, 1 Makoto Ishige, 1 Eisaku Sato, 2 Katsuya Tanifuji Railway Technical Research Institute, Tokyo, Japan 1 ; Niigata

More information

Study of the Performance of a Driver-vehicle System for Changing the Steering Characteristics of a Vehicle

Study of the Performance of a Driver-vehicle System for Changing the Steering Characteristics of a Vehicle 20 Special Issue Estimation and Control of Vehicle Dynamics for Active Safety Research Report Study of the Performance of a Driver-vehicle System for Changing the Steering Characteristics of a Vehicle

More information