Applications Matthew McDonough, Pourya Shamsi, Babak Fahimi University of Texas at Dallas

Size: px
Start display at page:

Download "Applications Matthew McDonough, Pourya Shamsi, Babak Fahimi University of Texas at Dallas"

Transcription

1 Application of Multi-Port Power Electronic Interface for Contactless Transferr of Energy in Automotive Applications Matthew McDonough, Pourya Shamsi, Babak Fahimi University of Texas at Dallas Abstract- Plug-in Hybrid Electric Vehicles (PHEV) and Electric Vehicles (EV) are gaining popularity due to political, environmental, and economical reasons. Research is being done to charge these alternatively fueled vehicles by means of Inductively Coupled Power Transfer (ICPT). In this paper authors present a system to use a Multi Port Power Electronics Interface (MPEI) to control power flow from/to several AC and DC sources/sinks within a PHEV or EV, especially including Inductively Coupled Power Transfer (ICPT). This paper shows potential reduction in mass and improvement in driving range and fuel economy due to the use of a novel charging strategy. I. INTRODUCTIONN Plug-in Hybrid Electric Vehicles (PHEVs) are widely accepted as effective solutions to provide a near term reduction to urban air quality problems, fossil fuel dependence, and climate change caused by Internal Combustion Engine Vehicles (ICEVs). Electric Vehicles (EV) offer a solution to the same issues. However, consumer s range anxiety must be addressed before EVs are widely accepted. Range anxiety can be solved in two ways. The method in the forefront of research is increasing the energy storage capacity of the vehicle. This involves adding expensive, large, and heavy batteries to an already heavy and expensive vehicle, relative to its ICE counterpart. An alternative is to decrease the effective range between charges. This can be done with Inductively Coupled Power Transfer (ICPT). Vehicle charging using ICPT is proposed in [1]-[3]. This paper discusses the advantages of using a Multi-port Power Electronic Interface (MPEI) [4] to actively manage power to and from multiple sources. In this case the system contains (a)power grid interface via ICPT, (b)an ultracapacitor pack, (c)a reduced size battery pack, and (d)motor/generator unit. The MPEI, when combined with the appropriate batteries and ultracapacitor packs, is able to accept (and potentially broadcast) energy while in motion. This will increase the overall range before a vehicle has to stop to charge or even eliminate the need to stop and charge all together. MPEI coupled with ICPT can servee as a home based charger or bi-directional energy storage system for home use, as well. A typical, vehicular MPEI is shown in Fig. 1. In this figure the MPEI serves as a smart controller which transfers energy in a bidirectional manner to and from the grid via ICPT, the ultracapacitors, the battery pack, and the motor/generator. This configuration will accommodate the regenerative braking as well. Fig. 1. Multi-Port Power Electronics Interface (MPEI) Within an Electric Automobile ICPT is a way to transfer power wirelessly through the use of an air-core transformerr formed from a primary coil (typically buried in the driving surface) and a secondary coil (attached to the bottom of the vehicle). Power is taken from the grid and converted to DC and then back into AC at judiciously chosen high frequency. Fig. 2 shows a typical topology. The high frequency AC voltage source supplies the ICPT primary coil with an AC current. This current generates an alternating magnetic flux, of which part will be captured by the secondary coil. The MPEI will use the induced voltage to charge the onboard batteries and ultracapacitors, or will use the energy directly to propel the vehicle. Figs. 3 and 4 show two different types of ICPT considered in recent publications. Fig. 2. Typical ICPT Topology. Fig. 3. Square Primary and Secondary Coil Fig. 4. Track Type Primary Coil and Square Secondary Coil /11/$ IEEE

2 II. OUTLINE OF PROBLEM Battery characteristics from popular Extended Range EV (EREV), EV, and HEV models, respectively, are summarized in Table I. The added mass to convert a HEV into an EREV, PHEV, or EV partially negates the added benefit of being able to plug it in. Equations (1) (4), from [5] show the direct dependence upon mass for three of the four factors that are summed for power (and hence energy) requirements of a vehicle. Here, V,, F f, F w, F g, M v,, g, f r,, p a, C d, A f, and V w are velocity of the vehicle, efficiency from power plant to wheels, force of friction from the road surface, force due to wind, force due to an inclined surface, mass of the vehicle plus mass of the load, mass factor (a constant to include the inertia of rotating components), gravitational acceleration constant, coefficient of rolling friction between the wheels and the road surface, angle of inclination of the road surface, density of the air, aerodynamic drag coefficient of the vehicle, frontal area of the vehicle, and the velocity of the wind, respectively. (1) (2) (3) (4) These equations show that mass of the vehicle is a very important factor for efficiency when efficiency corresponds to the main objective in transportation of a load. With consumers expecting longer all electric range from EVs and PHEVs, battery packs are getting larger and cars are getting heavier. A new way to power vehicles is needed to reverse this trend. ICPT has the ability to do this by continually powering the vehicle while it is performing its desired function. A MPEI is needed in the vehicle to manage power distribution from the ICPT system to the drive shaft and energy storage devices, i.e. battery and ultracapacitors. While there has been some work published on system level control of power in a (P)HEV [6]-[8], ICPT adds challenges that have not been studied. ICPT will supply short bursts of power that will need to be stored efficiently. This will mean a larger ultracapacitor pack to accept more energy in a short period of time. The power handling capability of some parts will be higher. MPEI will work well for ICPT applications. TABLE I Data for a Popular PHEV, EV, and HEV EREV EV HEV Battery Type Li-ion Li-ion NiMH Battery Capacity (kwh) Battery Mass (kg) Price Estimate ($) ~10000 ~12000 ~2500 III. TECHNICAL OBJECTIVES A. Optimal Ultracapacitor Capacity Selection The first objective of this study is to choose the optimal capacity for ultracapacitors in an ICPT based (P)HEV. The first step involves selection of a model vehicle and analyzing its power and energy requirements in various driving cycles. B. ICPT System Modeling & Optimal Battery Capacity Selection The second objective is to design an ICPT system to increase the range of the vehicle. A method for designing the system is discussed in [9] and was partially used in this study. The size of the battery should be chosen to store enough energy to propel the vehicle through a given segment/s of driving cycles to meet the required range. C. MPEI s Application in ICPT Powered Vehicles The fourth objective is to show the effectiveness of the MPEI system in automotive applications, specifically in applications with ICPT. MPEI is designed to control power flow in a bidirectional manner from multiple sources. MPEI is optimally designed to process the power to/from the ICPT system, to/from the motor, to/from the battery and to/from the ultracapacitors. An MPEI is tested with ultracapacitors and batteries to prove its ability to manage power from multiple sources with different control time constants. D. Resulting Weight Reductions and Improved Range The final objective is to demonstrate improved efficiency from weight reduction and improved range from the transfer of energy through the ICPT system. IV. TECHNICAL APPROACH & RESULTS A. Optimal Ultracapacitor Capacity Selection The software package, Cruise by AVL [10], was chosen to do the vehicle simulations. The standard Cruise EV model with parameters modified to match a popular EV was used as the baseline for comparison. The vehicle specifications in Table II were input to the Cruise software in combination with default specifications in the software. The FTP75 urban driving cycle was analyzed. The profile is shown in Fig. 5. TABLE II Vehicle Model Specifications Weight 1587 Kg Battery Type Li-ion Battery Capacity 24 kwh # of Battery Cells 192 Volts/Cell 4 V Motor Power 80 kw Fig. 5. FTP75 driving Cycle

3 The current requested from the battery (the only energy storage system in this simulation) was stored and is shown in Fig. 6. This current has many spikes and high magnitudes that reduces the life of the battery pack while increasing the size of the battery pack. The current data from Cruise was filtered to remove the high frequency contents and was clipped at 50 A to keep the battery current at a sufficiently low level. The filtered current is shown in Fig. 7. The remaining current is shown in Fig. 8 and will be provided by the ultracapacitors. The maximum power rating is determined by the largest current spike according to (5), where P, I max, and V mot are the power of the source, the maximum current requested from the source, and the voltage of the motor, respectively. For the vehicle chosen in this research, the ultracapacitor bank needs to be capable of delivering 25 kw. This value should be compared by the power absorption during regenerative braking and power broadcast from ICPT to select the final size. Notably the regenerative braking and power broadcast may occur simultaneously. (5) The ultracapacitor pack s energy level should be managed by the MPEI. The ultracapacitor pack s energy content should be divided into four sections as demonstrated by Fig. 9. The lowest energy section, one, defines the minimum SOC of the capacitor. Capacitors are safe to discharge completely; however, because the ultracapacitors voltage is a function of the energy content, at low energy states, the voltage is low. To draw reasonable amounts of power from the capacitors at low energy states requires unreasonably high currents. Therefore, the ultracapacitors should remain above section one Fig. 6. Current Request By EV Motor Fig. 7.Current to be Provided by Batteries Section two would be the area during which the ultracapacitor would need to be recharged so that it can provide power for the next acceleration stage. Section two must be large enough to provide the energy that is consumed by the largest negative spike in Fig. 8. This occurs around 200 seconds. The energy in this spike is found by (6), where V and I uc represent motor voltage and motor current drawn from the ultracapacitors, respectively. Here the range of integration, t min to t max is 188s to 205s. The energy calculated in this area is 62 Wh. (6) Section three should be chosen based on the choice of the ICPT track and could be reduced to zero if ultracapacitor size is of concern from a cost or weight point of view. This part would be able to store excess energy from the ICPT track to be either sent to the batteries or to be used in the vehicle. Section four should be sized according to the same logic as section two except for positive spikes in current. For simplicity and symmetry, the size of section four is chosen to be equivalent to section two. MPEI should be used to keep the ultracapacitors primarily in section 3. When the ultracapacitors are in section two, MPEI should charge them up to section three, assuming the batteries can provide the current to do so. This allows the ultracapacitors to provide energy for the next acceleration phase. When the capacitors are in section four, MPEI should use the energy in the ultracapacitors to charge the batteries until the ultracapacitors reach section three. This gives the capacitors room to store energy from the next ICPT charging phase or the next regenerative braking phase. The total ultracapacitor energy content found by this method for the vehicle under simulation should be no less than 124 Wh. B. ICPT System Modeling & Optimal Battery Capacity Selection As previously mentioned a method for designing the ICPT system is discussed in [9] and was partially used in this research. This method uses a distinct algorithm to determine a speed level where the vehicle is being charged by the ICPT system if it is under this speed. This would be analogous to installing the primary coils in areas where the vehicles are likely to be traveling slower (i.e. low speed limit areas, traffic lights, stop signs). Because the FTP75 driving cycle represents an urban environment, there are many times in which the vehicle is stopped. This produces unexpected results when the algorithm described was used with the simulation results. A speed level of 1 km/hr can be chosen and the vehicle can be fully charged at the end of the FTP 75 cycle if an ICPT system with a power level of 40 or 60 kw is chosen. When a 20 kw ICPT system is chosen, the vehicle recovers most of its energy used during the driving cycle. The flow diagram in Fig. 10 shows the algorithm used for the current research. The ICPT design used in the remainder of the paper assumes a 20 kw charger operating at times in which the vehicle is stopped or operating at below 1 km/hr. Fig. 8. Current to be Provided by Ultracapacitors

4 Fig. 9. Regions of Charge of Ultracapacitor Pack Fig. 11 MPEI for ICPT based Automobile Applications Fig. 10. Flow Diagram for ICPT Charging Control. E=Current SOC of Energy Storage System Emax= Max SOC of Energy Storage System V=Velocity of the Vehicle Table III summarizes the amount of energy used to propel the vehicle through the FTP75 driving cycle given the designed charging system. Row 1 represents one FTP75 cycle. The unmodified vehicle could propel itself through multiple FPT75 cycles, up to 157 km where its energy was depleted. Row 2 shows the energy storage required to match the original vehicle s range. The battery should be chosen to match this range. Therefore, for the remainder of the research, the battery capacity will be 3.5 kwh. C. MPEI s Application in ICPT Powered Vehicles MPEI, as described in [11]-[13], was originally designed as a multi-input, multi-output power electronic interface for stationary energy applications. However, because of the multi-input, multi-output similarities, it s technology readily adapts to automotive applications. MPEI is made of multiple switch legs. These legs boost sources to the DC bus voltage sourcing power to the DC bus, and buck the DC bus voltage down to the levels tolerable by the output, sinking power from the DC bus. When the sources and sinks balance, stability is achieved in the MPEI. The mobile MPEI will be primarily made of one leg for each DC source (batteries and ultracapacitors), two legs for the ICPT system, and a three legs for the traction motor. In total, 14 power MosFets control power flow into and out of each sink/source, hereafter refered to as a source. The configuration is shown in Fig. 11. This configuration requires a common ground and creates a common DC bus. The control system in the MPEI actively manages power flow into and out of each source by varying the duty cycles on the respective leg(s) of the source(s). This has already been well proven in [11]. Fig. 12 shows MPEI monitioring battery conditions and maintaining a stiff DC bus while driving a three phase motor. For MPEI to meet the requirements of this paper, it must be able to determine source charging and discharging currents based on prewinding time constants. To test this, a current profile was generated to simulate motor current. The MPEI provides that current from the DC bus. When the DC buss voltage begins to fall, it creates a current request to the available sources. These sources respond according to their prewinding time constants. Fig. 13 shows the MPEI feeding the motor current request with currents from multiple sources at different response time constants. This current request profile (dark blue) is being quickly tracked by the magenta, representing the ultracapacitors. The battery current (aqua) adapts more slowly to protect the battery from current spikes, extending its lifetime. Fig. 12. MPEI Current Waveforms Blue- Motor Current; Aqua-DC Bus Voltage; Green-Battery Voltage Magenta-Battery Current TABLE III FTP75 Cycle Energy Usage Distance Energy Use at End of Cycle Maximum State of Depletion 12 km 0.40 kwh 0.67 kwh 157 km 2.66 kwh 3.13 kwh

5 Fig. 13. Multi-Input Current Waveforms and Desired Output Current Blue-Current Request Simulating Motor Current Aqua-Low Pass Filtered Current Provided by Batteries Magenta-Remaining Current Provided by Ultracapacitors V. WEIGHT REDUCTION AND RANGE EXTENSION Table IV, partially derived from [14], shows some popular battery packs chosen for EVs and HEVs as well as the specifications from the EV that was used as the base model for this study. It also shows the required energy, power, and weight for the given battery pack. The battery pack from the chosen EV under study closely matches the best suited battery from Shin-Kobe. The weight of the battery pack required is 55 kg. The required energy from the ultracapacitor pack is 245 Wh at a maximum of 25 kw. Table V, shows the specifications of commercially available ultracapacitor [15]. Therefore, the mass of the ultracapacitor system would be 28 kg. The peak power of the entire system is 80 kw. The accepted weight of automotive power electronics is 5 kw/kg [16]. The total weight for the power electronics converter is approximately 16 kg. The weight of the battery pack, ultracapacitors and power electronics total to 99 kg. The original EV under consideration has a battery pack weighing 300 kg, while the vehicle, in total, weights 1587 kg. This is a weight reduction of 201 kg or 13%. TABLE IV Popular Batteries and Their Specifications Manufacturer Application Ah V Wh/kg W/kg 95% eff. Maximum mass (kg) Saft HEV Saft EV Shin-Kobe EV Shin-Kobe HEV Popular EV EV Required Wh 3500 Required W TABLE V Ultracapacitor Specifications Wh/kg Wh/kg needed W/kg W/kg Needed Maximum Mass (kg) 4.5* *Calculated from V rated to ½ V rated. The original vehicle consumed 1.87 kwh over one FTP75 cycle. A new simulation was performed with an identical vehicle, but at the reduce weight. The reduced weight vehicle consumed 1.63 kwh over the same cycle. The overall energy savings is.24 kwh per cycle, or 13% decrease in energy usage. The range of the vehicle being charged by a 40 or 60 kw system in the FTP 75 cycle is extended indefinitely. The range of a vehicle being charged with the 20 kw ICPT system will be more than 8 times greater. Table VI summarizes the results of this study. VI. CONCLUSIONS ICPT is an effective way to increase the range and decrease the energy consumption (by reducing the weight of the vehicle) in EVs. With even relatively low power ICPT systems (20kW) vehicle range can be increased over 700% in urban driving cycles. This helps reduce range anxiety in consumers and provides greater incentive for green transportation. Aside from range increases, efficiency increase by 13% due to reduced weight. MPEI is an effective solution to managing power to and from multiple input-output ports in automotive application, especially applications involving ICPT. Together, these two technologies can bring significant improvements to electrified transportation. Future work should consider the challenges of highway driving and the challenges of integrating ICPT systems into Cruise. TABLE VI Summary of Results Original Modified EV % Reduction EV Battery & Ultracapacitor 300 kg 99 kg 67% Weight Total Vehicle Weight 1587 kg % Energy Use per FTP kwh 1.63 kwh 13% Cycle Range with 20 kw ICPT 157 km > 1256 km >700% Charging VII. REFERENCES [1] Imura, T.; Okabe, H.; Hori, Y.;, "Basic experimental study on helical antennas of wireless power transfer for Electric Vehicles by using magnetic resonant couplings," Vehicle Power and Propulsion Conference, VPPC '09. IEEE, vol., no., pp , 7-10 Sept [2] Sallan, J.; Villa, J.L.; Llombart, A.; Sanz, J.F.;, "Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge," Industrial Electronics, IEEE Transactions on, vol.56, no.6, pp , June 2009 [3] Budhia, M.; Covic, G.; Boys, J.;, "A new IPT magnetic coupler for electric vehicle charging systems," IECON th Annual Conference on IEEE Industrial Electronics Society, vol., no., pp , 7-10 Nov [4] Jiang, W.; Fahimi, B.;, "Multi-port Power Electronic Interface: Concept, Modeling, and Design," Power Electronics, IEEE Transactions on, vol.pp, no.99, pp.1, 0 [5] Eshani, M.; Gao, Y.; Gay, S.E.; Emadi, A.;, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles-Fundamentals, Theory, and Design. Boca Raton, FL: CRC, [6] Hyunjae Yoo; Seung-Ki Sul; Yongho Park; Jongchan Jeong;, "System Integration and Power-Flow Management for a Series Hybrid Electric Vehicle Using Supercapacitors and Batteries," Industry Applications, IEEE Transactions on, vol.44, no.1, pp , Jan.-feb [7] Amjadi, Z.; Williamson, S.S.;, "Power-Electronics-Based Solutions for Plug-in Hybrid Electric Vehicle Energy Storage and Management Systems," Industrial Electronics, IEEE Transactions on, vol.57, no.2, pp , Feb. 2010

6 [8] Lidozzi, A.; Solero, L.;, "Power balance control of multiple-input DC- DC power converter for hybrid vehicles," Industrial Electronics, 2004 IEEE International Symposium on, vol.2, no., pp vol. 2, 4-7 May 2004 [9] Pantic, Z.; Sanzhong Bai; Lukic, S.M.;, "Inductively coupled power transfer for continuously powered electric vehicles," Vehicle Power and Propulsion Conference, VPPC '09. IEEE, vol., no., pp , 7-10 Sept [10] [11] Jiang, W.; Fahimi, B.;, "Multi-port Power Electronic Interface: Concept, Modeling, and Design," Power Electronics, IEEE Transactions on, vol.pp, no.99, pp.1, 0 [12] Wei Jiang; Fahimi, B.;, "Multi-port Power Electric Interface for Renewable Energy Sources," Applied Power Electronics Conference and Exposition, APEC Twenty-Fourth Annual IEEE, vol., no., pp , Feb [13] Wei Jiang; Fahimi, B.;, "Maximum solar power transfer in Multi-port Power Electronic Interface," Applied Power Electronics Conference and Exposition (APEC), 2010 Twenty-Fifth Annual IEEE, vol., no., pp.68-73, Feb [14] Burke, A.F, "Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles," Proceedings of the IEEE, vol.95, no.4, pp , April 2007 [15] SERIES_ PDF [16] Glas, H.; Pillay, P.;, "Sizing ultracapacitors for hybrid electric vehicles," Industrial Electronics Society, IECON st Annual Conference of IEEE, vol., no., pp. 6 pp., 6-10 Nov. 2005

Dynamic Modeling and Simulation of a Series Motor Driven Battery Electric Vehicle Integrated With an Ultra Capacitor

Dynamic Modeling and Simulation of a Series Motor Driven Battery Electric Vehicle Integrated With an Ultra Capacitor IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 3 Ver. II (May Jun. 2015), PP 79-83 www.iosrjournals.org Dynamic Modeling and Simulation

More information

MECA0500: PLUG-IN HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL. Pierre Duysinx

MECA0500: PLUG-IN HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL. Pierre Duysinx MECA0500: PLUG-IN HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL Pierre Duysinx Research Center in Sustainable Automotive Technologies of University of Liege Academic Year 2017-2018 1 References R. Bosch.

More information

Capacity Design of Supercapacitor Battery Hybrid Energy Storage System with Repetitive Charging via Wireless Power Transfer

Capacity Design of Supercapacitor Battery Hybrid Energy Storage System with Repetitive Charging via Wireless Power Transfer Capacity Design of Supercapacitor Battery Hybrid Energy Storage System with Repetitive Charging via Wireless Power Transfer Toshiyuki Hiramatsu Department of Electric Engineering The University of Tokyo

More information

Fundamentals and Classification of Hybrid Electric Vehicles Ojas M. Govardhan (Department of mechanical engineering, MIT College of Engineering, Pune)

Fundamentals and Classification of Hybrid Electric Vehicles Ojas M. Govardhan (Department of mechanical engineering, MIT College of Engineering, Pune) RESEARCH ARTICLE OPEN ACCESS Fundamentals and Classification of Hybrid Electric Vehicles Ojas M. Govardhan (Department of mechanical engineering, MIT College of Engineering, Pune) Abstract: Depleting fossil

More information

An Improved Powertrain Topology for Fuel Cell-Battery-Ultracapacitor Vehicles

An Improved Powertrain Topology for Fuel Cell-Battery-Ultracapacitor Vehicles An Improved Powertrain Topology for Fuel Cell-Battery-Ultracapacitor Vehicles J. Bauman, Student Member, IEEE, M. Kazerani, Senior Member, IEEE Department of Electrical and Computer Engineering, University

More information

PARALLEL HYBRID ELECTRIC VEHICLES: DESIGN AND CONTROL. Pierre Duysinx. LTAS Automotive Engineering University of Liege Academic Year

PARALLEL HYBRID ELECTRIC VEHICLES: DESIGN AND CONTROL. Pierre Duysinx. LTAS Automotive Engineering University of Liege Academic Year PARALLEL HYBRID ELECTRIC VEHICLES: DESIGN AND CONTROL Pierre Duysinx LTAS Automotive Engineering University of Liege Academic Year 2015-2016 1 References R. Bosch. «Automotive Handbook». 5th edition. 2002.

More information

MECA0500: PARALLEL HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL. Pierre Duysinx

MECA0500: PARALLEL HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL. Pierre Duysinx MECA0500: PARALLEL HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL Pierre Duysinx Research Center in Sustainable Automotive Technologies of University of Liege Academic Year 2017-2018 1 References R. Bosch.

More information

A conceptual design of main components sizing for UMT PHEV powertrain

A conceptual design of main components sizing for UMT PHEV powertrain IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS A conceptual design of main components sizing for UMT PHEV powertrain Related content - Development of a KT driving cycle for

More information

Battery-Ultracapacitor based Hybrid Energy System for Standalone power supply and Hybrid Electric Vehicles - Part I: Simulation and Economic Analysis

Battery-Ultracapacitor based Hybrid Energy System for Standalone power supply and Hybrid Electric Vehicles - Part I: Simulation and Economic Analysis Battery-Ultracapacitor based Hybrid Energy System for Standalone power supply and Hybrid Electric Vehicles - Part I: Simulation and Economic Analysis Netra Pd. Gyawali*, Nava Raj Karki, Dipesh Shrestha,

More information

Research Paper MULTIPLE INPUT BIDIRECTIONAL DC-DC CONVERTER Gomathi.S 1, Ragavendiran T.A. S 2

Research Paper MULTIPLE INPUT BIDIRECTIONAL DC-DC CONVERTER Gomathi.S 1, Ragavendiran T.A. S 2 Research Paper MULTIPLE INPUT BIDIRECTIONAL DC-DC CONVERTER Gomathi.S 1, Ragavendiran T.A. S 2 Address for Correspondence M.E.,(Ph.D).,Assistant Professor, St. Joseph s institute of Technology, Chennai

More information

Sizing of Ultracapacitors and Batteries for a High Performance Electric Vehicle

Sizing of Ultracapacitors and Batteries for a High Performance Electric Vehicle 2012 IEEE International Electric Vehicle Conference (IEVC) Sizing of Ultracapacitors and Batteries for a High Performance Electric Vehicle Wilmar Martinez, Member National University Bogota, Colombia whmartinezm@unal.edu.co

More information

Optimal Control Strategy Design for Extending. Electric Vehicles (PHEVs)

Optimal Control Strategy Design for Extending. Electric Vehicles (PHEVs) Optimal Control Strategy Design for Extending All-Electric Driving Capability of Plug-In Hybrid Electric Vehicles (PHEVs) Sheldon S. Williamson P. D. Ziogas Power Electronics Laboratory Department of Electrical

More information

Simulation of Fully-Directional Universal DC- DC Converter for Electric Vehicle Applications

Simulation of Fully-Directional Universal DC- DC Converter for Electric Vehicle Applications Simulation of Fully-Directional Universal DC- DC Converter for Electric Vehicle Applications Saikrupa C Iyer* R. M. Sahdhashivapurhipurun Sandhya Sriraman Tulsi S Ramanujam R. Ramaprabha Department of

More information

BIDIRECTIONAL DC-DC CONVERTER FOR INTEGRATION OF BATTERY ENERGY STORAGE SYSTEM WITH DC GRID

BIDIRECTIONAL DC-DC CONVERTER FOR INTEGRATION OF BATTERY ENERGY STORAGE SYSTEM WITH DC GRID BIDIRECTIONAL DC-DC CONVERTER FOR INTEGRATION OF BATTERY ENERGY STORAGE SYSTEM WITH DC GRID 1 SUNNY KUMAR, 2 MAHESWARAPU SYDULU Department of electrical engineering National institute of technology Warangal,

More information

Implementation of Bidirectional DC/AC and DC/DC Converters for Automotive Applications

Implementation of Bidirectional DC/AC and DC/DC Converters for Automotive Applications I J C T A, 9(37) 2016, pp. 923-930 International Science Press Implementation of Bidirectional DC/AC and DC/DC Converters for Automotive Applications T.M. Thamizh Thentral *, A. Geetha *, C. Subramani

More information

NOVEL MODULAR MULTIPLE-INPUT BIDIRECTIONAL DC DC POWER CONVERTER (MIPC) FOR HEV/FCV APPLICATION

NOVEL MODULAR MULTIPLE-INPUT BIDIRECTIONAL DC DC POWER CONVERTER (MIPC) FOR HEV/FCV APPLICATION NOVEL MODULAR MULTIPLE-INPUT BIDIRECTIONAL DC DC POWER CONVERTER (MIPC) FOR HEV/FCV APPLICATION 1 Anitha Mary J P, 2 Arul Prakash. A, 1 PG Scholar, Dept of Power Electronics Egg, Kuppam Engg College, 2

More information

Abstract- In order to increase energy independency and decrease harmful vehicle emissions, plug-in hybrid electric vehicles

Abstract- In order to increase energy independency and decrease harmful vehicle emissions, plug-in hybrid electric vehicles An Integrated Bi-Directional Power Electronic Converter with Multi-level AC-DC/DC-AC Converter and Non-inverted Buck-Boost Converter for PHEVs with Minimal Grid Level Disruptions Dylan C. Erb, Omer C.

More information

Development and Analysis of Bidirectional Converter for Electric Vehicle Application

Development and Analysis of Bidirectional Converter for Electric Vehicle Application Development and Analysis of Bidirectional Converter for Electric Vehicle Application N.Vadivel, A.Manikandan, G.Premkumar ME (Power Electronics and Drives) Department of Electrical and Electronics Engineering

More information

Increasing the Battery Life of the PMSG Wind Turbine by Improving Performance of the Hybrid Energy Storage System

Increasing the Battery Life of the PMSG Wind Turbine by Improving Performance of the Hybrid Energy Storage System IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, PP 36-41 www.iosrjournals.org Increasing the Battery Life of the PMSG Wind Turbine by Improving Performance

More information

MODELING, VALIDATION AND ANALYSIS OF HMMWV XM1124 HYBRID POWERTRAIN

MODELING, VALIDATION AND ANALYSIS OF HMMWV XM1124 HYBRID POWERTRAIN 2014 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM POWER & MOBILITY (P&M) TECHNICAL SESSION AUGUST 12-14, 2014 - NOVI, MICHIGAN MODELING, VALIDATION AND ANALYSIS OF HMMWV XM1124 HYBRID

More information

A Bidirectional DC-DC Battery Interface for EV Charger with G2V and V2X Capability

A Bidirectional DC-DC Battery Interface for EV Charger with G2V and V2X Capability A Bidirectional DC-DC Battery Interface for EV Charger with G2V and V2X Capability Prasoon Chandran Mavila 1, Nisha B. Kumar 2 P.G. Student, Dept. of Electrical & Electronics Engineering, Govt. College

More information

Dual power flow Interface for EV, HEV, and PHEV Applications

Dual power flow Interface for EV, HEV, and PHEV Applications International Journal of Engineering Inventions e-issn: 2278-7461, p-issn: 2319-6491 Volume 4, Issue 4 [Sep. 2014] PP: 20-24 Dual power flow Interface for EV, HEV, and PHEV Applications J Ranga 1 Madhavilatha

More information

Electric cars: Technology

Electric cars: Technology In his lecture, Professor Pavol Bauer explains all about how power is converted between the various power sources and power consumers in an electric vehicle. This is done using power electronic converters.

More information

Design of High Performance and High Efficiency DC-DC Converter for Hybrid Electric Vehicles

Design of High Performance and High Efficiency DC-DC Converter for Hybrid Electric Vehicles Design of High Performance and High Efficiency DC-DC Converter for Hybrid Electric Vehicles R. Santhos kumar 1 and M.Murugesan 2 PG Student [PSE], Dept. of EEE, V.S.B. Engineering College, Karur, Tamilnadu,

More information

Current Trends In Ultra Capacitor/Battery Based Smart Transportation System

Current Trends In Ultra Capacitor/Battery Based Smart Transportation System Current Trends In Ultra Capacitor/Battery Based Smart Transportation System Current Trends In Ultra Capacitor/Battery Based Smart Transportation System Geetha Reddy Evuri, G. Srinivasa Rao, T. Rama Subba

More information

Real-Time Simulation of A Modular Multilevel Converter Based Hybrid Energy Storage System

Real-Time Simulation of A Modular Multilevel Converter Based Hybrid Energy Storage System Real-Time Simulation of A Modular Multilevel Converter Based Hybrid Energy Storage System Feng Guo, PhD NEC Laboratories America, Inc. Cupertino, CA 5/13/2015 Outline Introduction Proposed MMC for Hybrid

More information

A NOVEL MULTIPHASE BIDIRECTIONAL FLY-BACK CONVERTER TOPOLOGY IS APPLIED TO INDUCTION MOTOR DRIVE

A NOVEL MULTIPHASE BIDIRECTIONAL FLY-BACK CONVERTER TOPOLOGY IS APPLIED TO INDUCTION MOTOR DRIVE A NOVEL MULTIPHASE BIDIRECTIONAL FLY-BACK CONVERTER TOPOLOGY IS APPLIED TO INDUCTION MOTOR DRIVE M.RAMA MOHANA RAO 1 & CH.RAMBABU 2 1,2 Department of Electrical and Electronics Engineering, Sri Vasavi

More information

Modelling and Control of Ultracapacitor based Bidirectional DC-DC converter systems PhD Scholar : Saichand K

Modelling and Control of Ultracapacitor based Bidirectional DC-DC converter systems PhD Scholar : Saichand K Modelling and Control of Ultracapacitor based Bidirectional DC-DC converter systems PhD Scholar : Saichand K Advisor: Prof. Vinod John Department of Electrical Engineering, Indian Institute of Science,

More information

Analysis of Fuel Economy and Battery Life depending on the Types of HEV using Dynamic Programming

Analysis of Fuel Economy and Battery Life depending on the Types of HEV using Dynamic Programming World Electric Vehicle Journal Vol. 6 - ISSN 2032-6653 - 2013 WEVA Page Page 0320 EVS27 Barcelona, Spain, November 17-20, 2013 Analysis of Fuel Economy and Battery Life depending on the Types of HEV using

More information

Supercapacitors For Load-Levelling In Hybrid Vehicles

Supercapacitors For Load-Levelling In Hybrid Vehicles Supercapacitors For Load-Levelling In Hybrid Vehicles G.L. Paul cap-xx Pty. Ltd., Villawood NSW, 2163 Australia A.M. Vassallo CSIRO Division of Coal & Energy Technology, North Ryde NSW, 2113 Australia

More information

Modelling and Simulation Study on a Series-parallel Hybrid Electric Vehicle

Modelling and Simulation Study on a Series-parallel Hybrid Electric Vehicle EVS28 KINTEX, Korea, May 3-6, 205 Modelling and Simulation Study on a Series-parallel Hybrid Electric Vehicle Li Yaohua, Wang Ying, Zhao Xuan School Automotive, Chang an University, Xi an China E-mail:

More information

DEVELOPMENT OF A LIGHT SHORT RANGE ELECTRIC COMMUTER VEHICLE

DEVELOPMENT OF A LIGHT SHORT RANGE ELECTRIC COMMUTER VEHICLE DEVELOPMENT OF A LIGHT SHORT RANGE ELECTRIC COMMUTER VEHICLE Abstract B. Kennedy, D. Patterson, X. Yan and J. Swenson NT Centre for Energy Research Northern Territory University Darwin, NT. 99 E-mail:

More information

THE IMPACT OF BATTERY OPERATING TEMPERATURE AND STATE OF CHARGE ON THE LITHIUM-ION BATTERY INTERNAL RESISTANCE

THE IMPACT OF BATTERY OPERATING TEMPERATURE AND STATE OF CHARGE ON THE LITHIUM-ION BATTERY INTERNAL RESISTANCE Jurnal Mekanikal June 2017, Vol 40, 01-08 THE IMPACT OF BATTERY OPERATING TEMPERATURE AND STATE OF CHARGE ON THE LITHIUM-ION BATTERY INTERNAL RESISTANCE Amirul Haniff Mahmud, Zul Hilmi Che Daud, Zainab

More information

Providing Energy Management of a Fuel Cell-Battery Hybrid Electric Vehicle Fatma Keskin Arabul, Ibrahim Senol, Ahmet Yigit Arabul, Ali Rifat Boynuegri

Providing Energy Management of a Fuel Cell-Battery Hybrid Electric Vehicle Fatma Keskin Arabul, Ibrahim Senol, Ahmet Yigit Arabul, Ali Rifat Boynuegri Vol:9, No:8, Providing Energy Management of a Fuel CellBattery Hybrid Electric Vehicle Fatma Keskin Arabul, Ibrahim Senol, Ahmet Yigit Arabul, Ali Rifat Boynuegri International Science Index, Energy and

More information

Design of Four Input Buck-Boost DC-DC Converter for Renewable Energy Application

Design of Four Input Buck-Boost DC-DC Converter for Renewable Energy Application Design of Four Input Buck-Boost DC-DC Converter for Renewable Energy Application A.Thiyagarajan Assistant Professor, Department of Electrical and Electronics Engineering Karpagam Institute of Technology

More information

Design of Three Input Buck-Boost DC-DC Converter with Constant input voltage and Variable duty ratio using MATLAB/Simulink

Design of Three Input Buck-Boost DC-DC Converter with Constant input voltage and Variable duty ratio using MATLAB/Simulink Design of Three Input Buck-Boost DC-DC Converter with Constant input voltage and Variable duty ratio using MATLAB/Simulink A.Thiyagarajan, B.Gokulavasan Abstract Nowadays DC-DC converter is mostly used

More information

5 kw Multilevel DC-DC Converter for Hybrid Electric and Fuel Cell Automotive Applications

5 kw Multilevel DC-DC Converter for Hybrid Electric and Fuel Cell Automotive Applications 1 5 kw Multilevel DC-DC Converter for Hybrid Electric and Fuel Cell Automotive Applications Faisal H. Khan 1,2 Leon M. Tolbert 2 fkhan3@utk.edu tolbert@utk.edu 2 Electric Power Research Institute (EPRI)

More information

A Parallel Energy-Sharing Control for Fuel cell Battery-Ultracapacitor Hybrid Vehicle

A Parallel Energy-Sharing Control for Fuel cell Battery-Ultracapacitor Hybrid Vehicle A Parallel Energy-Sharing Control for Fuel cell Battery-Ultracapacitor Hybrid Vehicle JennHwa Wong, N.R.N.Idris, Makbul Anwari, Taufik Taufik Abstract-This paper proposes a parallel energy-sharing control

More information

Batteries Comparative Analysis and their Dynamic Model for Electric Vehicular Technology

Batteries Comparative Analysis and their Dynamic Model for Electric Vehicular Technology Volume 114 No. 7 2017, 629-637 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Batteries Comparative Analysis and their Dynamic Model for Electric

More information

STUDY OF ENERGETIC BALANCE OF REGENERATIVE ELECTRIC VEHICLE IN A CITY DRIVING CYCLE

STUDY OF ENERGETIC BALANCE OF REGENERATIVE ELECTRIC VEHICLE IN A CITY DRIVING CYCLE ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 24.-25.5.212. STUDY OF ENERGETIC BALANCE OF REGENERATIVE ELECTRIC VEHICLE IN A CITY DRIVING CYCLE Vitalijs Osadcuks, Aldis Pecka, Raimunds Selegovskis, Liene

More information

AUTONOMIE [2] is used in collaboration with an optimization algorithm developed by MathWorks.

AUTONOMIE [2] is used in collaboration with an optimization algorithm developed by MathWorks. Impact of Fuel Cell System Design Used in Series Fuel Cell HEV on Net Present Value (NPV) Jason Kwon, Xiaohua Wang, Rajesh K. Ahluwalia, Aymeric Rousseau Argonne National Laboratory jkwon@anl.gov Abstract

More information

PERFORMANCE ANALYSIS OF VARIOUS ULTRACAPACITOR AND ITS HYBRID WITH BATTERIES

PERFORMANCE ANALYSIS OF VARIOUS ULTRACAPACITOR AND ITS HYBRID WITH BATTERIES PERFORMANCE ANALYSIS OF VARIOUS ULTRACAPACITOR AND ITS HYBRID WITH BATTERIES Ksh Priyalakshmi Devi 1, Priyanka Kamdar 2, Akarsh Mittal 3, Amit K. Rohit 4, S. Rangnekar 5 1 JRF, Energy Centre, MANIT Bhopal

More information

New Capacity Modulation Algorithm for Linear Compressor

New Capacity Modulation Algorithm for Linear Compressor Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 010 New Capacity Modulation Algorithm for Linear Compressor Jaeyoo Yoo Sungho Park Hyuk

More information

OUTLINE INTRODUCTION SYSTEM CONFIGURATION AND OPERATIONAL MODES ENERGY MANAGEMENT ALGORITHM CONTROL ALGORITHMS SYSTEM OPERATION WITH VARYING LOAD

OUTLINE INTRODUCTION SYSTEM CONFIGURATION AND OPERATIONAL MODES ENERGY MANAGEMENT ALGORITHM CONTROL ALGORITHMS SYSTEM OPERATION WITH VARYING LOAD OUTLINE INTRODUCTION SYSTEM CONFIGURATION AND OPERATIONAL MODES ENERGY MANAGEMENT ALGORITHM CONTROL ALGORITHMS SYSTEM OPERATION WITH VARYING LOAD CONCLUSION REFERENCES INTRODUCTION Reliable alternative

More information

Control of PMS Machine in Small Electric Karting to Improve the output Power Didi Istardi 1,a, Prasaja Wikanta 2,b

Control of PMS Machine in Small Electric Karting to Improve the output Power Didi Istardi 1,a, Prasaja Wikanta 2,b Control of PMS Machine in Small Electric Karting to Improve the output Power Didi Istardi 1,a, Prasaja Wikanta 2,b 1 Politeknik Negeri Batam, parkway st., Batam Center, Batam, Indonesia 2 Politeknik Negeri

More information

APVC2009. Genetic Algorithm for UTS Plug-in Hybrid Electric Vehicle Parameter Optimization. Abdul Rahman SALISA 1,2 Nong ZHANG 1 and Jianguo ZHU 1

APVC2009. Genetic Algorithm for UTS Plug-in Hybrid Electric Vehicle Parameter Optimization. Abdul Rahman SALISA 1,2 Nong ZHANG 1 and Jianguo ZHU 1 Genetic Algorithm for UTS Plug-in Hybrid Electric Vehicle Parameter Optimization Abdul Rahman SALISA 1,2 Nong ZHANG 1 and Jianguo ZHU 1 1 School of Electrical, Mechanical and Mechatronic Systems, University

More information

Mathematical Model of Electric Vehicle Power Consumption for Traveling and Air-Conditioning

Mathematical Model of Electric Vehicle Power Consumption for Traveling and Air-Conditioning Journal of Energy and Power Engineering 9 (215) 269-275 doi: 1.17265/1934-8975/215.3.6 D DAVID PUBLISHING Mathematical Model of Electric Vehicle Power Consumption for Traveling and Air-Conditioning Seishiro

More information

Operation and Control of Bidirectional DC-DC converter for HEV

Operation and Control of Bidirectional DC-DC converter for HEV Operation and Control of Bidirectional DC-DC converter for HEV Ahteshamul Haque 1 (Department of Electrical Engineering, Jamia Millia Islamia, New Delhi, India) Abstract: With the increasing concern over

More information

Impact of Plug-in Electric Vehicles on the Supply Grid

Impact of Plug-in Electric Vehicles on the Supply Grid Impact of Plug-in Electric Vehicles on the Supply Grid Josep Balcells, Universitat Politècnica de Catalunya, Electronics Eng. Dept., Colom 1, 08222 Terrassa, Spain Josep García, CIRCUTOR SA, Vial sant

More information

Numerical Analysis of Speed Optimization of a Hybrid Vehicle (Toyota Prius) By Using an Alternative Low-Torque DC Motor

Numerical Analysis of Speed Optimization of a Hybrid Vehicle (Toyota Prius) By Using an Alternative Low-Torque DC Motor Numerical Analysis of Speed Optimization of a Hybrid Vehicle (Toyota Prius) By Using an Alternative Low-Torque DC Motor ABSTRACT Umer Akram*, M. Tayyab Aamir**, & Daud Ali*** Department of Mechanical Engineering,

More information

INVENTION DISCLOSURE MECHANICAL SUBJECT MATTER EFFICIENCY ENHANCEMENT OF A NEW TWO-MOTOR HYBRID SYSTEM

INVENTION DISCLOSURE MECHANICAL SUBJECT MATTER EFFICIENCY ENHANCEMENT OF A NEW TWO-MOTOR HYBRID SYSTEM INVENTION DISCLOSURE MECHANICAL SUBJECT MATTER EFFICIENCY ENHANCEMENT OF A NEW TWO-MOTOR HYBRID SYSTEM ABSTRACT: A new two-motor hybrid system is developed to maximize powertrain efficiency. Efficiency

More information

New propulsion systems for non-road applications and the impact on combustion engine operation

New propulsion systems for non-road applications and the impact on combustion engine operation Research & Technology, New Propulsion Systems (TR-S) New propulsion systems for non-road applications and the impact on combustion engine operation London, 14 th March 2014, Benjamin Oszfolk Content 1

More information

Performance Analysis of Bidirectional DC-DC Converter for Electric Vehicle Application

Performance Analysis of Bidirectional DC-DC Converter for Electric Vehicle Application IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 9 February 2015 ISSN (online): 2349-6010 Performance Analysis of Bidirectional DC-DC Converter for Electric Vehicle

More information

Analysis of regenerative braking effect to improve fuel economy for E-REV bus based on simulation

Analysis of regenerative braking effect to improve fuel economy for E-REV bus based on simulation EVS28 KINTEX, Korea, May 3-6, 2015 Analysis of regenerative braking effect to improve fuel economy for E-REV bus based on simulation Jongdai Choi 1, Jongryeol Jeong 1, Yeong-il Park 2, Suk Won Cha 1 1

More information

Modeling and Analysis of Vehicle with Wind-solar Photovoltaic Hybrid Generating System Zhi-jun Guo 1, a, Xiang-yu Kang 1, b

Modeling and Analysis of Vehicle with Wind-solar Photovoltaic Hybrid Generating System Zhi-jun Guo 1, a, Xiang-yu Kang 1, b 4th International Conference on Sustainable Energy and Environmental Engineering (ICSEEE 015) Modeling and Analysis of Vehicle with Wind-solar Photovoltaic Hybrid Generating System Zhi-jun Guo 1, a, Xiang-yu

More information

Performance Evaluation of Electric Vehicles in Macau

Performance Evaluation of Electric Vehicles in Macau Journal of Asian Electric Vehicles, Volume 12, Number 1, June 2014 Performance Evaluation of Electric Vehicles in Macau Tze Wood Ching 1, Wenlong Li 2, Tao Xu 3, and Shaojia Huang 4 1 Department of Electromechanical

More information

Power Electronics Projects

Power Electronics Projects Power Electronics Projects I. POWER ELECTRONICS based MULTI-PORT SYSTEMS 1. Analysis, Design, Modeling, and Control of an Interleaved- Boost Full-ridge Three-Port Converter for Hybrid Renewable Energy

More information

UNPLUGGED Project: Development of a 50 kw inductive electric vehicle battery charge system

UNPLUGGED Project: Development of a 50 kw inductive electric vehicle battery charge system EVS27 Barcelona, Spain, November 17-20, 2013 UNPLUGGED Project: Development of a 50 kw inductive electric vehicle battery charge system J.F. Sanz, J.L.Villa, J. Sallán, JM Perié, L. García Duarte Edificio

More information

Hybrid energy storage optimal sizing for an e-bike

Hybrid energy storage optimal sizing for an e-bike Hybrid energy storage optimal sizing for an e-bike M. Masih-Tehrani 1, V. Esfahanian 2, M. Esfahanian 3, H. Nehzati 2, M.J. Esfandiari 2 1 School of Automotive Engineering, Iran University of Science and

More information

various energy sources. Auto rickshaws are three-wheeled vehicles which are commonly used as taxis for people and

various energy sources. Auto rickshaws are three-wheeled vehicles which are commonly used as taxis for people and ISSN: 0975-766X CODEN: IJPTFI Available Online through Research Article www.ijptonline.com ANALYSIS OF ELECTRIC TRACTION FOR SOLAR POWERED HYBRID AUTO RICKSHAW Chaitanya Kumar. B, Monisuthan.S.K Student,

More information

A Linear Magnetic-geared Free-piston Generator for Range-extended Electric Vehicles

A Linear Magnetic-geared Free-piston Generator for Range-extended Electric Vehicles A Linear Magnetic-geared Free-piston Generator for Range-extended Electric Vehicles Wenlong Li 1 and K. T. Chau 2 1 Department of Electrical and Electronic Engineering, The University of Hong Kong, wlli@eee.hku.hk

More information

Impact Analysis of Electric Vehicle Charging on Distribution System

Impact Analysis of Electric Vehicle Charging on Distribution System Impact Analysis of Electric Vehicle on Distribution System Qin Yan Department of Electrical and Computer Engineering Texas A&M University College Station, TX USA judyqinyan2010@gmail.com Mladen Kezunovic

More information

INVESTIGATION AND PERFORMANCE ANALYSIS OF MULTI INPUT CONVERTER FOR THREE PHASE NON CONVENTIONAL ENERGY SOURCES FOR A THREE PHASE INDUCTION MOTOR

INVESTIGATION AND PERFORMANCE ANALYSIS OF MULTI INPUT CONVERTER FOR THREE PHASE NON CONVENTIONAL ENERGY SOURCES FOR A THREE PHASE INDUCTION MOTOR Man In India, 96 (12) : 5421-5430 Serials Publications INVESTIGATION AND PERFORMANCE ANALYSIS OF MULTI INPUT CONVERTER FOR THREE PHASE NON CONVENTIONAL ENERGY SOURCES FOR A THREE PHASE INDUCTION MOTOR

More information

OPTIMAL POWER MANAGEMENT OF HYDROGEN FUEL CELL VEHICLES

OPTIMAL POWER MANAGEMENT OF HYDROGEN FUEL CELL VEHICLES OPTIMAL POWER MANAGEMENT OF HYDROGEN FUEL CELL VEHICLES Giuliano Premier Sustainable Environment Research Centre (SERC) Renewable Hydrogen Research & Demonstration Centre University of Glamorgan Baglan

More information

Ming Cheng, Bo Chen, Michigan Technological University

Ming Cheng, Bo Chen, Michigan Technological University THE MODEL INTEGRATION AND HARDWARE-IN-THE-LOOP (HIL) SIMULATION DESIGN FOR THE ANALYSIS OF A POWER-SPLIT HYBRID ELECTRIC VEHICLE WITH ELECTROCHEMICAL BATTERY MODEL Ming Cheng, Bo Chen, Michigan Technological

More information

Energy Management and Hybrid Energy Storage in Metro Railcar

Energy Management and Hybrid Energy Storage in Metro Railcar Energy Management and Hybrid Energy Storage in Metro Railcar Istvan Szenasy Dept. of Automation Szechenyi University Gyor, Hungary szenasy@sze.hu Abstract This paper focuses on the use of modeling and

More information

Comparison of Regenerative Braking Efficiencies of MY2012 and MY2013 Nissan Leaf

Comparison of Regenerative Braking Efficiencies of MY2012 and MY2013 Nissan Leaf Comparison of Regenerative Braking Efficiencies of MY2012 and MY2013 Nissan Leaf Albert Boretti * Department of Mechanical and Aerospace Engineering, Benjamin M. Statler College of Engineering and Mineral

More information

Efficiency Enhancement of a New Two-Motor Hybrid System

Efficiency Enhancement of a New Two-Motor Hybrid System World Electric Vehicle Journal Vol. 6 - ISSN 2032-6653 - 2013 WEVA Page Page 0325 EVS27 Barcelona, Spain, November 17-20, 2013 Efficiency Enhancement of a New Two-Motor Hybrid System Naritomo Higuchi,

More information

Available online at ScienceDirect. Procedia Engineering 129 (2015 ) International Conference on Industrial Engineering

Available online at   ScienceDirect. Procedia Engineering 129 (2015 ) International Conference on Industrial Engineering Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 129 (2015 ) 166 170 International Conference on Industrial Engineering Refinement of hybrid motor-transmission set using micro

More information

Components for Powertrain Electrification

Components for Powertrain Electrification Components for Powertrain Electrification Uwe Möhrstädt Jörg Grotendorst Continental AG 334 Schaeffler SYMPOSIUM 2010 Schaeffler SYMPOSIUM 2010 335 Introduction The current development of vehicle powertrains

More information

Vehicle Performance. Pierre Duysinx. Research Center in Sustainable Automotive Technologies of University of Liege Academic Year

Vehicle Performance. Pierre Duysinx. Research Center in Sustainable Automotive Technologies of University of Liege Academic Year Vehicle Performance Pierre Duysinx Research Center in Sustainable Automotive Technologies of University of Liege Academic Year 2015-2016 1 Lesson 4: Fuel consumption and emissions 2 Outline FUEL CONSUMPTION

More information

System Analysis of the Diesel Parallel Hybrid Vehicle Powertrain

System Analysis of the Diesel Parallel Hybrid Vehicle Powertrain System Analysis of the Diesel Parallel Hybrid Vehicle Powertrain Kitae Yeom and Choongsik Bae Korea Advanced Institute of Science and Technology ABSTRACT The automotive industries are recently developing

More information

Dynamic Behaviour of Asynchronous Generator In Stand-Alone Mode Under Load Perturbation Using MATLAB/SIMULINK

Dynamic Behaviour of Asynchronous Generator In Stand-Alone Mode Under Load Perturbation Using MATLAB/SIMULINK International Journal Of Engineering Research And Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 14, Issue 1 (January 2018), PP.59-63 Dynamic Behaviour of Asynchronous Generator

More information

Design and Development of Bidirectional DC-DC Converter using coupled inductor with a battery SOC indication

Design and Development of Bidirectional DC-DC Converter using coupled inductor with a battery SOC indication Design and Development of Bidirectional DC-DC Converter using coupled inductor with a battery SOC indication Sangamesh Herurmath #1 and Dr. Dhanalakshmi *2 # BE,MTech, EEE, Dayananda Sagar institute of

More information

Future Lithium Demand in Electrified Vehicles. Ted J. Miller

Future Lithium Demand in Electrified Vehicles. Ted J. Miller Future Lithium Demand in Electrified Vehicles Ted J. Miller August 5, 2010 Outline Vehicle Electrification at Ford Advanced Battery Technology Lithium Batteries Electrified Vehicle Market Forecasts Key

More information

Analysis and Design of Improved Isolated Bidirectional Fullbridge DC-DC Converter for Hybrid Electric Vehicle

Analysis and Design of Improved Isolated Bidirectional Fullbridge DC-DC Converter for Hybrid Electric Vehicle Analysis and Design of Improved Isolated Bidirectional Fullbridge DC-DC Converter for Hybrid Electric Vehicle Divya K. Nair 1 Asst. Professor, Dept. of EEE, Mar Athanasius College Of Engineering, Kothamangalam,

More information

Modelling, Control, and Simulation of Electric Propulsion Systems with Electronic Differential and Induction Machines

Modelling, Control, and Simulation of Electric Propulsion Systems with Electronic Differential and Induction Machines Modelling, Control, and Simulation of Electric Propulsion Systems with Electronic Differential and Induction Machines Francisco J. Perez-Pinal Advisor: Dr. Ciro Nunez Grainger Power Electronics and Motor

More information

Validation and Control Strategy to Reduce Fuel Consumption for RE-EV

Validation and Control Strategy to Reduce Fuel Consumption for RE-EV Validation and Control Strategy to Reduce Fuel Consumption for RE-EV Wonbin Lee, Wonseok Choi, Hyunjong Ha, Jiho Yoo, Junbeom Wi, Jaewon Jung and Hyunsoo Kim School of Mechanical Engineering, Sungkyunkwan

More information

A Study of Suitable Bi-Directional DC-DC Converter Topology Essential For Battery Charge Regulation In Photovoltaic Applications

A Study of Suitable Bi-Directional DC-DC Converter Topology Essential For Battery Charge Regulation In Photovoltaic Applications IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 2 Ver. I (Mar. Apr. 2016), PP 92-96 www.iosrjournals.org A Study of Suitable Bi-Directional

More information

A Novel DC-DC Converter Based Integration of Renewable Energy Sources for Residential Micro Grid Applications

A Novel DC-DC Converter Based Integration of Renewable Energy Sources for Residential Micro Grid Applications A Novel DC-DC Converter Based Integration of Renewable Energy Sources for Residential Micro Grid Applications Madasamy P 1, Ramadas K 2 Assistant Professor, Department of Electrical and Electronics Engineering,

More information

Hybrid Vehicles. Electric and. Design Fundamentals. Iqbal Husain SECOND EDITION. Taylor & Francis Group, an informa business

Hybrid Vehicles. Electric and. Design Fundamentals. Iqbal Husain SECOND EDITION. Taylor & Francis Group, an informa business Electric and Hybrid Vehicles Design Fundamentals SECOND EDITION Iqbal Husain CRC Press is an imprint of the Taylor & Francis Group, an informa business 2.6.1.1 Contents Preface Acknowledgments Author xv

More information

Research Report. FD807 Electric Vehicle Component Sizing vs. Vehicle Structural Weight Report

Research Report. FD807 Electric Vehicle Component Sizing vs. Vehicle Structural Weight Report RD.9/175.3 Ricardo plc 9 1 FD7 Electric Vehicle Component Sizing vs. Vehicle Structural Weight Report Research Report Conducted by Ricardo for The Aluminum Association 9 - RD.9/175.3 Ricardo plc 9 2 Scope

More information

Compact Regenerative Braking Scheme for a PM BLDC Motor Driven Electric Two-Wheeler

Compact Regenerative Braking Scheme for a PM BLDC Motor Driven Electric Two-Wheeler Compact Regenerative Braking Scheme for a PM BLDC Motor Driven Electric Two-Wheeler G.J.RATHOD, PG Student, Department of Electrical Engg. S.N.D.COE & RC Nasik, Maharashtra, India Prof.R.K.JHA, HOD, Department

More information

NORDAC 2014 Topic and no NORDAC

NORDAC 2014 Topic and no NORDAC NORDAC 2014 Topic and no NORDAC 2014 http://www.nordac.net 8.1 Load Control System of an EV Charging Station Group Antti Rautiainen and Pertti Järventausta Tampere University of Technology Department of

More information

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 4, April

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 4, April Free Energy Bicycle 1 K.Vignesh, 2 P.Sakthi, 3 A.Pugazhenthi, 4 V.Karthikeyan, 5 C.Vinothkumar 1 Assistant Professor, 2-5 Scholar, Department of Mechanical Engineering, Aksheyaa College of Engineering,

More information

Modeling, Design, and Control of Hybrid Energy Systems and Wireless Power Transfer systems

Modeling, Design, and Control of Hybrid Energy Systems and Wireless Power Transfer systems Modeling, Design, and Control of Hybrid Energy Systems and Wireless Power Transfer systems Chengbin Ma, Ph.D. Assistant Professor Univ. of Michigan-SJTU Joint Institute, Shanghai Jiao Tong University (SJTU),

More information

Energy Management Strategy Based on Frequency- Varying Filter for the Battery Supercapacitor Hybrid System of Electric Vehicles

Energy Management Strategy Based on Frequency- Varying Filter for the Battery Supercapacitor Hybrid System of Electric Vehicles World Electric Vehicle Journal Vol. 6 - ISSN 2032-6653 - 2013 WEVA Page Page 0623 EVS27 Barcelona, Spain, November 17-20, 2013 Energy Management Strategy Based on Frequency- Varying Filter for the Battery

More information

Battery Evaluation for Plug-In Hybrid Electric Vehicles

Battery Evaluation for Plug-In Hybrid Electric Vehicles Battery Evaluation for Plug-In Hybrid Electric Vehicles Mark S. Duvall Electric Power Research Institute 3412 Hillview Avenue Palo Alto, CA 9434 Abstract-This paper outlines the development of a battery

More information

i-eloop Regenerative Braking System

i-eloop Regenerative Braking System i-eloop Regenerative Braking System Abstract Dibya Narayan Behera, Subham Chattopadhyay, Sanjib Banerjee, Soumya Swaroop Swain 1 Asst Professor, 2, 3, 4 B.Tech Mechanical Students. USubham9470@gmail.comU31T

More information

Performance Analysis of 3-Ø Self-Excited Induction Generator with Rectifier Load

Performance Analysis of 3-Ø Self-Excited Induction Generator with Rectifier Load Performance Analysis of 3-Ø Self-Excited Induction Generator with Rectifier Load,,, ABSTRACT- In this paper the steady-state analysis of self excited induction generator is presented and a method to calculate

More information

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) Proceedings of the 2 nd International Conference on Current Trends in Engineering and Management ICCTEM -2014 ISSN 0976 6545(Print)

More information

Regenerative Braking System for Series Hybrid Electric City Bus

Regenerative Braking System for Series Hybrid Electric City Bus Page 0363 Regenerative Braking System for Series Hybrid Electric City Bus Junzhi Zhang*, Xin Lu*, Junliang Xue*, and Bos Li* Regenerative Braking Systems (RBS) provide an efficient method to assist hybrid

More information

IPRO Spring 2003 Hybrid Electric Vehicles: Simulation, Design, and Implementation

IPRO Spring 2003 Hybrid Electric Vehicles: Simulation, Design, and Implementation IPRO 326 - Spring 2003 Hybrid Electric Vehicles: Simulation, Design, and Implementation Team Goals Understand the benefits and pitfalls of hybridizing Gasoline and Diesel parallel hybrid SUVs Conduct an

More information

Fuzzy logic controlled Bi-directional DC-DC Converter for Electric Vehicle Applications

Fuzzy logic controlled Bi-directional DC-DC Converter for Electric Vehicle Applications IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 3 Ver. IV (May June 2017), PP 51-55 www.iosrjournals.org Fuzzy logic controlled

More information

Azure Dynamics is a leading developer of highly efficient, cost-effective and environmentally friendly hybrid-electric ( HEV ) and electric ( EV )

Azure Dynamics is a leading developer of highly efficient, cost-effective and environmentally friendly hybrid-electric ( HEV ) and electric ( EV ) Hybrid-Electric Vehicles Part of the Solution Mike Byers Director of Fleet Sales Azure Dynamics Presentation Summary Who is Azure Dynamics? External Environment Hybrid 101 Hybrid Benefits Azure Dynamics

More information

Perodua Myvi engine fuel consumption map and fuel economy vehicle simulation on the drive cycles based on Malaysian roads

Perodua Myvi engine fuel consumption map and fuel economy vehicle simulation on the drive cycles based on Malaysian roads Perodua Myvi engine fuel consumption map and fuel economy vehicle simulation on the drive cycles based on Malaysian roads Muhammad Iftishah Ramdan 1,* 1 School of Mechanical Engineering, Universiti Sains

More information

EVS25. Shenzhen, China, Nov 5-9, 2010

EVS25. Shenzhen, China, Nov 5-9, 2010 Page000075 EVS25 Shenzhen, China, Nov 5-9, 2010 Drive Train Design and Modeling of a Parallel Diesel Hybrid Electric Bus Based on AVL/Cruise Yajuan Yang 1, Han Zhao 1, and Hao Jiang 1 1 School of Mechanical

More information

Electric cars: Technology

Electric cars: Technology Alternating current (AC) Type of electric current which periodically switches its direction of flow. Ampere (A) It is the SI unit of electric current, which is equivalent to flow of 1 Coulumb electric

More information

THE alarming rate, at which global energy reserves are

THE alarming rate, at which global energy reserves are Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems, St. Louis, MO, USA, October 3-7, 2009 One Million Plug-in Electric Vehicles on the Road by 2015 Ahmed Yousuf

More information

Technology from the New Product SANUPS K for a Smart Grid Society

Technology from the New Product SANUPS K for a Smart Grid Society Features: Technology Contributing to Effective Use of Power Technology from the New Product SANUPS K for a Smart Grid Society Yoshiaki Okui 1. Introduction After the Tohoku Earthquake, there is a movement

More information