Wayside Energy Storage System Modeling

Size: px
Start display at page:

Download "Wayside Energy Storage System Modeling"

Transcription

1 Wayside Energy Storage System Modeling Todd Hollett, P.Eng. Salwa Fouda, Ph.D. Bombardier Transportation Bombardier Transportation Kingston, Ontario Kingston, Ontario ABSTRACT Increasing environmental awareness and the requirement for lower project costs is forcing transit system suppliers to think more innovatively and engineer more accurately to strengthen their competitive edge. Of late, clients more often desire a system that is optimized to minimize the energy consumed during operation; a requirement that is often imposed upon transit system suppliers through financially binding energy commitments. One of the more recently popularized means of system energy and cost reduction is the Wayside Energy Storage System (WESS). Many types of energy storage systems exist, each having unique benefits and a preferred application depending on the client s requirements. In addition to reducing energy consumption, energy storage systems can be operated to regulate system voltage levels, provide backup power in the event of a utility power outage, and relieve demand on the utility during the more costly operating periods. An accurate estimation of the benefits of an energy storage system begins with a proper energy storage model, and its incorporation into the transit system model. This paper examines the proper modeling of each of the parameters of a wayside energy storage system and their effect on the transit system. INTRODUCTION Nowadays, transit authorities are required to reduce system energy consumption as well as CO 2 emissions during operation. This is mainly due to energy rate increases driven by limited energy reserves and climate change due to CO 2 emissions. Most new transit systems feature dynamic braking. During dynamic braking, a vehicle s control circuitry permits its motors to be operated as generators which convert the mechanical braking energy to electrical energy. This feature allows the energy to be fed back to the system through the third rail or catenary. Therefore, energy produced by a braking train will be consumed by a concurrently accelerating nearby train. However, if there is no energy-demanding train in the vicinity, this energy will be lost as heat through onboard or wayside resistor banks. Receptivity is a measure of how effectively the system can transfer energy from one train to another with minimal loss. Wayside energy storage is capable of storing potentially lost braking energy and recycling it back to the system, thus increasing the system receptivity. Three unique energy storage technologies on the market are: ultracapacitors, batteries, and flywheels. Each technology exhibits unique pros and cons. For example, to store and release the braking energy in an efficient way, an energy storage system must have: 1. A high energy transfer rate to meet the high output power demands of the train, thus enabling it to capture the maximum amount of regenerated energy over the short braking period (i.e. within seconds), and 2. A high duty cycle to allow for frequent operation. Ultracapacitors and flywheels both meet the above requirements; however battery technology cannot achieve the required duty cycle or the energy transfer rate. Wayside Energy Storage System Application Applications for wayside energy storage systems are: Energy saving: energy is captured from braking train and returned back to the system. Voltage regulation: voltage support is provided at locations that experience unacceptable voltage sags. Emergency backup: power is fed to train in case of a power outage so the train can move to the nearest passenger station. Load shifting: the energy storage is charged during the utilities less expensive off-peak period, and the Page 1 of 9

2 energy is supplied back to the system during peak energy rate periods. The suitability of energy storage technology is based on the application. For example, the battery is the only technology that is suitable for load shifting where the energy density requirement is high. Whereas the ultracapacitor and flywheel are more suitable for highdemand energy saving, voltage regulation, and emergency backup. An understanding of the specifications for the various technologies available in the market, as well as the application requirements, are key factors in selecting the most suitable technology. Wayside Energy Storage System Design Transit system authorities are always looking for a turnkey solution, where the supplier not only provides the energy storage hardware, but also the energy storage system design. Consider a system that is experiencing unacceptable voltage sag at a specific location. Contemplating wayside energy storage as a possible solution leads to the questions; what is the required energy capacity (rating) of the unit to improve the voltage to the required level, what charge and discharge rates are required to support the vehicles power demand, and how should the unit be set to operate in the system? Likewise, if the wayside energy storage system is installed for energy saving, the transit system authority will be interested in the potential annual energy savings, payback period, and life of the unit. Therefore, a detailed simulator that is capable of WESS modeling is essential to be able to simultaneously consider all the parameters and factors required to design and operate the WESS. The simulator is not only needed to design the WESS, but also to help determine the operating settings of the WESS. It has to be noted that the operational settings are as important as the WESS design. For example, the optimal rating and locations of the WESS can be determined during design. However, if the settings are not conducive to the transit system s operations, the unit may not function to its full potential. In the next section, a sensitivity analysis is conducted on a few the key parameters affecting the design and operation of the WESS. WAYSIDE ENERGY STORAGE SYSTEM MODELING Simulation Software Accurate modeling of energy storage systems can only be accomplished using a simulator which simultaneously incorporates all modeled transit system components into one unified dynamically interactive system. The EnerGplan tool is a Bombardier in-house designed operations and load flow simulator comprised of user-friendly, graphical modeling and real-time simulation analytical interfaces. EnerGplan technology offers generic modeling capability which gives the user complete control over the system model allowing for accurate and project specific modifications. It is important to the customer to provide a turnkey system that is optimized to suit their requirements. EnerGplan s load flow capability allows designers to optimize the power supply and distribution network and study energy storage options. Due to the simulator s flexibility, various scenarios can be modeled easily and thorough comparative analyses can be conducted in a very short time frame [1]. EnerGplan includes a generic energy storage model with an interface that permits modeling of any type of energy storage system. Parameter Descriptions The analyst must have control over a detailed set of parameters that can be modified to simulate realistic WESS performance. Table 1 below defines parameters that are important to the WESS model. capacity initial energy Parameter nominal discharge voltage trigger level (maximum discharge voltage) maximum discharge voltage trigger level (discharge voltage threshold) Description total useable kwh that can be stored kwh stored at the beginning of the simulation voltage below which the energy storage will discharge at the nominal discharge power voltage below which the energy storage will discharge at the maximum discharge power Page 2 of 9

3 Parameter nominal charge voltage trigger level (minimum charge voltage) maximum charge voltage trigger level (charge voltage threshold) discharge efficiency charge efficiency maximum charge power nominal charge power maximum discharge power nominal discharge power discharge current limit charge current limit self-discharge characteristics rest energy level Description voltage above which the energy storage will charge at the nominal charge power voltage above which the energy storage will charge at the maximum discharge power efficiency while discharging efficiency while charging rate of charge when charging above the charge voltage threshold rate of energy capture when charging to the specified rest state rate of energy release when discharging below the discharge voltage threshold rate of energy capture when discharging to the specified rest state maximum line current during energy release maximum line current during energy capture rate of discharge while energy storage is not in use the level of energy at which to charge or discharge while operating at nominal power Table 1. EnerGplan Energy Storage Parameters The application of these parameters is partially illustrated in Figure 1. The charge and discharge rates are not constant, but refer to the maximum rate of energy transfer within the defined voltage ranges. The actual energy transfer model should account for the inherent capability of the capacitors to transfer energy at an increasing rate as they reach their charge capacity. Figure 1. Partial EnerGplan WESS Input Dialog This paper focuses on the sensitivity of the most crucial parameters in the WESS model; voltage trigger level, capacity, and energy transfer rate. Also, the effect of these parameters on energy savings, voltage support, and emergency backup are examined. Voltage Trigger Level The line voltage is constantly monitored by the WESS during operation. Voltage triggers are set to define when the WESS will be actively operating in the charge or discharge states, and act as the on/off switches of the energy storage unit. The WESS becomes receptive to regenerated energy when the line voltage is at or above the charge voltage trigger, and becomes a power supply when the line voltage is at or below the discharge voltage trigger level. Voltage Trigger Level Sensitivity An example of voltage support demonstrates the reaction of a WESS to the line voltage during a dischargecharge cycle (Figure 2). The voltage profile represents the traction voltage at a specific location on a typical 600Vdc system over a two-minute period. The WESS has been set to discharge when it experiences a line voltage below 530Vdc, and charge when the voltage rises above 600Vdc. The simulation commences with the WESS charged to full capacity (4kWh) as indicated by 1 in Figure 2. The first discharge event begins at approximately the 35 Page 3 of 9

4 second mark and lasts for ~10 seconds. This can be seen by the decreasing energy level, 2, while the voltage is held constant at 530Vdc, 3. Each succeeding discharge event holds the voltage constant at this discharge voltage level until the WESS is empty at ~98 seconds, 4, after which the line voltage resumes its drop, 5. Similarly, the WESS begins to charge when the line voltage reaches the charge voltage trigger level of 600Vdc at ~109 seconds, 6, and holds the voltage at this level until it is full. Raising the charge voltage and/or lowering the discharge voltage trigger will have a twofold effect on the operation of the unit: 1. The number of trigger events will decrease as more of the voltage spikes are not seen by the WESS, and 2. The duration of energy capture and release will be reduced due to the reduced duration at these higher and lower voltages for any given spike. Figure 3 indicates the decrease in energy savings experienced by a single WESS unit as the charge voltage trigger is increased while the discharge voltage trigger is reduced. In this example, a baseline of an 800Vdc charge voltage trigger, and a 780Vdc discharge voltage trigger (indicated as ±0V) saves >8kWh of energy. Succeeding simulations of 20V increments in the charge trigger and decrements in the discharge trigger show a linear reduction in energy savings. This trend can be generalized for any type of system. However, the magnitude of the effect and its sensitivity to trigger level changes are specific to the system being studied. Figure 3. Effect of Trigger Voltage Level on Energy Savings Effect of Voltage Trigger Level on Voltage Support Figure 2. WESS Operation based on Line Voltage Effect of Voltage Trigger Level on Energy Savings The operating objective for energy saving is to activate the WESS as needed to store energy that would otherwise be lost due to low system receptivity. To accomplish this, the charge and discharge voltage trigger levels are set with a deadband that will permit a maximum acceptable operating time without compromising the life of the unit. It is also important to restrict the WESS from competing with other vehicles that are simultaneously demanding energy since natural receptivity is the most efficient means of recycling regenerated energy. This can be predicted by the line voltage profile. Vehicles in a system will experience fluctuations in the line voltage that is proportional to the demands of the vehicle, and the distance from the power supply point(s). When operating in voltage support mode, it may be necessary to set the charge voltage trigger at a level lower than what would be typical for energy saving. This increases the charge aggressiveness of the WESS, thus increasing the likelihood that it will always have energy available to support the line voltage when required. Ideally, the charge trigger level should be set high enough so the WESS is charged only by regenerated energy if this allows it to maintain a consistent charge level sufficient to support the most stringent low voltage cases when needed. However, a lower setting that is within the normal operating range of the system may allow the WESS to be charged by the traction power substation(s) (TPS). Although this requires extra energy, it is acceptable and often necessary for proper voltage support. Figure 4 shows a WESS supporting the train voltage at various discharge voltage trigger levels. The discharge voltage has a direct impact on the magnitude and duration of the voltage correction. In this example, the WESS is Page 4 of 9

5 rated to meet the maximum demand of the vehicle, and therefore completely supports the train voltage for the duration of the potential voltage sag. intended function. This simple concept determines how the capacity affects the application. Effect of Capacity on Energy Savings The effect of WESS capacity on energy savings illustrates the law of diminishing returns as shown in Figure 5. Energy storage systems are normally designed to allow for a higher rate of energy transfer with increased capacity. The savings would then follow a more linear relationship with capacity. However, if typical demands on the WESS are limited to a value lower than its maximum energy transfer rate, and a cost-benefit analysis is crucial to determine an optimized capacity limit. Figure 4. Effect of WESS Discharge Voltage Trigger on Train Voltage Effect of Voltage Trigger on Emergency Backup A vehicle rescue operation will typically specify a set of operating requirements such as maximum time of rescue, minimum permitted auxiliary loads, etc. which contribute to the determination of the total energy requirement. Hence, the WESS must be maintained at a level of charge which allows it to meet the energy and power demands required to perform the defined train recovery operation. A WESS that has been exclusively designated as an emergency backup device will only operate following a complete power system failure. Therefore, the WESS charge voltage trigger may be set to operate within the normal system operating voltage range. When discharging, the WESS will behave as a constant voltage source at the specified discharge trigger level. Due to the network resistance between the WESS and the vehicle, the WESS discharge voltage should be chosen so that the vehicle will experience an acceptable voltage range that will allow it to meet the vehicle demands as determined by the intended operational rescue requirements. Unless it is oversized, implementation of an energy storage system for the purpose of emergency backup cannot be used for any other purpose. Capacity Figure 5. Effect of Capacity on Energy Savings (at a Constant Power Limit) Effect of Capacity on Voltage Support Capacity is directly proportional to the length of time the voltage can be supported. Once the WESS is empty a voltage drop is observed as the portion of the demand that was met by the nearby WESS is now transferred to a more distant power supply. To demonstrate this concept, Figure 6 assumes a situation similar to that shown in Figure 4 with a 600V discharge voltage trigger, and a WESS having a capacity not sufficient to fully support the intended voltage correction. The train voltage is supported until the WESS energy supply is exhausted, after which it can no longer support the vehicle demand. The voltage then resumes following the profile as established by the remaining power supply. The capacity indicates the total amount of useable energy the WESS can supply. A full or empty WESS can no longer respectively charge or discharge to perform its Page 5 of 9

6 A 4 kwh WESS is sufficient to supply the energy required to successfully rescue the vehicle. Lower capacity ratings will impact travel distance as the WESS energy supply to exhausted sooner. Sacrificing travel distance will not allow the train to make a complete return to the destination. Alternatively, travel time can be increased if permitted by returning the train at a reduced maximum speed to lower the energy requirement. Figure 8 demonstrates how maximum travel speed affects the vehicle s return energy requirement and travel time. The maximum speed therefore has a major influence on the required capacity of the WESS when complying with a travel time limitations. Figure 6. Effect of WESS Capacity on Voltage Support Effect of Capacity on Emergency Backup Since the capacity of the WESS is a measure of the amount of energy it can store, as a lone energy supply it is proportional to the distance over which a vehicle can travel under given operating parameters on a given route. As an example, a maximum return travel time requirement of 3 minutes permits a return speed as low as 26 km/h for a given train on a specific route. Figure 7 represents the power profile of the vehicle returning from a stranded destination to the nearest passenger station. The energy under the negative portion of this curve represents 3.83 kwh of energy consumed by the vehicle during its return. Therefore, WESS capacity must be sized to account for this vehicle demand along with distribution losses. Figure 8. Vehicle Energy and Time Requirements at Various Speeds Energy Transfer Rate The energy transfer rate, or power limit, defines the maximum rate at which the WESS can capture or release energy. Energy Transfer Rate Sensitivity Figure 7. Vehicle Power Demand Profile during Return to a Station The power profile of a single vehicle during acceleration, cruising, and braking is shown in Figure 9. Train demand peaks at approximately 1,600kW at the 10 second mark, and its braking power peaks at 1,750kW at ~52 seconds. The WESS has been set to supply energy when it experiences voltages at or below 780Vdc, and store energy at voltages of 800Vdc and above. During charge and discharge, WESS power is limited to a maximum energy transfer rate of 500kW as can be seen by the WESS power curve. Page 6 of 9

7 Raising the charge and discharge power limits will enable the storage and release of energy at an increased rate, thus allowing the WESS to better meet the demands of the vehicle for the application. However, the increased rate of energy transfer means the WESS will fill and/or empty more quickly which may influence the required capacity. Depending on the application, the WESS should be charged and discharged at a rate that will allow it to be full or empty when needed. Figure 10. General Trend in WESS Energy Savings with Increasing Rates of Energy Transfer Effect of Energy Transfer Rate on Voltage Support Figure 9. Operation of a WESS Limited to 500kW Effect of Energy Transfer Rate on Energy Savings Figure 10 shows how increases in the energy transfer rate limits lead to a diminishing increase in energy savings. The main factors which limit the energy saving potential with increasing energy transfer rates are: 1. The WESS more frequently operates over its entire storage range potential, therefore savings become limited by the capacity, and 2. The WESS approaches the maximum potential power demands of the vehicle(s), after which no further energy is available to be stored by the WESS or supplied to the system. Figure 11 illustrates the effect of WESS discharge rate on the train voltage. Without a WESS, as the vehicle begins to accelerate at some distance from the power supply, its power demand causes the line voltage to drop to 468V. The scenario is then re-simulated with a WESS at increasing discharge rates. With its discharge trigger voltage level set at 600Vdc, the WESS can only support the line voltage to this level for a duration equal to the time the vehicle demand is less than or equal to the discharge rate limit. Vehicle demands higher than the power limits of WESS require supplementary support from the more distant power substation(s) which can be seen as voltage drop spikes within the supporting range of the WESS. Increasing the discharge power limit of the nearby WESS enables it to contribute a higher proportion of the total power demanded by the vehicle, thereby allowing it to more effectively maintain the line voltage. This is apparent by the decreasing magnitude and duration of the voltage drop. Page 7 of 9

8 Although a thorough analysis is required for each specific system, typically a 4 7 km WESS spacing proves to be most economically effective. Figure 11. Effect of Energy Transfer Rate on Train Voltage Support Effect of Energy Transfer Rate on Emergency Backup As an emergency backup device, the WESS must be rated to meet the required power demands of the vehicle and supply a sufficient amount of energy to complete the defined rescue operation. Lower energy transfer rates will impede the performance of the vehicle and increase return travel time, or not provide adequate power to operate the vehicle at all. OTHER CONSIDERATIONS In addition to the voltage trigger level, capacity, and energy transfer rate, operation of a WESS as part of a complete transit system magnifies the complexity of energy storage operation. Among the many factors affecting WESS design and operation, two of the more important factors which impact the operation of the WESS when installed in the field are discussed below. Location As explained in the previous sections, the WESS will operate based on the line voltage level it experiences, which is a function of the distance between it and the vehicle(s). Figure 12 represents a system with eight power substations spaced approximately km apart, and a single WESS is placed between TPS 6 and TPS 7. The energy savings experienced by each TPS are represented as a proportion of total substation system energy savings. Two-thirds of the total reduction in TPS energy is experienced by the two TPSs adjacent to the WESS. The relief of energy on other TPSs decreases at increasing distance from the WESS. Figure 12. Sensitivity of WESS Location on TPS Energy Savings When locating a WESS for voltage support, a similar effect is experienced by the vehicles. The WESS will contribute a greater portion of a nearby train s demand than a more distant power supply thus maintaining a more acceptable voltage level due to a lower distribution resistance. As an emergency backup device, the WESS should be located at a position that allows the vehicle to operate within an acceptable voltage range and minimizes distribution losses. Since the rescue operation may have defined limitations, the WESS location will depend heavily on the elevation profile of the system. System Receptivity In an ideal system with short headways, energy storage is unnecessary. Perfect coordination of acceleration and braking events between nearby vehicles will ensure complete natural recycling of the regenerated energy and minimal losses through distribution and storage device inefficiency. Systems or operating periods with longer headways prove to be less receptive due to the increased distance between vehicles [2]. Even at short headways, unavoidable fluctuations in system operation impact the coordination of fleet activity. The natural receptiveness of an un-automated system is influenced by driver behavior, delays at passenger stations, train loading, and the fleet size due to operating schedule requirements. When in operation, varying demands are placed upon the WESS, and it should automatically reconfigure its settings to operate at its full potential as required by each daily operating period. The Page 8 of 9

9 parameter settings predicted by the modeling and simulations will likely require some refinement during testing and commissioning. CONCLUSION This paper presents the parameters necessary to accurately model and properly study the benefits of a wayside energy storage system through simulation. The sensitivities of WESS voltage trigger, capacity, and energy transfer rate are analyzed, and generalizations are formed regarding their effects on energy savings, voltage support, and emergency backup. Voltage charge and discharge trigger levels impact the benefits of the WESS in a near linear relationship in all applications since they determine how often and for what duration the WESS is in active operation. Increases in WESS capacity exhibit diminishing returns in energy savings, but have a more direct relationship to the duration of voltage support and emergency backup. The rate of energy transfer determines to what extent the WESS can support the demands of the system in relation to other power sources. It also has a diminishing benefit on energy savings and voltage support as the rate reaches the maximum demands of the system. As an emergency backup device, the WESS must be completely capable of supporting the demand of the rescue operation. Other factors such as location and system receptivity impact the operation of the WESS. Accurate modeling and analysis of the WESS, along with refinement of its settings after installation are necessary to ensure the WESS operates at its full potential. REFERENCES [1] Fouda, Hollett, & Gao, Energy Management Solutions for Green Transit Systems, paper presented at the 2013 ASCE APM/ATS Conference, Pheonix, Arizona, USA, April 2013 [2] Fouda & Hollett, EnerGstor A New Wayside Energy Storage System, paper presented at the APTA 2011 Rail Conference, Boston, Massachusetts, USA, June 2011 Page 9 of 9

Energy Management for Regenerative Brakes on a DC Feeding System

Energy Management for Regenerative Brakes on a DC Feeding System Energy Management for Regenerative Brakes on a DC Feeding System Yuruki Okada* 1, Takafumi Koseki* 2, Satoru Sone* 3 * 1 The University of Tokyo, okada@koseki.t.u-tokyo.ac.jp * 2 The University of Tokyo,

More information

Economic Impact of Derated Climb on Large Commercial Engines

Economic Impact of Derated Climb on Large Commercial Engines Economic Impact of Derated Climb on Large Commercial Engines Article 8 Rick Donaldson, Dan Fischer, John Gough, Mike Rysz GE This article is presented as part of the 2007 Boeing Performance and Flight

More information

Project description Environmental issues Beneficiaries Administrative data

Project description Environmental issues Beneficiaries Administrative data Flywheel energy storage - Construction of a demonstration flywheel energy-storage systems for the reduction of the energy-consumption in public light-rail systems by up to 10% LIFE97 ENV/D/000474 Project

More information

Improvement the Possibilities of Capacitive Energy Storage in Metro Railcar by Simulation

Improvement the Possibilities of Capacitive Energy Storage in Metro Railcar by Simulation Improvement the Possibilities of Capacitive Energy Storage in Metro Railcar by Simulation Istvan Szenasy Szechenyi University, Dept. of Automation, Gyor, Hungary mailing address: Istvan Szenasy Dr Gyor,

More information

Technology Development of Dual Power Supply System for Mild Hybrid System and Micro Hybrid System

Technology Development of Dual Power Supply System for Mild Hybrid System and Micro Hybrid System DENSO TEN Technical Review Vol.1 Technology Development of Dual Power Supply System for Mild Hybrid System and Micro Hybrid System Yasuki MIO Masato HISANAGA Yoshinori SHIBACHI Keiichi YONEZAKI Yoshikazu

More information

The Modeling and Simulation of DC Traction Power Supply Network for Urban Rail Transit Based on Simulink

The Modeling and Simulation of DC Traction Power Supply Network for Urban Rail Transit Based on Simulink Journal of Physics: Conference Series PAPER OPEN ACCESS The Modeling and Simulation of DC Traction Power Supply Network for Urban Rail Transit Based on Simulink To cite this article: Fang Mao et al 2018

More information

A study of the power capacity of regenerative inverters in a DC electric railway system

A study of the power capacity of regenerative inverters in a DC electric railway system Energy Management in the Train Operation 35 A study of the power capacity of regenerative inverters in a DC electric railway system C. H. Bae, M. S. Han, Y. K. Kim, S. Y. Kwon & H. J. Park Korea Railroad

More information

VYCON. REGEN for Rail. Flywheel Energy Storage

VYCON. REGEN for Rail. Flywheel Energy Storage VYCON REGEN for Rail Flywheel Energy Storage 1 Why Store Energy in Metro Rail? Cost of Energy 1 TWh 3.4 TWh 1.4 TWh Metro Op Costs 100% Electricity Costs 15-20% Traction Energy Costs 65-75% 3 Electricity,

More information

Examining the load peaks in high-speed railway transport

Examining the load peaks in high-speed railway transport Examining the load peaks in high-speed railway transport Yigit Fidansoy, M.Sc. Technische Universität Darmstadt, Germany fidansoy@verkehr.tu-darmstadt.de Paper prepared for DEMAND Centre Conference, Lancaster,

More information

INNOVATIVE SOLUTION: HESOP. Mr. Swarup Chakraborty

INNOVATIVE SOLUTION: HESOP. Mr. Swarup Chakraborty INNOVATIVE SOLUTION: HESOP Mr. Swarup Chakraborty What is HESOP? Harmonic and Energy Saving Optimiser An advanced substation for networks from 600V DC to 1500V DC and from 900kW to 4MW which offers both:

More information

Innovative Power Supply System for Regenerative Trains

Innovative Power Supply System for Regenerative Trains Innovative Power Supply System for Regenerative Trains Takafumi KOSEKI 1, Yuruki OKADA 2, Yuzuru YONEHATA 3, SatoruSONE 4 12 The University of Tokyo, Japan 3 Mitsubishi Electric Corp., Japan 4 Kogakuin

More information

Using cloud to develop and deploy advanced fault management strategies

Using cloud to develop and deploy advanced fault management strategies Using cloud to develop and deploy advanced fault management strategies next generation vehicle telemetry V 1.0 05/08/18 Abstract Vantage Power designs and manufactures technologies that can connect and

More information

Option 2 - Convert to Automatic Train Control (ATC) Signalling Technology

Option 2 - Convert to Automatic Train Control (ATC) Signalling Technology Option 2 - Convert to Automatic Train Control (ATC) Signalling Technology Option 2 is substantially different from the previous options, in that replacement of the existing signalling system, rather than

More information

American Electric Power s Energy Storage Deployments

American Electric Power s Energy Storage Deployments American Electric Power s Energy Storage Deployments 1 2 American Electric Power : Company Profile The Evolution of the Electric Utility System Before Smart Grid: One-way power flow, simple interactions,

More information

Best Practice Variable Speed Pump Systems

Best Practice Variable Speed Pump Systems Best Practice Variable Speed Pump Systems Contents 1 Introduction 3 General Recommendations 4 2 Pumping Systems 6 3 Effects of Speed Variation 8 4 Variable Speed Drives 9 5 Financial Savings 11 Introduction

More information

Energy Management and Hybrid Energy Storage in Metro Railcar

Energy Management and Hybrid Energy Storage in Metro Railcar Energy Management and Hybrid Energy Storage in Metro Railcar Istvan Szenasy Dept. of Automation Szechenyi University Gyor, Hungary szenasy@sze.hu Abstract This paper focuses on the use of modeling and

More information

Estimation of electrical losses in Network Rail Electrification Systems

Estimation of electrical losses in Network Rail Electrification Systems Estimation of electrical losses in Network Rail Electrification Systems Page 1 of 16 Contents 1. BACKGROUND...3 2. PURPOSE...3 3. SCOPE...3 4. DEFINITIONS & ABBREVIATIONS...4 5. NETWORK RAIL INFRASTRUCTURE

More information

Unitil Energy Demand Response Demonstration Project Proposal October 12, 2016

Unitil Energy Demand Response Demonstration Project Proposal October 12, 2016 Unitil Energy Demand Response Demonstration Project Proposal October 12, 2016 Fitchburg Gas and Electric Light Company d/b/a Unitil ( Unitil or the Company ) indicated in the 2016-2018 Energy Efficiency

More information

Reliable, economical and safe siemens.com/rail-electrification

Reliable, economical and safe siemens.com/rail-electrification AC Traction Power Supply Reliable, economical and safe siemens.com/rail-electrification More people, new challenges, one solution: Integrated mobility. Demographic change, urbanization and climate change:

More information

Presented By: Bob Uluski Electric Power Research Institute. July, 2011

Presented By: Bob Uluski Electric Power Research Institute. July, 2011 SMART DISTRIBUTION APPLICATIONS &THEIR INTEGRATION IN A SMART GRID ENVIRONMENT Presented By: Bob Uluski Electric Power Research Institute July, 2011 Key Smart Distribution Applications What are the major

More information

PRESS RELEASE. Significant fuel savings and rapid payback shown for rail flywheel hybrid technology. 16 June 2015

PRESS RELEASE. Significant fuel savings and rapid payback shown for rail flywheel hybrid technology. 16 June 2015 PRESS RELEASE 16 June 2015 Significant fuel savings and rapid payback shown for rail flywheel hybrid technology Research and development conducted by Ricardo, Artemis Intelligent Power and Bombardier Transportation

More information

ABB in primary aluminium From mine to market

ABB in primary aluminium From mine to market ABB in primary aluminium From mine to market 2 ABB IN PRIMARY ALUMINIUM FROM MINE TO MARKET Efficiency, availability, productivity and profits Price fluctuations, intense competition, and demands for improved

More information

POWER DISTRIBUTION SYSTEM ANALYSIS OF URBAN ELECTRIFIED RAILWAYS

POWER DISTRIBUTION SYSTEM ANALYSIS OF URBAN ELECTRIFIED RAILWAYS POWER DISTRIBUTION SYSTEM ANALYSIS OF URBAN ELECTRIFIED RAILWAYS Farhad Shahnia Saeed Tizghadam Seyed Hossein Hosseini farhadshahnia@yahoo.com s_tizghadam@yahoo.com hosseini@tabrizu.ac.ir Electrical and

More information

Figure 1b: Daily Production Profile Non Power Limiting Day

Figure 1b: Daily Production Profile Non Power Limiting Day Jon Fiorelli, Applications Engineer Michael Zuercher Martinson, Chief Technology Officer Introduction PV system designers and developers are tasked with the important decision of selecting the optimal

More information

SUMMARY OF THE IMPACT ASSESSMENT

SUMMARY OF THE IMPACT ASSESSMENT COMMISSION OF THE EUROPEAN COMMUNITIES Brussels, 13.11.2008 SEC(2008) 2861 COMMISSION STAFF WORKING DOCUMT Accompanying document to the Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMT AND OF THE COUNCIL

More information

Development of Motor-Assisted Hybrid Traction System

Development of Motor-Assisted Hybrid Traction System Development of -Assisted Hybrid Traction System 1 H. IHARA, H. KAKINUMA, I. SATO, T. INABA, K. ANADA, 2 M. MORIMOTO, Tetsuya ODA, S. KOBAYASHI, T. ONO, R. KARASAWA Hokkaido Railway Company, Sapporo, Japan

More information

SYSTEM INTEGRATION. Railway and urban transport electrification Energy-efficient and reliable solutions

SYSTEM INTEGRATION. Railway and urban transport electrification Energy-efficient and reliable solutions SYSTEM INTEGRATION Railway and urban transport electrification Energy-efficient and reliable solutions 2 R A I LWAY & U R B A N T R A N S P O R T E L E C T R I F I C AT I O N S O L U T I O N S ABB s substation

More information

Fleet Penetration of Automated Vehicles: A Microsimulation Analysis

Fleet Penetration of Automated Vehicles: A Microsimulation Analysis Fleet Penetration of Automated Vehicles: A Microsimulation Analysis Corresponding Author: Elliot Huang, P.E. Co-Authors: David Stanek, P.E. Allen Wang 2017 ITE Western District Annual Meeting San Diego,

More information

K. Shiokawa & R. Takagi Department of Electrical Engineering, Kogakuin University, Japan. Abstract

K. Shiokawa & R. Takagi Department of Electrical Engineering, Kogakuin University, Japan. Abstract Computers in Railways XIII 583 Numerical optimisation of the charge/discharge characteristics of wayside energy storage systems by the embedded simulation technique using the railway power network simulator

More information

Power management control in DC-electrified railways for the regenerative braking systems of electric trains

Power management control in DC-electrified railways for the regenerative braking systems of electric trains Energy Management in the Train Operation 13 Power management control in DC-electrified railways for the regenerative braking systems of electric trains Y. Okada 1, T. Koseki 1 & K. Hisatomi 2 1 The University

More information

Impact Analysis of Fast Charging to Voltage Profile in PEA Distribution System by Monte Carlo Simulation

Impact Analysis of Fast Charging to Voltage Profile in PEA Distribution System by Monte Carlo Simulation 23 rd International Conference on Electricity Distribution Lyon, 15-18 June 215 Impact Analysis of Fast Charging to Voltage Profile in PEA Distribution System by Monte Carlo Simulation Bundit PEA-DA Provincial

More information

Synthesis of Optimal Batch Distillation Sequences

Synthesis of Optimal Batch Distillation Sequences Presented at the World Batch Forum North American Conference Woodcliff Lake, NJ April 7-10, 2002 107 S. Southgate Drive Chandler, Arizona 85226-3222 480-893-8803 Fax 480-893-7775 E-mail: info@wbf.org www.wbf.org

More information

ULTRACAPACITORS FOR UNINTERRUPTIBLE POWER SUPPLY (UPS)

ULTRACAPACITORS FOR UNINTERRUPTIBLE POWER SUPPLY (UPS) white paper ULTRACAPACITORS FOR UNINTERRUPTIBLE POWER SUPPLY (UPS) Electricity, flowing continuously through the grid, is something that most of today s amenities rely on. For any electrical device to

More information

EPRI Intelligrid / Smart Grid Demonstration Joint Advisory Meeting March 3, 2010

EPRI Intelligrid / Smart Grid Demonstration Joint Advisory Meeting March 3, 2010 EPRI Intelligrid / Smart Grid Demonstration Joint Advisory Meeting March 3, 2010 Community Energy Storage Presentation & Simulation Results Thomas J. Walker Emeka Okafor 1 Energy Storage Applications in

More information

Regenerative Utility Simulator for Grid-Tied Inverters

Regenerative Utility Simulator for Grid-Tied Inverters Regenerative Utility Simulator for Grid-Tied Inverters AMETEK s RS & MX Series with the SNK Option provides the solution Testing of grid-tied inverters used in solar energy systems is emerging as a major

More information

QS 100 LSM Power Management

QS 100 LSM Power Management 990000717 Revision A Table of Contents Revision History...2 Overview...3 Soft Start not complete fault...3 Under voltage fault...4 Under voltage warning limit...5 Over voltage maximum limit...5 Over voltage

More information

Dual Power. Protection. Protection

Dual Power. Protection. Protection 54 Fault Clearing Systems by Damien Tholomier., AREVA T&D Automation, Canada Dual Power Single Battery What if it? Short circuits and other abnormal power system conditions are very rear, but may result

More information

INCREASING ENERGY EFFICIENCY BY MODEL BASED DESIGN

INCREASING ENERGY EFFICIENCY BY MODEL BASED DESIGN INCREASING ENERGY EFFICIENCY BY MODEL BASED DESIGN GREGORY PINTE THE MATHWORKS CONFERENCE 2015 EINDHOVEN 23/06/2015 FLANDERS MAKE Strategic Research Center for the manufacturing industry Integrating the

More information

Chapter 1: Battery management: State of charge

Chapter 1: Battery management: State of charge Chapter 1: Battery management: State of charge Since the mobility need of the people, portable energy is one of the most important development fields nowadays. There are many types of portable energy device

More information

Level of Service Classification for Urban Heterogeneous Traffic: A Case Study of Kanapur Metropolis

Level of Service Classification for Urban Heterogeneous Traffic: A Case Study of Kanapur Metropolis Level of Service Classification for Urban Heterogeneous Traffic: A Case Study of Kanapur Metropolis B.R. MARWAH Professor, Department of Civil Engineering, I.I.T. Kanpur BHUVANESH SINGH Professional Research

More information

Research Report. FD807 Electric Vehicle Component Sizing vs. Vehicle Structural Weight Report

Research Report. FD807 Electric Vehicle Component Sizing vs. Vehicle Structural Weight Report RD.9/175.3 Ricardo plc 9 1 FD7 Electric Vehicle Component Sizing vs. Vehicle Structural Weight Report Research Report Conducted by Ricardo for The Aluminum Association 9 - RD.9/175.3 Ricardo plc 9 2 Scope

More information

Life cycle services for protection and control relays Full support from start to finish

Life cycle services for protection and control relays Full support from start to finish Life cycle services for protection and control relays Full support from start to finish The main purpose of the protection and control relay is to protect both human lives and equipment as well as ensure

More information

Incorporating Real Time Computing in Data Center Power Networks

Incorporating Real Time Computing in Data Center Power Networks : Incorporating Real Time Computing in Data Center Power Networks Pittsboro, North Carolina, USA 3DFS.COM What Does Electricity Reveal About the Power Network? Nearly every device in a data center includes

More information

Alternator charging and power distribution system

Alternator charging and power distribution system Alternator charging and power distribution system 1. Overview: This example shows a typical automotive charging and power distribution system. Due to the technological advancements in electrical/electronics

More information

Optimization of Total Operating Costs Using Electric Linear Drives

Optimization of Total Operating Costs Using Electric Linear Drives Optimization of Total Operating Costs Using Electric Linear Drives TCO analysis demonstrates high potential for savings, even for simple applications, by replacing pneumatic drives Electric linear drives

More information

Application of energy storage systems for DC electric railways

Application of energy storage systems for DC electric railways Energy and Sustainability II 527 Application of energy storage systems for DC electric railways R. Takagi Kogakuin University, Japan Abstract Thanks to the recent development of electric vehicles (EVs),

More information

Southern California Edison Rule 21 Storage Charging Interconnection Load Process Guide. Version 1.1

Southern California Edison Rule 21 Storage Charging Interconnection Load Process Guide. Version 1.1 Southern California Edison Rule 21 Storage Charging Interconnection Load Process Guide Version 1.1 October 21, 2016 1 Table of Contents: A. Application Processing Pages 3-4 B. Operational Modes Associated

More information

Power Flow Simulation of Flywheel Energy Storage Systems for Tramways

Power Flow Simulation of Flywheel Energy Storage Systems for Tramways International Conference on Renewable Energies and Power Quality (ICREPQ 7) Malaga (Spain), 4 th to 6 th April, 07 exçxãtuäx XÇxÜzç tçw céãxü dâtä àç ]ÉâÜÇtÄ (RE&PQJ) ISSN 7-038 X, No.5 April 07 Power

More information

Using OpenTrack to determine the electrical load on the network

Using OpenTrack to determine the electrical load on the network The OpenTrack rail network simulation software is used by railways, the railway supply industry, consultancies and universities to model rail infrastructure, rolling stock and timetabling. OpenTrack can

More information

ESS SIZING CONSIDERATIONS ACCORDING TO CONTROL STARTEGY

ESS SIZING CONSIDERATIONS ACCORDING TO CONTROL STARTEGY ESS SIZING CONSIDERATIONS ACCORDING TO CONTROL STARTEGY Ugis Sirmelis Riga Technical University, Latvia ugis.sirmelis@gmail.com Abstract. In this paper the sizing problem of supercapacitive mobile energy

More information

Power Conditioning of Microgrids and Co-Generation Systems

Power Conditioning of Microgrids and Co-Generation Systems Power Conditioning of Microgrids and Co-Generation Systems Nothing protects quite like Piller piller.com Content 1 Introduction 3 2 Basic requirements of a stable isolated network 3 3 Requirements for

More information

Application of DSS to Evaluate Performance of Work Equipment of Wheel Loader with Parallel Linkage

Application of DSS to Evaluate Performance of Work Equipment of Wheel Loader with Parallel Linkage Technical Papers Toru Shiina Hirotaka Takahashi The wheel loader with parallel linkage has one remarkable advantage. Namely, it offers a high degree of parallelism to its front attachment. Loaders of this

More information

Genbright LLC. AEE Technical Round Table 11/15/2017

Genbright LLC. AEE Technical Round Table 11/15/2017 Genbright LLC AEE Technical Round Table 11/15/2017 About Genbright Founded in 2013, Genbright was created to develop and monetize distributed energy technologies across the power industry including distributed

More information

STEAM the hydraulic hybrid system for excavators

STEAM the hydraulic hybrid system for excavators Pagina1 STEAM the hydraulic hybrid system for excavators Abstract During the past four years the Institute for Fluid Power Drives and Controls in Aachen has developed a hydraulic hybrid architecture for

More information

NORDAC 2014 Topic and no NORDAC

NORDAC 2014 Topic and no NORDAC NORDAC 2014 Topic and no NORDAC 2014 http://www.nordac.net 8.1 Load Control System of an EV Charging Station Group Antti Rautiainen and Pertti Järventausta Tampere University of Technology Department of

More information

Chapter 13: Application of Proportional Flow Control

Chapter 13: Application of Proportional Flow Control Chapter 13: Application of Proportional Flow Control Objectives The objectives for this chapter are as follows: Review the benefits of compensation. Learn about the cost to add compensation to a hydraulic

More information

POWER FACTOR CORRECTION OF FAST DYNAMICS INDUSTRIAL LOADS

POWER FACTOR CORRECTION OF FAST DYNAMICS INDUSTRIAL LOADS ABSTRACT POWER FACTOR CORRECTION OF FAST DYNAMICS INDUSTRIAL LOADS Marcos Isoni, Electrician Engineer / Power Quality Specialist In many industrial plants (as well in some large commercial buildings),

More information

Train Group Control for Energy-Saving DC-Electric Railway Operation

Train Group Control for Energy-Saving DC-Electric Railway Operation Train Group Control for Energy-Saving DC-Electric Railway Operation Shoichiro WATANABE and Takafumi KOSEKI Electrical Engineering and Information Systems The University of Tokyo Bunkyo-ku, Tokyo, Japan

More information

Special edition paper Development of an NE train

Special edition paper Development of an NE train Development of an NE train Taketo Fujii*, Nobutsugu Teraya**, and Mitsuyuki Osawa*** Through innovation of the power system using fuel cells or hybrid systems, JR East has been developing an "NE train

More information

Effect of Compressor Inlet Temperature on Cycle Performance for a Supercritical Carbon Dioxide Brayton Cycle

Effect of Compressor Inlet Temperature on Cycle Performance for a Supercritical Carbon Dioxide Brayton Cycle The 6th International Supercritical CO2 Power Cycles Symposium March 27-29, 2018, Pittsburgh, Pennsylvania Effect of Compressor Inlet Temperature on Cycle Performance for a Supercritical Carbon Dioxide

More information

Hybrid Electric Vehicle End-of-Life Testing On Honda Insights, Honda Gen I Civics and Toyota Gen I Priuses

Hybrid Electric Vehicle End-of-Life Testing On Honda Insights, Honda Gen I Civics and Toyota Gen I Priuses INL/EXT-06-01262 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Hybrid Electric Vehicle End-of-Life Testing On Honda Insights, Honda Gen I Civics and Toyota Gen I Priuses TECHNICAL

More information

Technical Information Temperature Derating for Sunny Boy and Sunny Tripower

Technical Information Temperature Derating for Sunny Boy and Sunny Tripower Technical Information Temperature Derating for Sunny Boy and Sunny Tripower Temperature derating occurs when the inverter reduces its power in order to protect components from overheating. This document

More information

MIKLOS Cristina Carmen, MIKLOS Imre Zsolt UNIVERSITY POLITEHNICA TIMISOARA FACULTY OF ENGINEERING HUNEDOARA ABSTRACT:

MIKLOS Cristina Carmen, MIKLOS Imre Zsolt UNIVERSITY POLITEHNICA TIMISOARA FACULTY OF ENGINEERING HUNEDOARA ABSTRACT: 1 2 THEORETICAL ASPECTS ABOUT THE ACTUAL RESEARCH CONCERNING THE PHYSICAL AND MATHEMATICAL MODELING CATENARY SUSPENSION AND PANTOGRAPH IN ELECTRIC RAILWAY TRACTION MIKLOS Cristina Carmen, MIKLOS Imre Zsolt

More information

Electromagnetic Fully Flexible Valve Actuator

Electromagnetic Fully Flexible Valve Actuator Electromagnetic Fully Flexible Valve Actuator A traditional cam drive train, shown in Figure 1, acts on the valve stems to open and close the valves. As the crankshaft drives the camshaft through gears

More information

Use your own power grid.

Use your own power grid. SAVE GENERATE STORE UTILISE Use your own power grid. Intelligent storage systems based on vanadium redox flow technology. green energy long duration, low maintenance, modular, turn-key solution www.cellcubeenergystorage.com

More information

COMPANY INTRO. PowerCore Engineering

COMPANY INTRO. PowerCore Engineering PowerCore Engineering COMPANY INTRO PowerCore is a Power Distribution System Engineering Company and a turnkey Automated Systems Integrator based in London Ontario. We specialize in Power Systems Engineering

More information

EXTENDING PRT CAPABILITIES

EXTENDING PRT CAPABILITIES EXTENDING PRT CAPABILITIES Prof. Ingmar J. Andreasson* * Director, KTH Centre for Traffic Research and LogistikCentrum AB. Teknikringen 72, SE-100 44 Stockholm Sweden, Ph +46 705 877724; ingmar@logistikcentrum.se

More information

Presented at the 2012 Aerospace Space Power Workshop Manhattan Beach, CA April 16-20, 2012

Presented at the 2012 Aerospace Space Power Workshop Manhattan Beach, CA April 16-20, 2012 Complex Modeling of LiIon Cells in Series and Batteries in Parallel within Satellite EPS Time Dependent Simulations Presented at the 2012 Aerospace Space Power Workshop Manhattan Beach, CA April 16-20,

More information

ENERGY STORAGE DEVICES IN DC TRACTION POWER GRIDS

ENERGY STORAGE DEVICES IN DC TRACTION POWER GRIDS ENERGY STORAGE DEVICES IN DC TRACTION POWER GRIDS Energy Storage Devices: Why? Voltage Stability Prevent DC Traction Power Grids voltage variations during train acceleration and/or deceleration. Energy

More information

ELIPTIC. Planning a charging infrastructure for electric vehicles using Barcelona s rail network Eliptic Project. April EBERSWALDE LONDRES

ELIPTIC. Planning a charging infrastructure for electric vehicles using Barcelona s rail network Eliptic Project. April EBERSWALDE LONDRES ELIPTIC Planning a charging infrastructure for electric vehicles using Barcelona s rail network Eliptic Project LONDRES BRUSEL LES BREMEN OBERHAUSEN EBERSWALDE GDYINIA (2) LEIPZIG VARSOVIA SZEGED BARCELONA

More information

Decision on Merced Irrigation District Transition Agreement

Decision on Merced Irrigation District Transition Agreement California Independent System Operator Corporation Memorandum To: ISO Board of Governors From: Karen Edson, Vice President Policy & Client Services Date: March 13, 2013 Re: Decision on Merced Irrigation

More information

Electric Vehicle Simulation and Animation

Electric Vehicle Simulation and Animation Electric Vehicle Simulation and Animation Li Yang, Wade Gasior, Woodlyn Madden, Mark Hairr, Ronald Bailey University of Tennessee at Chattanooga Chattanooga, TN 37403 Abstract Range anxiety is a chief

More information

A Cost Benefit Analysis of Faster Transmission System Protection Schemes and Ground Grid Design

A Cost Benefit Analysis of Faster Transmission System Protection Schemes and Ground Grid Design A Cost Benefit Analysis of Faster Transmission System Protection Schemes and Ground Grid Design Presented at the 2018 Transmission and Substation Design and Operation Symposium Revision presented at the

More information

Energy Saving Technologies for Elevators

Energy Saving Technologies for Elevators Energy Saving Technologies for Elevators Authors: Junichiro Ishikawa*, Hirokazu Banno* and Sakurako Yamashita* 1. Introduction In recent years, interest in energy saving has been increasing both in Japan

More information

GEODE Report: Flexibility in Tomorrow s Energy System DSOs approach

GEODE Report: Flexibility in Tomorrow s Energy System DSOs approach 1 GEODE Report: Flexibility in Tomorrow s Energy System DSOs approach Report was prepared by Working Group Smart Grids of GEODE GEODE Spring Seminar, Brussels, 13th of May 2014 Hans Taus, Wiener Netze

More information

A Comparison of Typical UPS Designs in Today s Markets

A Comparison of Typical UPS Designs in Today s Markets A Comparison of Typical UPS Designs in Today s Markets An Alpha Technologies White Paper by Kevin Binnie, Senior Product Portfolio Manager March 1, 2011 2 White Paper: A Comparison of Typical UPS Designs

More information

Utilizing Wayside Energy Storage Substations in Rail Transit Systems Overview and Simulation Results

Utilizing Wayside Energy Storage Substations in Rail Transit Systems Overview and Simulation Results Utilizing Wayside Energy Storage Substations in Rail Transit Systems Overview and Simulation Results J. Gordon Yu, SYSTRA Martin Schroeder, APTA David Teumim, Teumim Technical, LLC Energy Storage Technology

More information

CHAPTER 3 TRANSIENT STABILITY ENHANCEMENT IN A REAL TIME SYSTEM USING STATCOM

CHAPTER 3 TRANSIENT STABILITY ENHANCEMENT IN A REAL TIME SYSTEM USING STATCOM 61 CHAPTER 3 TRANSIENT STABILITY ENHANCEMENT IN A REAL TIME SYSTEM USING STATCOM 3.1 INTRODUCTION The modeling of the real time system with STATCOM using MiPower simulation software is presented in this

More information

Grid Services From Plug-In Hybrid Electric Vehicles: A Key To Economic Viability?

Grid Services From Plug-In Hybrid Electric Vehicles: A Key To Economic Viability? Grid Services From Plug-In Hybrid Electric Vehicles: A Key To Economic Viability? Paul Denholm (National Renewable Energy Laboratory; Golden, Colorado, USA); paul_denholm@nrel.gov; Steven E. Letendre (Green

More information

D6.5 Public report on experience & results from FCEV city car demonstration in Oslo

D6.5 Public report on experience & results from FCEV city car demonstration in Oslo D6.5 Public report on experience & results from FCEV city car demonstration in Oslo Final Report Dissemination level: PU February 2013 Page 1 of 13 Introduction WP6 Deliverable D6.5 Public report on experience

More information

Development of ESS for Regenerative Energy of Electric Vehicle

Development of ESS for Regenerative Energy of Electric Vehicle Development of ESS for Regenerative Energy of Electric Vehicle Hanmin Lee, Gildong Kim, Changmu Lee Korea Railroad Research Institute, Uiwang-City, Gyeonggi-Do, Korea Abstract The energy storage system

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.6 ROLLING NOISE FROM

More information

RESEARCH OF THE DYNAMIC PRESSURE VARIATION IN HYDRAULIC SYSTEM WITH TWO PARALLEL CONNECTED DIGITAL CONTROL VALVES

RESEARCH OF THE DYNAMIC PRESSURE VARIATION IN HYDRAULIC SYSTEM WITH TWO PARALLEL CONNECTED DIGITAL CONTROL VALVES RESEARCH OF THE DYNAMIC PRESSURE VARIATION IN HYDRAULIC SYSTEM WITH TWO PARALLEL CONNECTED DIGITAL CONTROL VALVES ABSTRACT The researches of the hydraulic system which consist of two straight pipelines

More information

Grid Impact of Electric Vehicles with Secondary Control Reserve Capability

Grid Impact of Electric Vehicles with Secondary Control Reserve Capability Grid Impact of Electric Vehicles with Secondary Control Reserve Capability Thomas Degner, Gunter Arnold, Ron Brandl, Julian Dollichon, Alexander Scheidler Division System Technology and Distribution Grids

More information

TECHNICAL ISSUES IN DEVELOPMENT OF A VARIABLE HYBRIDITY FUELCELL LOCOMOTIVE

TECHNICAL ISSUES IN DEVELOPMENT OF A VARIABLE HYBRIDITY FUELCELL LOCOMOTIVE TECHNICAL ISSUES IN DEVELOPMENT OF A VARIABLE HYBRIDITY FUELCELL LOCOMOTIVE Arnold R Miller, PhD President Vehicle Projects LLC Denver, Colorado, USA 2 nd International Hydrogen Train and Hydrail Conference

More information

Regeneration of the Particulate Filter by Using Navigation Data

Regeneration of the Particulate Filter by Using Navigation Data COVER STORY EXHAUST AFTERTREATMENT Regeneration of the Particulate Filter by Using Navigation Data Increasing connectivity is having a major effect on the driving experience as well as on the car s inner

More information

Power System Solutions (PSS)

Power System Solutions (PSS) About Power System Solutions mission The Power System Solutions Mission Statement To achieve customer satisfaction by providing innovative solutions to improve upon power quality, energy efficiency, and

More information

STUDYING THE POSSIBILITY OF INCREASING THE FLIGHT AUTONOMY OF A ROTARY-WING MUAV

STUDYING THE POSSIBILITY OF INCREASING THE FLIGHT AUTONOMY OF A ROTARY-WING MUAV SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE AFASES2017 STUDYING THE POSSIBILITY OF INCREASING THE FLIGHT AUTONOMY OF A ROTARY-WING MUAV Cristian VIDAN *, Daniel MĂRĂCINE ** * Military Technical

More information

Energy Management Through Peak Shaving and Demand Response: New Opportunities for Energy Savings at Manufacturing and Distribution Facilities

Energy Management Through Peak Shaving and Demand Response: New Opportunities for Energy Savings at Manufacturing and Distribution Facilities Energy Management Through Peak Shaving and Demand Response: New Opportunities for Energy Savings at Manufacturing and Distribution Facilities By: Nasser Kutkut, PhD, DBA Advanced Charging Technologies

More information

Forecast the charging power demand for an electric vehicle. Dr. Wilson Maluenda, FH Vorarlberg; Philipp Österle, Illwerke VKW;

Forecast the charging power demand for an electric vehicle. Dr. Wilson Maluenda, FH Vorarlberg; Philipp Österle, Illwerke VKW; Forecast the charging power demand for an electric vehicle Dr. Wilson Maluenda, FH Vorarlberg; Philipp Österle, Illwerke VKW; Vienna, Bregenz; Austria 11.03.2015 Content Abstract... 1 Motivation... 2 Challenges...

More information

Table 1.-Elemsa code and characteristics of Type K fuse links (Fast).

Table 1.-Elemsa code and characteristics of Type K fuse links (Fast). FUSE CATALOG 2 Table 1.-Elemsa code and characteristics of Type K fuse links (Fast). TYPE DESCRIPTION CAT PAGE 15K-1 UNIVERSAL TYPE FUSE LINK 2066A1 38K-1 UNIVERSAL TYPE FUSE LINK 2070A1 15K-2 UNIVERSAL

More information

Volume 11 INSTRUCTION MANUAL EXERCISING THE AC DRIVE PROPULSION MODEL

Volume 11 INSTRUCTION MANUAL EXERCISING THE AC DRIVE PROPULSION MODEL Volume 11 INSTRUCTION MANUAL EXERCISING THE AC DRIVE PROPULSION MODEL Richard A. Uher RAIL SYSTEMS CENTER 2013 Country Club Drive Mount Vernon, PA 15135-3040 rail_systems_center@comcast.net TOM Version

More information

Level 7 Post Graduate Diploma in Engineering Power System Economics and Planning

Level 7 Post Graduate Diploma in Engineering Power System Economics and Planning 910-09 Level 7 Post Graduate Diploma in Engineering Power System Economics and Planning You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler

More information

Electric Power Research Institute, USA 2 ABB, USA

Electric Power Research Institute, USA 2 ABB, USA 21, rue d Artois, F-75008 PARIS CIGRE US National Committee http : //www.cigre.org 2016 Grid of the Future Symposium Congestion Reduction Benefits of New Power Flow Control Technologies used for Electricity

More information

3.2. Current Limiting Fuses. Contents

3.2. Current Limiting Fuses. Contents .2 Contents Description Current Limiting Applications................. Voltage Rating.......................... Interrupting Rating....................... Continuous Current Rating................ Fuse

More information

Wayside Energy Storage Project: Progress Update & Lessons Learned

Wayside Energy Storage Project: Progress Update & Lessons Learned Wayside Energy Storage Project: Progress Update & Lessons Learned Andrew Gillespie, Chief Engineering Officer Power Presentation to: APTA Rail Conference, June 2012 Goals 10% Energy Reduction by 2015 5%

More information

THE alarming rate, at which global energy reserves are

THE alarming rate, at which global energy reserves are Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems, St. Louis, MO, USA, October 3-7, 2009 One Million Plug-in Electric Vehicles on the Road by 2015 Ahmed Yousuf

More information

INTRODUCTION. Specifications. Operating voltage range:

INTRODUCTION. Specifications. Operating voltage range: INTRODUCTION INTRODUCTION Thank you for purchasing the EcoPower Electron 65 AC Charger. This product is a fast charger with a high performance microprocessor and specialized operating software. Please

More information

Charging Electric Vehicles in the Hanover Region: Toolbased Scenario Analyses. Bachelorarbeit

Charging Electric Vehicles in the Hanover Region: Toolbased Scenario Analyses. Bachelorarbeit Charging Electric Vehicles in the Hanover Region: Toolbased Scenario Analyses Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science (B. Sc.) im Studiengang Wirtschaftsingenieur der Fakultät

More information

REDUCING VULNERABILITY OF AN ELECTRICITY INTENSIVE PROCESS THROUGH AN ASYNCHRONOUS INTERCONNECTION

REDUCING VULNERABILITY OF AN ELECTRICITY INTENSIVE PROCESS THROUGH AN ASYNCHRONOUS INTERCONNECTION REDUCING VULNERABILITY OF AN ELECTRICITY INTENSIVE PROCESS THROUGH AN ASYNCHRONOUS INTERCONNECTION Summary Abhay Kumar Mata Prasad R C Maheshwari Asea Brown Boveri Ltd. 4th Floor, 71 Nehru Place, New Delhi

More information