DOWNLOAD PDF ENERGIZING SCIENCE PROJECTS WITH ELECTRICITY AND MAGNETISM

Size: px
Start display at page:

Download "DOWNLOAD PDF ENERGIZING SCIENCE PROJECTS WITH ELECTRICITY AND MAGNETISM"

Transcription

1 Chapter 1 : Science A-Z Electricity & Magnetism Grades Science Unit Energizing Science Projects with Electricity and Magnetism (Fantastic Physical Science Experiments) [Robert Gardner, Tom LaBaff] on theinnatdunvilla.com *FREE* shipping on qualifying offers. Data table for recording how many magnets are needed to light up different numbers of LEDs. Use your alligator clips to connect the first LED to your coil form which will function as a generator, as shown in Figure With the breadboard facing you, as shown in Figure 12, clip the red alligator clip onto the left-hand longer lead of the first LED. Clip the black alligator clip onto the right-hand shorter lead of the first LED or the left-hand longer lead of the second LED. Remember that the right-hand lead of the first LED and the left-hand lead of the second LED are electrically connected by the breadboard, so you can attach the alligator clip to either one. Make sure that the red and black alligator clips do not touch each other. This will create a short circuit and will prevent your LED from lighting up. Clip the other end of each alligator clip onto one end of the wire from your coil. Be sure to clip on to the parts of the wire where you sanded off insulation. Connect the first LED to your generator coil with alligator clips, as shown here. Now, you are finally ready to test your generator. Take your entire stack of six neodymium magnets and drop them inside the card stock tube of your generator. Remember to follow all the safety rules listed above for neodymium magnets. Cover the ends of your generator with your thumb and fingers so the magnets do not fall out, and quickly shake it back and forth but be careful not to shake loose the wires or breadboard attached to it! Try to shake your generator at a consistent speed for all of your trials. Does the LED light up? You should see the LED flicker as you shake the magnets inside the generator. If the LED does not light up at all, look at the Help tab for troubleshooting tips. This means that the electrical current alternates between positive and negative as you shake the generator. Since current can only flow through LEDs in one direction, the LED will only light up half of the time, and appears to flicker. Determine how many magnets are required to light one LED. Now, take the magnets out of your generator and carefully remove one magnet from the stack of six. Set it aside, away from the other magnets. Put the stack of five magnets back inside your generator and shake it again. Does the LED still light up? Keep removing magnets until the LED no longer lights up. What is the minimum number of magnets required to light a single LED? Enter your result in the data table in your lab notebook. Determine how many magnets are required to light two LEDs. Leave the red alligator clip in place. Start over with all six magnets. Remove one magnet at a time, and test your generator until the LEDs no longer light up. Record the minimum number of magnets required to light two LEDs in your data table. In order to test two LEDs, leave the red alligator clip in place. Move the black alligator clip to the shorter right-hand lead of the second LED. Repeat step 6 for three, four, five, and six LEDs. Each time, move the black alligator clip to the shorter right-hand lead of the next LED or the longer, left-hand lead of the LED after that, as shown in Figure Each time, start over with all six magnets, and remove one magnet at a time until the LEDs no longer light up. Record the minimum required number of magnets in your data table. If you are having trouble getting the LEDs to light up, try flipping your magnets around. Sometimes when you wind a 1,wrap coil by hand, it can become a bit lopsided, and the amount of electricity that is generated will not be perfectly symmetric as you shake it back and forth. As a result, your magnets might work better facing in one direction than in the other. So, if the LEDs do not light up at all, always flip the magnets around and try again before you record results in your data table. The black alligator clip connected to the third, fourth, fifth, and sixth LEDs top left, top right, bottom left, and bottom right, respectively. When you have finished testing all six LEDs, analyze your results. Make a graph of the data from your data table, putting the number of LEDs you tried to light up on the x-axis and the number of magnets that were required to light up the LEDs on the y-axis. Do you see a relationship between the number of magnets and the number of LEDs that you can light up? What was your hypothesis about this relationship? How can you explain your results? Does adding more magnets make a stronger magnetic field? Is there a relationship between the strength of a magnetic field and the amount of electricity induced in the Page 1

2 coil? Troubleshooting For troubleshooting tips, please read our FAQ: If you like this project, you might enjoy exploring these related careers: Electrical and electronics engineers may specialize in one of the millions of products that make or use electricity, like cell phones, electric motors, microwaves, medical instruments, airline navigation system, or handheld games. Read more Electrical Engineering Technician Electrical engineering technicians help design, test, and manufacture electrical and electronic equipment. These people are part of the team of engineers and research scientists that keep our high-tech world going and moving forward. Read more Sustainability Specialist Are you passionate about the environment? Do you like developing and implementing new ideas? Do you enjoy talking with people about how humans impact nature? If these things are true about you, then you may be the ideal candidate for a job as a sustainability specialist. This is a great career for people who enjoy working on teams, are socially responsible, and like to get things done! Read more Electrician Electricians are the people who bring electricity to our homes, schools, businesses, public spaces, and streetsâ lighting up our world, keeping the indoor temperature comfortable, and powering TVs, computers, and all sorts of machines that make life better. Electricians install and maintain the wiring and equipment that carries electricity, and they also fix electrical machines. Read more Variations If you have access to an oscilloscope, try using it to test your generator. What does the resulting waveform look like, and how does it change with different numbers of magnets? The simple generator in this science project can only instantaneously light an LED while you are shaking itâ it cannot store the energy for use later. Can you build a circuit to store the energy, and even make your own shake-to-light flashlight? How do these things affect how much electricity is generated, or how many LEDs you can light? Each individual LED requires a certain amount of voltage in order to light up. Whether the voltage required changes when you hook up multiple LEDs depends on whether you connect them in series or in parallel. Research series and parallel circuits, and use the number of LEDs to estimate the maximum voltage from your generator. Share your story with Science Buddies! Yes, I Did This Project! Please log in or create a free account to let us know how things went. You may find the answer to your question. My first LED is not lighting up at all. What should I do? First, try shaking the coil harder. Make sure the magnets are sliding back and forth inside the coil and not getting stuck. The magnets need to be moving pretty fast to generate electricity â if you just shake the coil back and forth gently, nothing will happen. Next, try adding more magnets. Just one magnet may not be sufficient to light the LED. If the LED still does not light up, there might be something wrong with your circuit. Make sure you used sandpaper to remove insulation from both ends of the copper wire, as described in Step 5 of the Procedure under "Building Your Generator. Make sure your alligator clips are firmly clipped onto the ends of the copper wire, and that the wire is not loose or sliding around within the clips. The metal surface of the alligator clips needs to be in good contact with the exposed metal surface of the wire in order for electricity to flow. Make sure that your LED is pushed firmly into the breadboard. If the LED is loose, it may not be in good contact with the metal inside the breadboard. Make sure that one alligator clip is clipped firmly onto each leg of the LED, but make sure the alligator clips are not touching each other. This will create a short circuit and prevent the LED from lighting up. I cannot get two or more LEDs to light up at all. First, make sure all of your LEDs are inserted into the breadboard properly: Make sure that all the LEDs are facing in the same direction, as described in Step 1. In order for electricity to flow through multiple LEDs, they all need to be facing the same direction. You do this by making sure the negative shorter lead of each LED is connected to the positive longer lead of the next LED. Make sure that the leads of adjacent LEDs are placed into the same row on the breadboard. If you place the leads in two different rows, there is no way for electricity to flow between them. It will help if you look at Figure 10 in the procedure, which highlights these connections with yellow rectangles. Next, try using more magnets. Page 2

3 Chapter 2 : Electricity and Magnetism projects - School / theinnatdunvilla.com Projects & Models - Supports the National Science Education Standards for K-4 Physical Science - Illus. with color photographs and il - Award-winning author Robert Gardner introduces young students to physical science through simple activities and science project ideas To ask other readers questions about Energizing. Energy used or produced per second. Charged particles are at the basis of all electricity. Static electricity is a phenomenon caused by electric charges at rest. In this section, you will study what happens when charged particles start moving collectively. In this section, we will discuss electrons as carriers of charge, but other types of particles can also carry charge. See the Technical Note: Direction of Electric Current for more details. Certain materials have some loosely held electrons, which can escape from one atom and move around easily between other atoms. We call these electrons free electrons. Materials with a lot of free electrons are called conductors. They conduct electricity well. Most metals are good conductors. When a lot of free electrons are all moving in the same direction, we call it an electric current. The amount of electric current refers to the number of electrons to be precise, their charges passing through an area per unit of time, and is measured in amperes usually called amps for short, abbreviated with a capital A. One ampere equals roughly 6. Because the electron has such a small charge, the coulomb abbreviated with a capital C is often used as unit of charge for 6. Because electrons carry a negative charge and a coulomb refers to a positive charge, some definitions are needed. These are explained in the Technical Note: Direction of Electric Current. Just like water needs a pressure difference to start flowing, electrons require an electric potential difference to make them move. The potential difference provides the energy to create movement. Electric potential difference is also called voltage and it is measured in volts abbreviated V. In the case of water, pressure can be created by a water pump or difference in height, like a water tower. In electronics, batteries and electric generators are the common sources of voltage. The presence of two different charges also creates a voltage; it gives the electric charges the energy to flow. Conductors allow current to flow through them easily, and charges do not lose much energy as they flow through these materials. Similar to how water gets slowed down when it encounters a smaller section in a pipe, electric current can encounter materials that are harder to get through. The higher the value of the resistance, the more the material hinders or resists the current, and the more energy is lost as current flows through it. The total electric energy provided by a source is the amount of charge times the voltage. A source providing a larger voltage or more charges more electrons will both result in delivering more electric energy, which, in turn, allows it to power "heavier" electric devices or appliances. Energy Consumed explains this in more detail. Direction of Electric Current Electrons, being small and light, move easily and create the bulk of electric current we encounter, like current received from wall sockets or produced by most batteries. For this reason, we will continue to discuss electricity as the flow of electrons. Sometimes, electric current is created by the flow of other charged particles, like ions atoms that have a net electric charge due to a lack or surplus of electrons. To accommodate all variations, electric current is more accurately defined as the amount of electric charge passing per unit of time, regardless of what particles carry the electric charge. So far, we have only described the amount of current. The direction is given by the sign positive or negative of the current. Conventionally, positive electric current is opposite the direction of electron flow. This is called the conventional current. This means that if you draw an arrow in the direction electrons are moving through a wire, the conventional current points in the opposite direction. If the current is represented by a positive variable referred to as the conventional current, represented by a red arrow in the figure, the arrow representing the direction of current will point opposite to the movement of the electrons represented with a blue arrow. Batteries are often used as a source of electric current. The negative terminal has a surplus of electrons, giving it a net negative charge. These electrons flow from the negative terminal to the positive terminal when there is a conductive path connecting them. The direction of conventional current is opposite thisâ from the positive terminal to the negative terminal, as shown in Figure 3. When conductive material Page 3

4 connects the two terminals of a battery, electrons will flow from the negative to the positive terminal. The conventional current will point from the positive to the negative terminal. Energy Consumed Most of our appliances specify how much electric energy they require per second they are in use. This is called a power expressed in watts abbreviated W. Power represents the amount of electric energy or voltage times charge consumed by the appliances per second it is running. If you write these relationships out in equation form: And then rearrange the equations a bit try this out if you know how to do algebra you can see that electric power is equal to voltage times current: And that energy is equal to power times time: Your electric bill expresses your use of electric energy in kilowatt-hours. However, note that the electricity supplied to your house by power lines is alternating current, meaning the voltage and current change with time instead of remaining constant. This is explained in the next section. Related Science Projects Click here for a list of science projects related to electric current. Summary of Key Concepts Current can only flow in a closed circuit of conductive material. In direct current DC, electrons all move in the same direction. In alternating current AC, electrons move back and forth with a specific frequency measured in hertz Hz. Never plug a homemade circuit directly into a wall outlet; the alternating current from the wall outlet can harm you badly. AC In the Current Electricity section, you learned about electric charge, current, voltage and other related topics. But, just because you have a voltage does not mean electric current will flow. Electrons also need a complete loop of conductive material to flow, called a closed circuit. When you turn the switch "on", the switch creates a path that conducts electricity and electrons start to moveâ meaning electric current flowsâ and the light turns on. As soon as you turn the switch "off", the path is broken and electrons can no longer flow. The switch is like a drawbridge; switching it on is letting down the bridge so the electrons can cross just like cars crossing a bridge and provide energy to the light bulb. Illustration of how electric current can move through a closed loop of conductive material left figure but stops flowing whenever the loop is broken right figure. This figure shows how a light bulb lights up when it is connected to a closed circuit. Note the yellow arrows show the direction of the conventional current. So remember, in order for electric current to flow, there must be a closed loop of conductive material. There are two different ways in which electrons can move through a loop of conductive material and create an electric current: In the case of a direct current abbreviated DC, the electrons always travel around the loop in the same direction so the conventional current also has a constant direction. Figure 5, below, shows a direct current, or electrons all moving in one direction in a conductive wire. All battery-powered devices, like cell phones and flashlights, run on direct current. Note that a constant voltage will create a direct current. In the case of direct current DC, the free electrons always collectively move in the same direction. This figure is not to scale. Read the technical note, below, to get a more accurate description. In the case of an alternating current AC, electrons travel back and forth. Figure 6, below, shows an animation of alternating current. One moment they all move collectively in one direction, and the next moment they all move collectively in the opposite direction, creating an oscillating electrical current. One back-and-forth oscillation is called a cycle, and the number of cycles delivered per time unit is called the frequency. Frequency is measured in hertz Hz. Note that the voltage creating this current will alternate with the same frequency. In the case of alternating current AC, the free electrons collectively move back and forth. Remember, just like in Figure 5, this figure is not to scale. Read the technical note, below, to get a more accurate view. Power lines deliver alternating electric current to our homes. Depending on what country you are in, alternating current from power outlets is usually 50 or 60 cycles per second Hz. Most electric appliances we "plug into the wall" run on alternating current. Some appliances need an "adapter" or "converter" to convert alternating current to direct current, like a cell phone charger. Also, these electrons do not actually move in a straight line. In reality, electrons bounce all around between atoms in a conductor, as illustrated in Figure 7, below. The overall drift toward one direction creates the electric current. Remember that the direction of conventional current is opposite the direction of electron motion, as shown in the figure. Illustration of how electrons bounce around between atoms in a conductor where the overall drift in one direction creates the electric current. Note that this figure is also not to scaleâ electrons are much smaller Page 4

5 than atoms, but they are so tiny that it is impossible to draw an accurate to-scale figure where you can see the electrons. To understand the difference between AC and DC, you can also make a graph of electric current versus time. Chapter 3 : Energizing science projects with electricity and magnetism ( edition) Open Library Huge List of Electricity and Magnetism Projects, Electricity Projects, Latest Solar Energy Electrical science fair project, electricity experiment Models, lab, static electricity experiments project, electricity generation projects, science games, physics, cool simple fun best creative electricity projects for Kids and also for Middle school, Elementary School for class 5th Grade, 6th. Chapter 4 : Energizing Science Projects with Electricity and Magnetism by Robert Gardner Get this from a library! Energizing science projects with electricity and magnetism. [Robert Gardner] -- Presents experiments designed to unlock the mysteries of electricity and its connection with magnetism. Chapter 5 : Human-Powered Energy Find physics science fair project ideas about magnetism, electricity, energy and solar power, and more. Chapter 6 : Electricity, Magnetism, & Electromagnetism Tutorial Electricity and magnetism science fair projects and experiments: topics, ideas, reference resources, and sample projects. Chapter 7 : Information about Electricity Experiments with Fizzics Education Kids Science Experiments Try these hands-on experiments and projects to (safely) learn about the science of electricity, which is the movement of elections between atoms. Take the afternoon to explore the connection between electricity and magnetism, different types of circuits, and static electricity. Page 5

reflect energy: the ability to do work

reflect energy: the ability to do work reflect Have you ever thought about how much we depend on electricity? Electricity is a form of energy that runs computers, appliances, and radios. Electricity lights our homes, schools, and office buildings.

More information

a) Understand the conditions for lighting a light bulb by connecting it to batteries with wires to make it illuminate.

a) Understand the conditions for lighting a light bulb by connecting it to batteries with wires to make it illuminate. This area deals with simple electric circuits and electromagnets. In this area, students learn about electricity for the first time and build an electromagnet and a simple circuit to compare the brightness

More information

FUN! Protected Under 18 U.S.C. 707

FUN! Protected Under 18 U.S.C. 707 FUN! Protected Under 18 U.S.C. 707 6 Volt Lantern Battery Spring terminals (also available in screw terminals) Alligator Clips Best method to attach wires to the spring terminals on a lantern battery.

More information

simplegen User Guide

simplegen User Guide simplegen User Guide About KidWind The KidWind Project is a team of teachers, students, engineers, and practitioners exploring the science behind wind energy in classrooms around the US. Our goal is to

More information

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

Pre-lab Questions: Please review chapters 19 and 20 of your textbook Introduction Magnetism and electricity are closely related. Moving charges make magnetic fields. Wires carrying electrical current in a part of space where there is a magnetic field experience a force.

More information

Lesson Plan: Electricity and Magnetism (~100 minutes)

Lesson Plan: Electricity and Magnetism (~100 minutes) Lesson Plan: Electricity and Magnetism (~100 minutes) Concepts 1. Electricity and magnetism are fundamentally related. 2. Just as electric charge produced an electric field, electric current produces a

More information

Electricity. Electric Charge. Before You Read. Read to Learn. Positive and Negative Charges. Picture This. section.

Electricity. Electric Charge. Before You Read. Read to Learn. Positive and Negative Charges. Picture This. section. chapter 6 Electricity 1 section Electric Charge What You ll Learn how electric charges exert forces about conductors and insulators how things become electrically charged Before You Read Think about some

More information

LETTER TO PARENTS SCIENCE NEWS. Dear Parents,

LETTER TO PARENTS SCIENCE NEWS. Dear Parents, LETTER TO PARENTS Cut here and paste onto school letterhead before making copies. Dear Parents, SCIENCE NEWS Our class is beginning a new science unit using the FOSS Magnetism and Electricity Module. We

More information

Electricity and Magnetism

Electricity and Magnetism Electricity and Magnetism Electric Current and Electric Circuits What do you think? Read the statement below and decide whether you agree or disagree with it. Place an A in the Before column if you agree

More information

Your web browser (Safari 7) is out of date. For more security, comfort and. the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and. the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and Activitydevelop the best experience on this site: Update your browser Ignore Circuits with Friends What is a circuit, and what

More information

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit.

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit. CHAPTER 17 4 Electric Circuits SECTION Introduction to Electricity BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the three main parts of a circuit?

More information

8.2 Electric Circuits and Electrical Power

8.2 Electric Circuits and Electrical Power 8.2 Electric Circuits and Electrical Power Every electrical device uses current to carry energy and voltage to push the current. How are electrical devices designed? What types of parts are used in an

More information

A device that measures the current in a circuit. It is always connected in SERIES to the device through which it is measuring current.

A device that measures the current in a circuit. It is always connected in SERIES to the device through which it is measuring current. Goals of this second circuit lab packet: 1 to learn to use voltmeters an ammeters, the basic devices for analyzing a circuit. 2 to learn to use two devices which make circuit building far more simple:

More information

Electromagnetism - Invisible Forces

Electromagnetism - Invisible Forces Science Unit: Lesson 6: Physics Ideas Electromagnetism - Invisible Forces School year: 2006/2007 Developed for: Developed by: Grade level: Duration of lesson: Notes: Tecumseh Elementary School, Vancouver

More information

Electricity MR. BANKS 8 TH GRADE SCIENCE

Electricity MR. BANKS 8 TH GRADE SCIENCE Electricity MR. BANKS 8 TH GRADE SCIENCE Electric charges Atoms and molecules can have electrical charges. These are caused by electrons and protons. Electrons are negatively charged. Protons are positively

More information

CHAPTER 6.3: CURRENT ELECTRICITY

CHAPTER 6.3: CURRENT ELECTRICITY CHAPTER 6.3: CURRENT ELECTRICITY These components are used in electric circuits. TASK: Draw how you could make this lamp light. Electricity will only flow through a complete circuit. The battery, wires

More information

Figure 1: Relative Directions as Defined for Faraday s Law

Figure 1: Relative Directions as Defined for Faraday s Law Faraday s Law INTRODUCTION This experiment examines Faraday s law of electromagnetic induction. The phenomenon involves induced voltages and currents due to changing magnetic fields. (Do not confuse this

More information

Period 11 Activity Sheet Solutions: Electric Current

Period 11 Activity Sheet Solutions: Electric Current Period 11 Activity Sheet Solutions: Electric Current Activity 11.1: How Can Electric Charge Do Work? Your instructor will demonstrate a Wimshurst machine, which separates electric charge. a) Describe what

More information

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

Pre-lab Questions: Please review chapters 19 and 20 of your textbook Introduction Magnetism and electricity are closely related. Moving charges make magnetic fields. Wires carrying electrical current in a part of space where there is a magnetic field experience a force.

More information

VANDERBILT STUDENT VOLUNTEERS FOR SCIENCE

VANDERBILT STUDENT VOLUNTEERS FOR SCIENCE Electromagnetism Observation sheet Name VANDERBILT STUDENT VOLUNTEERS FOR SCIENCE http://studentorgs.vanderbilt.edu/vsvs Electromagnetism Spring 2016 (Adapted from Student Guide for Electric Snap Circuits

More information

Introduction to Electricity & Electrical Current

Introduction to Electricity & Electrical Current Introduction to Electricity & Electrical Current Physical Science Georgia Performance Standards: SPS10a. Investigate static electricity in terms of friction, induction, and conduction. SPS10b. Explain

More information

Electrical power. Objectives. Assessment. Assessment. Equations. Physics terms 5/27/14

Electrical power. Objectives. Assessment. Assessment. Equations. Physics terms 5/27/14 Electrical power Objectives Use the equation for electrical power to solve circuit problems. Understand basic concepts for home electricity usage and wiring. Calculate the power used by electric circuit

More information

Electrical Circuits Discussion Questions:

Electrical Circuits Discussion Questions: Electrical Circuits Discussion Questions: 1) What is electricity? 2) How does an electrical circuit work? 3) What types of materials conduct electrical energy? 4) How is electrical energy measured? 5)

More information

Electromagnets ENERGY USE AND DELIVERY LESSON PLAN 3.3. Public School System Teaching Standards Covered

Electromagnets ENERGY USE AND DELIVERY LESSON PLAN 3.3. Public School System Teaching Standards Covered ENERGY USE AND DELIVERY LESSON PLAN 3.3 Electromagnets This lesson is designed for 3rd 5th grade students in a variety of school settings (public, private, STEM schools, and home schools) in the seven

More information

Unit 6: Electricity and Magnetism

Unit 6: Electricity and Magnetism Objectives Unit 6: Electricity and Magnetism Identify the factors influencing the electric force between objects. Explain the interaction between charged and uncharged objects. Design, construct, and explain

More information

12 Electricity and Circuits

12 Electricity and Circuits 12 Electricity and Circuits We use electricity for many purposes to make our tasks easier. For example, we use electricity to operate pumps that lift water from wells or from ground level to the roof top

More information

Circuits. Now put the round bulb in a socket and set up the following circuit. The bulb should light up.

Circuits. Now put the round bulb in a socket and set up the following circuit. The bulb should light up. Name: Partner(s): 1118 section: Desk # Date: Purpose Circuits The purpose of this lab is to gain experience with setting up electric circuits and using meters to measure voltages and currents, and to introduce

More information

IT'S MAGNETIC (1 Hour)

IT'S MAGNETIC (1 Hour) IT'S MAGNETIC (1 Hour) Addresses NGSS Level of Difficulty: 4 Grade Range: 3-5 OVERVIEW In this activity, students will create a simple electromagnet using a nail, a battery, and copper wire. They will

More information

Objectives. Materials TI-73 CBL 2

Objectives. Materials TI-73 CBL 2 . Objectives To understand the relationship between dry cell size and voltage Activity 4 Materials TI-73 Unit-to-unit cable Voltage from Dry Cells CBL 2 Voltage sensor New AAA, AA, C, and D dry cells Battery

More information

Lab 1: DC Motors Tuesday, Feb 8 / Wednesday, Feb 9

Lab 1: DC Motors Tuesday, Feb 8 / Wednesday, Feb 9 Introduction MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.007 Electromagnetic Energy: From Motors to Lasers Spring 2011 Do the pre-lab before you come

More information

Experimental Procedure

Experimental Procedure 1 of 14 9/11/2018, 3:22 PM https://www.sciencebuddies.org/science-fair-projects/project-ideas/robotics_p026/robotics/build-a-solar-powered-bristlebot (http://www.sciencebuddies.org/science-fairprojects/project-ideas/robotics_p026/robotics/build-a-solar-powered-bristlebot)

More information

Can You Light the Bulb?

Can You Light the Bulb? 3-5 Physical Science Southern Nevada Regional Professional Development Program Can You Light the Bulb? INTRODUCTION Electrical energy is easily transferred through loops that we call circuits. This activity

More information

Is it Magnetic? 1. Fill in each table. List things ATTRACTED by a magnet on the LEFT and things NOT ATTRACTED on the RIGHT.

Is it Magnetic? 1. Fill in each table. List things ATTRACTED by a magnet on the LEFT and things NOT ATTRACTED on the RIGHT. Is it Magnetic? 1. Fill in each table. List things ATTRACTED by a magnet on the LEFT and things NOT ATTRACTED on the RIGHT. MAGNETIC NON-MAGNETIC # Object Made from check # Object Made from check --- ------------

More information

Given the following items: wire, light bulb, & battery, think about how you can light the bulb.

Given the following items: wire, light bulb, & battery, think about how you can light the bulb. Light the Bulb! What You'll Do: Given the following items: wire, light bulb, & battery, think about how you can light the bulb. >>>>>>>>>Draw all the possible combinations that you can make with the bulb,

More information

Electricity All Around Us

Electricity All Around Us ELECTRICITY ALL AROUND US, COMPLETE MODULE MATERIALS MODULE TEST Name: Section 1: or. Circle true or false for the following questions. 1. Damaged wires can cause fires in your home. 2. Appliances placed

More information

AP Physics B Ch 18 and 19 Ohm's Law and Circuits

AP Physics B Ch 18 and 19 Ohm's Law and Circuits Name: Period: Date: AP Physics B Ch 18 and 19 Ohm's Law and Circuits MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A device that produces electricity

More information

Circuit Basics and Components

Circuit Basics and Components Circuit Basics Electric circuits are arrangements of conductors and components that permit electrical current to flow. A circuit can be as simple as a battery and lamp or as sophisticated as a computer.

More information

Magnetism can produce current.

Magnetism can produce current. Page of 5 KY CONCPT Magnetism can produce current. BFOR, you learned Magnetism is a force exerted by magnets lectric current can produce a magnetic field lectromagnets can make objects move NOW, you will

More information

Electric Circuits. Lab. FCJJ 16 - Solar Hydrogen Science Kit. Next Generation Science Standards. Initial Prep Time. Lesson Time. Assembly Requirements

Electric Circuits. Lab. FCJJ 16 - Solar Hydrogen Science Kit. Next Generation Science Standards. Initial Prep Time. Lesson Time. Assembly Requirements Next Generation Science Standards NGSS Science and Engineering Practices: Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting

More information

Chapter 7: DC Motors and Transmissions. 7.1: Basic Definitions and Concepts

Chapter 7: DC Motors and Transmissions. 7.1: Basic Definitions and Concepts Chapter 7: DC Motors and Transmissions Electric motors are one of the most common types of actuators found in robotics. Using them effectively will allow your robot to take action based on the direction

More information

What is electricity?

What is electricity? Electrical Safety Part 1 What is electricity? Note to Teachers: Behind the Lesson: Why is it important to understand the basics of electricity before learning about electrical safety? The world around

More information

Electrical Connections

Electrical Connections Electrical Connections TABLE OF CONTENTS ABOUT DELTA SCIENCE MODULES Program Introduction................... iii Teacher s Guide..................... iv Delta Science Readers............... vi Equipment

More information

Q1. Figure 1 shows a straight wire passing through a piece of card.

Q1. Figure 1 shows a straight wire passing through a piece of card. THE MOTOR EFFECT Q1. Figure 1 shows a straight wire passing through a piece of card. A current (I) is passing down through the wire. Figure 1 (a) Describe how you could show that a magnetic field has been

More information

a) Understand the conditions for lighting a light bulb by connecting it to batteries with wires to make it illuminate.

a) Understand the conditions for lighting a light bulb by connecting it to batteries with wires to make it illuminate. This area deals with simple electric circuits and electromagnets. In this area, students learn about electricity for the first time and build an electromagnet and a simple circuit to compare the brightness

More information

Electricity Unit Review

Electricity Unit Review Science 9 Electricity Unit Review Name: General Definitions: Neutral Object Charge Separation Electrical Discharge Electric Current Amperes (amps) Voltage (volts) Voltmeter Ammeters Galvanometer Multimeter

More information

The Starter motor. Student booklet

The Starter motor. Student booklet The Starter motor Student booklet The Starter motor - INDEX - 2006-04-07-13:20 The Starter motor The starter motor is an electrical motor and the electric motor is all about magnets and magnetism: A motor

More information

Lab 08: Circuits. This lab is due at the end of the laboratory period

Lab 08: Circuits. This lab is due at the end of the laboratory period Name: Partner(s): 1114 section: Desk # Date: Purpose Lab 08: Circuits This lab is due at the end of the laboratory period The purpose of this lab is to gain experience with setting up electric circuits

More information

FUN! Protected Under 18 U.S.C. 707

FUN! Protected Under 18 U.S.C. 707 FUN! Protected Under 18 U.S.C. 707 DC I Lesson Objectives: 1. What is Electricity? 2. Discover the Electron 3. Learn about Conductors and Insulators 4. Learn about Voltage and Current 5. Learn the difference

More information

Overcurrent protection

Overcurrent protection Overcurrent protection This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

All Worn Out! Measure the voltage of batteries as they discharge. Predict how different size batteries will behave when being discharged.

All Worn Out! Measure the voltage of batteries as they discharge. Predict how different size batteries will behave when being discharged. All Worn Out! Computer 43 Have you ever wondered why some flashlights use small batteries and some use big ones? What difference does it make? Do larger batteries make the light brighter? Will the size

More information

Parts of an atom. Protons (P + ) Electrons (e - ) Neutrons. Have a positive electric charge. Have a negative electric charge

Parts of an atom. Protons (P + ) Electrons (e - ) Neutrons. Have a positive electric charge. Have a negative electric charge Electricity Parts of an atom Protons (P + ) Have a positive electric charge Electrons (e - ) Have a negative electric charge Neutrons Are neutral Have no charge Electric Charge In most atoms, the charges

More information

Electrical Systems. Introduction

Electrical Systems. Introduction Electrical Systems Figure 1. Major Components of the Car s Electrical System Introduction Electricity is used in nearly all systems of the automobile (Figure 1). It is much easier to understand what electricity

More information

Understanding Electricity and Electrical Safety Teacher s Guide

Understanding Electricity and Electrical Safety Teacher s Guide Understanding Electricity and Electrical Safety Teacher s Guide Note to Instructor: The activities and experiments in this booklet build on each other to develop a student s understanding of electricity

More information

Activity 8: Solar-Electric System Puzzle

Activity 8: Solar-Electric System Puzzle Section 3 Activities Activity 8: Solar-Electric System Puzzle ACTIVITY TYPE: Worksheet Overview: Introduces the basic components of the Solar 4R Schools (S4RS) solar-electric system and identifies the

More information

Inquiry-Based Physics in Middle School. David E. Meltzer

Inquiry-Based Physics in Middle School. David E. Meltzer Inquiry-Based Physics in Middle School David E. Meltzer Mary Lou Fulton Teachers College Arizona State University Mesa, Arizona U.S.A. Supported in part by a grant from Mary Lou Fulton Teachers College

More information

HOW IS ELECTRICITY PRODUCED?

HOW IS ELECTRICITY PRODUCED? ELECTRICITY HOW IS ELECTRICITY PRODUCED? All electricity is produced from other sources of energy. Hydroelectricity is produced from the stored energy of water held back by a dam. As the water runs downhill

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #6: Magnetic Fields

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #6: Magnetic Fields NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #6: Magnetic Fields Lab Writeup Due: Mon/Wed/Thu/Fri, March 5/7/8/9, 2018 Background Magnetic fields

More information

Electric Circuits. Say Thanks to the Authors Click (No sign in required)

Electric Circuits. Say Thanks to the Authors Click   (No sign in required) Electric Circuits Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

ELECTRICITY ELECTRICITY. Copyright 2016 Cyber Innovation Center. All Rights Reserved. Not for Distribution.

ELECTRICITY ELECTRICITY. Copyright 2016 Cyber Innovation Center. All Rights Reserved. Not for Distribution. TEACHER STUDENT EDITION MANUAL ELECTRICITY ELECTRICITY www.nicerc.org Welcome to STEM EDA! STEM Explore, Discover, Apply (STEM EDA) is designed as a three course progression through STEM (science, technology,

More information

New Section: Circuits & Machines. Warm Up: 1.) How do we use electricity every day? 2.) What do you think of when you hear the word "current?

New Section: Circuits & Machines. Warm Up: 1.) How do we use electricity every day? 2.) What do you think of when you hear the word current? New Section: Circuits & Machines. Warm Up: 1.) How do we use electricity every day? lights, computers, electronics, tvs, microwaves, etc... new, flowing...? 2.) What do you think of when you hear the word

More information

Circuits. This lab is due at the end of the laboratory period

Circuits. This lab is due at the end of the laboratory period Name: Partner(s): 1114 section: Desk # Date: Purpose Circuits This lab is due at the end of the laboratory period The purpose of this lab is to gain experience with setting up electric circuits and using

More information

Shed Light on Electric Generators: Do More Coils Generate More Electricity?

Shed Light on Electric Generators: Do More Coils Generate More Electricity? Shed Light on Electric Generators: Do More Coils Generate More Electricity? https://www.sciencebuddies.org/science-fair-projects/project-ideas/elec_p078/electricity-electronics/electric-generatorsdo-more-coils-generate-more-electricity

More information

Farr High School NATIONAL 4 PHYSICS. Unit 1 Electricity and Energy. Revision Notes

Farr High School NATIONAL 4 PHYSICS. Unit 1 Electricity and Energy. Revision Notes Farr High School NATIONAL 4 PHYSICS Unit 1 Electricity and Energy Revision Notes Content Practical electrical and electronic circuits - Measurement of current, voltage and resistance using appropriate

More information

Experiment P-16 Basic Electromagnetism

Experiment P-16 Basic Electromagnetism 1 Experiment P-16 Basic Electromagnetism Objectives To learn about electromagnets. To build an electromagnet with a nail, a wire and additional electrical elements. To investigate how the number of winds

More information

Chapter: Electricity

Chapter: Electricity Chapter 13 Table of Contents Chapter: Electricity Section 1: Electric Charge Section 2: Electric Current Section 3: Electrical Energy 1 Electric Charge Positive and Negative Charge Atoms contain particles

More information

LAB 7. SERIES AND PARALLEL RESISTORS

LAB 7. SERIES AND PARALLEL RESISTORS Name: LAB 7. SERIES AND PARALLEL RESISTORS Problem How do you measure resistance, voltage, and current in a resistor? How are these quantities related? What is the difference between a series circuit and

More information

Welcome to the SEI presentation on the basics of electricity

Welcome to the SEI presentation on the basics of electricity Welcome to the SEI presentation on the basics of electricity 1 Electricity is a secondary energy source, meaning that it is produced from other, primary, energy sources. There are several primary sources

More information

NEW CAR TIPS. Teaching Guidelines

NEW CAR TIPS. Teaching Guidelines NEW CAR TIPS Teaching Guidelines Subject: Algebra Topics: Patterns and Functions Grades: 7-12 Concepts: Independent and dependent variables Slope Direct variation (optional) Knowledge and Skills: Can relate

More information

Based on results from TIMSS Key. bulb. bulb. switch. wir. battery. wir. switch. Lesson plan on investigative science. wire.

Based on results from TIMSS Key. bulb. bulb. switch. wir. battery. wir. switch. Lesson plan on investigative science. wire. bulb Based on results from TIMSS 2015 Key battery Key ba bu tte switch sw h itc bulb e wir battery switch wire bat sw Lesson plan on investigative science Electricity wir Electricity Pupils performed less

More information

PHY152H1S Practical 3: Introduction to Circuits

PHY152H1S Practical 3: Introduction to Circuits PHY152H1S Practical 3: Introduction to Circuits Don t forget: List the NAMES of all participants on the first page of each day s write-up. Note if any participants arrived late or left early. Put the DATE

More information

Magnetism and Electricity

Magnetism and Electricity Magnetism and Electricity Way back in the first lesson of this magnetism block, we talked about the fact that magnetic fields are caused by electrons moving in the same direction. Up to this point, we

More information

Magnetism from Electricity

Magnetism from Electricity 2 What You Will Learn Identify the relationship between an electric current and a magnetic field. Compare solenoids and electromagnets. Describe how electromagnetism is involved in the operation of doorbells,

More information

11.1 CURRENT ELECTRICITY. Electrochemical Cells (the energy source) pg Wet Cell. Dry Cell. Positive. Terminal. Negative.

11.1 CURRENT ELECTRICITY. Electrochemical Cells (the energy source) pg Wet Cell. Dry Cell. Positive. Terminal. Negative. Date: SNC1D: Electricity 11.1 CURRENT ELECTRICITY Define: CIRCUIT: path that electrons follow. CURRENT ELECTRICITY: continuous flow of electrons in a circuit LOAD: device that converts electrical energy

More information

LESSON PLAN: Circuits and the Flow of Electricity

LESSON PLAN: Circuits and the Flow of Electricity LESSON PLAN: Michigan Curriculum Framework Middle School Benchmark SCI.IV.1.MS.5 Construct simple circuits and explain how they work in terms of the flow of current. Benchmark SCI.IV.1.MS.6 Investigate

More information

45 Current Electricity. February 09, Current Electricity. What we will learn, Arc Attack. Electric Man. 1

45 Current Electricity. February 09, Current Electricity. What we will learn, Arc Attack. Electric Man.   1 Current Electricity What we will learn, Arc Attack Electric Man www.mrcjcs.com 1 Conductors and Insulators An electric current is a flow of electric charge. Set up a simple electrical circuit and insert

More information

ECSE-2100 Fields and Waves I Spring Project 1 Beakman s Motor

ECSE-2100 Fields and Waves I Spring Project 1 Beakman s Motor Names _ and _ Project 1 Beakman s Motor For this project, students should work in groups of two. It is permitted for groups to collaborate, but each group of two must submit a report and build the motor

More information

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit.

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit. CHAPTER 1 4 Electric Circuits SECTION Introduction to Electricity BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the three main parts of a circuit?

More information

CHAPTER OUTLINE CHAPTER RESOURCES

CHAPTER OUTLINE CHAPTER RESOURCES Electricity NEW the BIG idea Moving s transfer energy. 5.1 5.2 Charges can move from one place to another. 5.3 Electric current is a flow of charge. Electric charge is a property of matter. Electrons have

More information

Incandescent Lightbulb. Electricity passes through a tungsten (W) filament, which in turn glows white hot (4500F).

Incandescent Lightbulb. Electricity passes through a tungsten (W) filament, which in turn glows white hot (4500F). 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Incandescent Lightbulb Electricity passes through a tungsten (W) filament, which in turn glows white hot (4500F). Very inefficient: 90% of the electrical energy is lost

More information

INDUCTANCE FM CHAPTER 6

INDUCTANCE FM CHAPTER 6 CHAPTER 6 INDUCTANCE INTRODUCTION The study of inductance is a very challenging but rewarding segment of electricity. It is challenging because at first it seems that new concepts are being introduced.

More information

Electricity All Around Us

Electricity All Around Us ELECTRICITY ALL AROUND US, COMPLETE MODULE MATERIALS MODULE TEST ANSWER KEY Section 1: or False 1. Damaged wires can cause fires in your home. 2. Appliances placed close to water are a safety hazard. 3.

More information

Physics Work with your neighbor. Ask me for help if you re stuck. Don t hesistate to compare notes with nearby groups.

Physics Work with your neighbor. Ask me for help if you re stuck. Don t hesistate to compare notes with nearby groups. Physics 9 2016-04-13 Work with your neighbor. Ask me for help if you re stuck. Don t hesistate to compare notes with nearby groups. Today we ll build on what we did Monday with batteries and light bulbs.

More information

UNIT 2. INTRODUCTION TO DC GENERATOR (Part 1) OBJECTIVES. General Objective

UNIT 2. INTRODUCTION TO DC GENERATOR (Part 1) OBJECTIVES. General Objective DC GENERATOR (Part 1) E2063/ Unit 2/ 1 UNIT 2 INTRODUCTION TO DC GENERATOR (Part 1) OBJECTIVES General Objective : To apply the basic principle of DC generator, construction principle and types of DC generator.

More information

MODULE 4 Seat Belt Systems

MODULE 4 Seat Belt Systems Topic National Child Passenger Safety Certification Training Program MODULE 4 Seat Belt Systems Module Agenda: 130 Minutes Suggested Timing 1. Introduction 2 2. Federal Standards for Seat Belts 3 3. Types

More information

Write the term that correctly completes the statement. Use each term once. ampere. electric current. resistor battery.

Write the term that correctly completes the statement. Use each term once. ampere. electric current. resistor battery. Date Period Name CHAPTER 22 Study Guide Current Electricity Vocabulary Review Write the term that correctly completes the statement. Use each term once. ampere electric current resistor battery kilowatt-hour

More information

CHAPTER 19 DC Circuits Units

CHAPTER 19 DC Circuits Units CHAPTER 19 DC Circuits Units EMF and Terminal Voltage Resistors in Series and in Parallel Kirchhoff s Rules EMFs in Series and in Parallel; Charging a Battery Circuits Containing Capacitors in Series and

More information

Power Move: Manipulating Magnets to Improve Generator Output

Power Move: Manipulating Magnets to Improve Generator Output Power Move: Manipulating Magnets to Improve Generator Output https://www.sciencebuddies.org/science-fair-projects/project-ideas/elec_p079/electricity-electronics/manipulatingmagnets-to-improve-generator-output

More information

Reliable Reach. Robotics Unit Lesson 4. Overview

Reliable Reach. Robotics Unit Lesson 4. Overview Robotics Unit Lesson 4 Reliable Reach Overview Robots are used not only to transport things across the ground, but also as automatic lifting devices. In the mountain rescue scenario, the mountaineers are

More information

Electricity. Teacher/Parent Notes.

Electricity. Teacher/Parent Notes. Electricity. Teacher/Parent Notes. Caution. The yellow fan. If this is used with 6 Volts, the fan will fly into the air with some force so it is advisable to keep faces well away from it! Batteries. Please

More information

Fuel Strategy (Exponential Decay)

Fuel Strategy (Exponential Decay) By Ten80 Education Fuel Strategy (Exponential Decay) STEM Lesson for TI-Nspire Technology Objective: Collect data and analyze the data using graphs and regressions to understand conservation of energy

More information

Stay Safe Around Electricity Teacher s Guide

Stay Safe Around Electricity Teacher s Guide Stay Safe Around Electricity Teacher s Guide INTRODUCTION The Stay Safe Around Electricity activity booklet can be used as a follow-up to an electric utility presentation or as a stand-alone piece to teach

More information

Electrical machines - generators and motors

Electrical machines - generators and motors Electrical machines - generators and motors We have seen that when a conductor is moved in a magnetic field or when a magnet is moved near a conductor, a current flows in the conductor. The amount of current

More information

LETTER TO FAMILY. Science News. Cut here and glue letter onto school letterhead before making copies.

LETTER TO FAMILY. Science News. Cut here and glue letter onto school letterhead before making copies. LETTER TO FAMILY Cut here and glue letter onto school letterhead before making copies. Science News Dear Family, Our class is beginning a new science unit using the. We will investigate energy, build electric

More information

INSTRUCTIONS TO CANDIDATES

INSTRUCTIONS TO CANDIDATES Kenya Certificate of Secondary Education NAME:.... SCHOOL: DATE:... ELECTROMAGNETISM 1 INSTRUCTIONS TO CANDIDATES Answer ALL questions in this paper in the spaces provided. 1 1. Fran has a balancing game.

More information

Introduction: Electromagnetism:

Introduction: Electromagnetism: This model of both an AC and DC electric motor is easy to assemble and disassemble. The model can also be used to demonstrate both permanent and electromagnetic motors. Everything comes packed in its own

More information

Student book answers Chapter 1

Student book answers Chapter 1 Physics P2 Unit Opener Picture Puzzler: Key Words Picture Puzzler: Close up Everest, newtonmeter, Earth, remote, gear, yellow The key word is energy. copper wires P2 1.1 Charging up In-text A positive,

More information

Electricity and Magnetism Module 2 Student Guide

Electricity and Magnetism Module 2 Student Guide Concepts of this Module Introducing current and voltage Simple circuits Circuit diagrams Background Electricity and Magnetism Module 2 Student Guide When water flows through a garden hose, we can characterize

More information

Construction Set: Smart Grid System

Construction Set: Smart Grid System Construction Set: Smart Grid System Curriculum for Grades 3-5 Student Edition Center for Mathematics, Science, and Technology Illinois State University 2017 www.smartgridforschools.org Look around your

More information

Electricity concepts teacher backgrounder

Electricity concepts teacher backgrounder Electricity concepts teacher backgrounder What is electricity, where does it come from and what do we use it for? Scientifically, electricity is the movement of electrons from one atom to another. This

More information

Name Date Period. MATERIALS: Light bulb Battery Wires (2) Light socket Switch Penny

Name Date Period. MATERIALS: Light bulb Battery Wires (2) Light socket Switch Penny Name Date Period Lab: Electricity and Circuits CHAPTER 34: CURRENT ELECTRICITY BACKGROUND: Just as water is the flow of H 2 O molecules, electric current is the flow of charged particles. In circuits of

More information