(VTOL) Propulsion Systems Design

Size: px
Start display at page:

Download "(VTOL) Propulsion Systems Design"

Transcription

1 72-GT-73 $3.00 PER COPY $1.00 TO ASME MEMBERS The Society shall not be responsible for statements or opinions advanced in papers or in discussion at meetings of the Society or of its Divisions or Sections, or printed in its publications. Discussion is printed only if the paper is published in an ASME journal or Proceedings. Released for general publication upon presentation. Full credit should be given to ASME, the Professional Division, and the author (s). Copyright 1972 by ASME Military Vertical Takeoff and Landing (VTOL) Propulsion Systems Design A. 0. KOHN Manager Advanced Military Combat Systems, General Electric Co., Aircraft Engine Group, Cincinnati, Ohio Mem. ASME This paper deals with the parameters that must be considered in the selection and design of propulsion systems for military VTOL aircraft. Some of these parameters, for instance lightweight, are applicable to engines for all types of aircraft. For the VTOL aircraft, special emphasis must be placed on many of these parameters since aircraft takeoff gross weight determines engine size. Other significant considerations in the selection of the propulsion system include: (a) the ratio of subsonic cruise thrust to maximum thrust; and, (b) exhaust downwash characteristics. Consideration (a) is important because, in the case where no auxiliary lift engines or devices are used, subsonic cruise thrust is about 25 to 30 percent maximum, and at this low power setting, specific fuel consumption is increasing rapidly. Exhaust downwash characteristics are significant because of the variety of landing and takeoff sites likely to be encountered (i.e., shipboard or unprepared fields). Contributed by the Gas Turbine Division of the American Society of Mechanical Engineers for presentation at the Gas Turbine and Fluids Engineering Conference & Products Show, San Francisco, Calif., March 26-30, Manuscript received at ASME Headquarters, December 28, Copies will he available until January 1, THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS, UNITED ENGINEERING CENTER, 345 EAST 47th STREET, NEW YORK, N.Y

2 Military Vertical Takeoff and Landing (VTOL) Propulsion Systems Design A. 0. KOHN INTRODUCTION Several new combat aircraft being studied by the Armed Forces have, in addition to stringent range/payload requirements, the requirement that they be capable of vertical (or very short) takeoff and landing (VTOL). To achieve these requirements and simultaneously yield a superior combat aircraft means that more creative and innovative approaches must be used in the selection and design of the propulsion system and that engine technology programs must be expanded and continued to yield components which meet these aircraft system requirements. The specific engine selection is a function of the type of propulsion system utilized. Many propulsion systems are being studied by the Armed Forces and industry; those that seem to be getting the most attention are: 1 Single-engine vectored cruise 2 Lift/cruise engine (single or twin) with or without direct lift engines 3 Cruise engine (single or twin) and lift fans 4 Conventional turbojet or turbofan a in a tilt pod b in a "tailsitter" or "nose hanger" aircraft. PROPULSION SYSTEMS A possible vectored cruise engine is shown in Fig. 1. This engine is configured in a "fourposter" arrangement, having separate fan and core exhausts with two vectorable nozzles on each. This type of engine is used on the Harrier aircraft. A possible lift-cruise engine is shown in Fig. 2. The exhaust system incorporates the thrust vectoring feature and lends itself to either a dry or augmented design. This engine, either single or in a twin configuration, together with one or more direct lift engines, comprises the "composite propulsion system." An example of a cruise engine-lift fan system is shown in Fig. 3. Two cruise engines could be utilized; the fans could be installed one in each wing, plus a third forward in the aircraft fuselage for pitch control. This system is employed in the XV-5A aircraft, Fig. 3(a). The tilt-pod arrangement is used in the VJ1 1 1, a West German experimental VTOL aircraft, Fig. 3(b). 1 An example of the "tailsitter" or "nose hanger" is illustrated in Fig. 3(c), which is a photograph of the Ryan X13 aircraft. Many variations on these configurations and other completely different systems for obtaining vertical or lift thrust and cruise thrust 1 Report "VTOL-Versuchsflugzeug VJ101X1 Entwicklungsring B61kow-Heinkel-Messerschmitt, May '1- Fig. 1 Vectored cruise engine Fig. 2 Lift-cruise engine 2

3 PITCH GAS DUCT GAS GENERATOR AUGMENTOR RUISE NOZZLE Fig. 3 Cruise engine/lift fan system Fig. 3b Fig. 3a are being investigated. The choice of the propulsion system to be used will result from system and design studies and probably aircraft prototype test programs. Fig. 3c ENGINE DESIGN CONSIDERATIONS VTOL 'aircraft propulsion systems must develop lift thrust in excess of aircraft takeoff gross weight. As a result, the engines tend to be large with respect to conventional subsonic cruise thrust requirements. High thrust capability is also a necessity for air-to-air combat maneuverability and rapid acceleration, but, for maximum range and payload, good fuel consumption at cruise thrust is mandatory. Some of the means for obtaining low propulsion system weight and a good match between takeoff thrust and cruise thrust are discussed in the following. COMPOSITE MATERIALS Graphite reinforced epoxy materials and aluminum boron composites are being investigated for lightweight engines. Composite materials are especially useful in the front of the engine, whether it be turbojet or turbofan. Specific areas of the engine that can use these materials to advantage are the first several compression stages, including the blades and vanes and possibly the inlet frame and compressor (or fan) casing. The additional use of composites in gear box casings and other selected components also results in additional weight savings that in 3

4 1.3 SFC/SFC AT MAX DRY THRUST DRY ENGINE STANDARD DAY FT ALTITUDE 0.9 MACH NO. AUGMENTED ENGINE DRY ENGINE THRUST/MAX DRY THRUST DRY ENGINE Fig. 4 Part power matching characteristics dry engine and augmented engine 80 THRUST/POUND OF AIRFLOW 06/16/sec) MIXED FLOW AUG. T/F 120 OVERALL P/P = ,ZE.:1ANT BLEED \ _......,...'"-"e..'... CONSTANT TURBINE OH /-... DIRECT LIFT T/J ---', OVERALL P/P= POSTER T/P 1- FAN P/P=4 0 OVERALL P/P= /50 THRUST SPLIT 5%CDP BLEED SEA LEVEL STATIC STANDARD DAY II t TURBINE INLET TOTAL TEMPERATURE T4 x 10.2 ZERO BLEED Fig. 5 Effect of turbine inlet temperature on thrust per pound of airflow total could achieve a por,intial reduction of 15 percent in engine weight (excluding the exhaust system) over current materials. The choice of material is dependent on the supersonic flight speed capability required. For example, supersonic speed at sea level may rule out composite materials due to stress levels at operating temperatures. Speeds on the order of Mach 2 at altitude rule out the graphite epoxies, which are, to date, the lightest materials being widely investigated. WATER INJECTION Water injection is a low risk, inexpensive way to obtain a significant increase in takeoff thrust and improve the match with cruise thrust. For example, a typical fan engine with water equivalent to 3 percent of the core airflow injected at the core compressor inlet can increase thrust up to 10 percent. The weight for the water tankage and pumps, plus the added weight of the rotor due to the overspeed required to maintain cycle temperature, is equivalent to augmenting the thrust at a thrust-to-weight ratio of more than 30:1. This compares to basic engine thrust-to-weight ratios of the order of 7:10 for current lift-cruise engines. The availability of a water-injection system has another advantage for engines that use air cooling in the turbine blading. A portion of the water can be used to cool the cooling air during the maximum thrust-maximum temperature conditions at takeoff. This reduces the amount of cooling air extracted from the cycle and enables the engine to achieve better cruise performance at part power (where gas temperatures are reduced). AUGMENTATION Additional combustion in the fan exhaust or the mixed exhaust system is another powerful method of reducing engine size for a given thrust and allows a better match to be achieved between engine takeoff requirements and subsonic cruise requirements. This technique is used in a large number of combat aircraft engines. For VTOL aircraft, the challenge is to combine exhaust augmentation with thrust vectoring. Singleengine vectored cruise configurations, comparing dry and augmented engines sized for the same sea level static thrust, are shown in Fig. 4. The flight condition is 0.9 Mach number at 36,089- ft altitude. The augmented engine has higher dry losses due to the presence of the augmentor but, at low thrust settings, has a considerably better specific fuel consumption because it is basically operating at more optimum conditions. Similar results are obtained from mixed exhaust engines. TURBINE INLET TEMPERATURES Increasing turbine temperature increases the thrust per pound of airflow, allowing the engine size to decrease. Reduced airflow and decreased engine size also reduces installed performance losses. Fig. 5 shows the effect of turbine temperature on several types of engines, including a turbojet, mixed flow augmented turbofan, and a separated flow vectored cruise engine. Note that for an increase from 2500 to 3000 F, the specific thrust increases by about 15 percent for the vectored cruise engine, 13 percent for the turbojet, and nearly 25 percent for the mixed 4

5 SFC/SFC AT MAX. THRUST \ I 11116i. EL. 14% T4=3000 F THRUST/MAX THRUST F STANDARD DAY 36,089 FT. ALTITUDE 0.9 MACH NO Fig. 6 Effect of turbine inlet temperature on altitude cruise performance dry vectored cruise engine (4 poster) flow augmented turbofan. Of course, it is necessary to change the engine cycle to take maximum advantage of increasing the temperature. In the example shown for the mixed flow augmented turbofan, the turbine work is held constant. The bypass ratio is also reduced to prevent the core size from shrinking to unacceptable dimensions in this case, since one of the fixed parameters is thrust. The cycle parameters that are held constant for each of the engines considered are indicated. The effect of turbine inlet temperature on altitude cruise performance is shown in Fig. 6. Both engines shown have similar cycle designs in terms of bypass ratio and component performance. The higher temperature engine has a higher cycle pressure ratio which is more optimum for the higher turbine temperature. Note the difference in respective SFC's at about 30 percent of maximum dry thrust. At maximum thrust, both engines have close to the same SFC. Below 50 percent thrust, the higher temperature engine has SFC's that are 7 to 10 percent lower. STAGE LOADING OF TURBOMACHINERY One of the objectives in the design of any engine is to obtain the lowest cost configuration consistent with the mission requirements. Reducing the number of stages of turbomachinery helps achieve this objective. Advances in materials which permit higher design stresses allow higher wheel speeds. Advances in aerodynamics which allow higher blade loading, combined with higher wheel speeds, have, in the past ten years, dramatically reduced the number of compressor stages required to achieve a given pressure ratio. For example, the J79 engine, and the more recently developed engine proposed for the SST, both have about the same design pres- ADVANCED BYPASS TURBOJET J79 38 Fig. 7 Comparison of advanced bypass turbojet engine with J79 sure ratio, but the SST turbojet demonstrated in nine stages the pressure ratio, efficiency, and stall margin obtained by the J79 with 17 stages. In turbines, especially high-temperature turbines that require internal cooling passages, the potential payoffs are even more dramatic. 1 Higher loading requires more camber, resulting in thicker blades and hence more room to efficiently install cooling passages and increase cooling effectiveness. 2 The first stages of highly loaded turbines have lower gas temperatures relative to the rotating blades, thereby reducing the required cooling air per stage. 3 Reducing the number of turbine stages reduces the cooling air requirements and allows a significant cost decrease for the engine. Reducing the number of stages of turbomachinery usually reduces engine weight. Although the rotating parts and stator vanes do not necessarily decrease in weight, the usually decreased length of the engine reduces the length of casing and possibly the number of bearings and supporting frames. Fig. 7 illustrates this by comparing an advanced turbojet engine with the J79. Both engines have essentially the same dry thrust rating, but the newer engine is about half the weight of the J79. The other consideration of stage loading on cooled turbines is performance. Data shows that as loading is increased, efficiency is reduced. However, the required cooling flow is also reduced, thereby introducing an offsetting effect. At turbine inlet temperatures of about 2400 F, single- or two-stage turbines have about the same overall system performance. At higher temperatures, the single-stage turbine begins to show some performance advantage. Table 1 shows a comparison between a singleand two-stage turbine designed for the same conditions. The cooling flow for the single-stage turbine is approximately 50 percent of that of the two-stage. Engine cycle data indicates that 5

6 Table 1 Comparison Single- and Two-Stage Engine Turbines (Typical) Core TWO STAGE SINGLE STAGE INLET TEMP. F COOLANT TEMP. F RELATIVE GAS TEMP. - PITCH - STAGE 1 BLADE COOLING FLOW _ PERCENT - STAGE 1 BLADE STAGE 2 NOZZLE PEAK TEMP., GAS 2510 COOLING FLOW - PERCENT 2.7 STAGE 2 BLADE RELATIVE GAS TEMP COOLING FLOW - PERCENT 1.4 PURGE FLOW - PERCENT TOTAL COOLING FLOW - PERCENT TURBINE EFFICIENCY - PERCENT REQ'D. 0 DOWNSTREAM OF FIRST STAGE NOZZLE Table 2 Typical Exhaust Gas Conditions for VTOL Engines Sea Level Static Standard Day ENGINE FAN EXHAUST CORE EXHAUST VELOCITY TEMP. VELOCITY TEMP. CURRENT ENGINE 1200 FPS 240 o F 1800 FPS 1320 F FORWARD LOOKING ENGINES VECTORED, AUGMENTED VECTORED, DRY AUGMENTED DIRECT LIFT TURBOJET LIFT FAN the single-stage turbine could be as much as three percentage points poorer in efficiency without any effect on overall engine performance. Initial test results show that actual efficiency of the single-stage does indeed meet the require- ment. A map of the performance of the two-stage turbine is shown in Fig. 8. Over the aircraft 6

7 and engine operating range of interest, the turbine parameters do not migrate significantly ffom tne design point; therefore, the contribution of the turbine performance to overall engine performance remains essentially constant, and the tradeoff between cooling flow and efficiency is still realized. VARIABLE GEOMETRY AND COMPRESSOR BLEED This feature is incorporated in the early stages of the compressor to provide stage matching at part speed operation. VTOL aircraft require engine bleed air for aircraft attitude control in the lift mode. For the single-engine vectored cruise configuration, the quantity of air can vary from 8 to 15 percent of the core flow. The composite system (lift-cruise plus direct lift engines) may not require core bleed from the cruise engine if the direct lift engine can supply this air with suitable efficiency and acceptable weight penalties. The lift fan system may not have this problem. Pitch and roll control can be achieved by power transfer among the lift fans, and exit louvres on the fans can provide yaw control. EXHAUST DOWNWASH CHARACTERISTICS Table 2 lists typical exhaust gas temperatures and velocities for several different types of engines. These parameters may be critical to the selection and design of the takeoff and landing sites for VTOL aircraft. Conversely, the use of unprepared fields, the possible close proximity of other aircraft, and equipment during takeoff and landing may impose limits on the engine exhaust conditions. This could have a major impact on the selection of the type of propulsion system. Downwash characteristics may also influence the engine installation design, especially with respect to the inlet type and ALT PT ft MF Fn 111, , K 85 10, K , , ENERGY FUNCTION th/t /( l; 8886 ii r "4 T [ SPEED FUNCTION HVTi Fig. 8 Two-stage, high-pressure turbine (performance at engine off-design conditions) location, so that the ingestion of hot exhaust gas is avoided. CONCLUSIONS Some of the considerations in the design of engines for military VTOL aircraft have been briefly explored and the parameters involved discussed. The selection of the propulsion system is a function of the aircraft system requirements and configuration. By incorporating existing and projected advanced technology propulsion features, high-performance VTOL aircraft engines can be developed to meet a variety of mission requirements. ACKNOWLEDGMENT The author wishes to thank P. C. Setze and P. G. Kappus of the Aircraft Engine Group, General Electric Company, for their many helpful suggestions and criticisms during the preparation of this paper. 7

Engine Performance Analysis

Engine Performance Analysis Engine Performance Analysis Introduction The basics of engine performance analysis The parameters and tools used in engine performance analysis Introduction Parametric cycle analysis: Independently selected

More information

Welcome to Aerospace Engineering

Welcome to Aerospace Engineering Welcome to Aerospace Engineering DESIGN-CENTERED INTRODUCTION TO AEROSPACE ENGINEERING Notes 5 Topics 1. Course Organization 2. Today's Dreams in Various Speed Ranges 3. Designing a Flight Vehicle: Route

More information

In this lecture... Fixed and variable geometry nozzles Functions of nozzles Thrust vector control Thrust reversal Noise control

In this lecture... Fixed and variable geometry nozzles Functions of nozzles Thrust vector control Thrust reversal Noise control 1 In this lecture... Nozzle: Fixed and variable geometry nozzles Functions of nozzles Thrust vector control Thrust reversal Noise control 2 Exhaust nozzles Nozzles form the exhaust system of gas turbine

More information

ia 451s, 10-y (12) Patent Application Publication (10) Pub. No.: US 2003/ A1 (19) United States Johnson et al. (43) Pub. Date: Feb.

ia 451s, 10-y (12) Patent Application Publication (10) Pub. No.: US 2003/ A1 (19) United States Johnson et al. (43) Pub. Date: Feb. (19) United States US 2003OO29160A1 (12) Patent Application Publication (10) Pub. No.: US 2003/0029160 A1 Johnson et al. (43) Pub. Date: Feb. 13, 2003 (54) COMBINED CYCLE PULSE DETONATION TURBINE ENGINE

More information

Chapter 4 Lecture 16. Engine characteristics 4. Topics. Chapter IV

Chapter 4 Lecture 16. Engine characteristics 4. Topics. Chapter IV Chapter 4 Lecture 16 Engine characteristics 4 Topics 4.3.3 Characteristics of a typical turboprop engine 4.3.4 Characteristics of a typical turbofan engine 4.3.5 Characteristics of a typical turbojet engines

More information

Design and Test of Transonic Compressor Rotor with Tandem Cascade

Design and Test of Transonic Compressor Rotor with Tandem Cascade Proceedings of the International Gas Turbine Congress 2003 Tokyo November 2-7, 2003 IGTC2003Tokyo TS-108 Design and Test of Transonic Compressor Rotor with Tandem Cascade Yusuke SAKAI, Akinori MATSUOKA,

More information

Electric Drive - Magnetic Suspension Rotorcraft Technologies

Electric Drive - Magnetic Suspension Rotorcraft Technologies Electric Drive - Suspension Rotorcraft Technologies William Nunnally Chief Scientist SunLase, Inc. Sapulpa, OK 74066-6032 wcn.sunlase@gmail.com ABSTRACT The recent advances in electromagnetic technologies

More information

FLUIDIC THRUST VECTORING NOZZLES

FLUIDIC THRUST VECTORING NOZZLES FLUIDIC THRUST VECTORING NOZZLES J.J. Isaac and C. Rajashekar Propulsion Division National Aerospace Laboratories (Council of Scientific & Industrial Research) Bangalore 560017, India April 2014 SUMMARY

More information

AERONAUTICAL ENGINEERING

AERONAUTICAL ENGINEERING AERONAUTICAL ENGINEERING SHIBIN MOHAMED Asst. Professor Dept. of Mechanical Engineering Al Ameen Engineering College Al- Ameen Engg. College 1 Aerodynamics-Basics These fundamental basics first must be

More information

Chapter 4 Estimation of wing loading and thrust loading - 10 Lecture 18 Topics

Chapter 4 Estimation of wing loading and thrust loading - 10 Lecture 18 Topics Chapter 4 Estimation of wing loading and thrust loading - 10 Lecture 18 Topics 4.15.3 Characteristics of a typical turboprop engine 4.15.4 Characteristics of a typical turbofan engine 4.15.5 Characteristics

More information

Economic Impact of Derated Climb on Large Commercial Engines

Economic Impact of Derated Climb on Large Commercial Engines Economic Impact of Derated Climb on Large Commercial Engines Article 8 Rick Donaldson, Dan Fischer, John Gough, Mike Rysz GE This article is presented as part of the 2007 Boeing Performance and Flight

More information

TCDS NUMBER E00078NE U.S. DEPARTMENT OF TRANSPORTATION REVISION: 3 DATE: April 12, 2011

TCDS NUMBER E00078NE U.S. DEPARTMENT OF TRANSPORTATION REVISION: 3 DATE: April 12, 2011 TCDS NUMBER E00078NE U.S. DEPARTMENT OF TRANSPORTATION REVISION: 3 DATE: April 12, 2011 FEDERAL AVIATION ADMINISTRATION GENERAL ELECTRIC COMPANY MODELS: TYPE CERTIFICATE DATA SHEET E00078NE GEnx-1B54 GEnx-1B58

More information

Designing evtol for the Mission NDARC NASA Design and Analysis of Rotorcraft. Wayne Johnson From VTOL to evtol Workshop May 24, 2018

Designing evtol for the Mission NDARC NASA Design and Analysis of Rotorcraft. Wayne Johnson From VTOL to evtol Workshop May 24, 2018 Designing evtol for the Mission NDARC NASA Design and Analysis of Rotorcraft Wayne Johnson From VTOL to evtol Workshop May 24, 2018 1 Conceptual Design of evtol Aircraft Conceptual design Define aircraft

More information

Introduction to Gas Turbine Engines

Introduction to Gas Turbine Engines Introduction to Gas Turbine Engines Introduction Gas Turbine Engine - Configurations Gas Turbine Engine Gas Generator Compressor is driven by the turbine through an interconnecting shaft Turbine is driven

More information

Prof. João Melo de Sousa Instituto Superior Técnico Aerospace & Applied Mechanics. Part B Acoustic Emissions 4 Airplane Noise Sources

Prof. João Melo de Sousa Instituto Superior Técnico Aerospace & Applied Mechanics. Part B Acoustic Emissions 4 Airplane Noise Sources Prof. João Melo de Sousa Instituto Superior Técnico Aerospace & Applied Mechanics Part B Acoustic Emissions 4 Airplane Noise Sources The primary source of noise from an airplane is its propulsion system.

More information

AE Aircraft Performance and Flight Mechanics

AE Aircraft Performance and Flight Mechanics AE 429 - Aircraft Performance and Flight Mechanics Propulsion Characteristics Types of Aircraft Propulsion Mechanics Reciprocating engine/propeller Turbojet Turbofan Turboprop Important Characteristics:

More information

SR-71 PROPULSION SYSTEM P&W J58 ENGINE (JT11D-20) ONE OF THE BEST JET ENGINES EVER BUILT

SR-71 PROPULSION SYSTEM P&W J58 ENGINE (JT11D-20) ONE OF THE BEST JET ENGINES EVER BUILT SR-71 PROPULSION SYSTEM P&W J58 ENGINE (JT11D-20) PETER LAW ONE OF THE BEST JET ENGINES EVER BUILT Rolls-Royce Milestone Engines Merlin Conway W2B Welland Derwent Trent SR-71 GENERAL CHARACTERISTICS

More information

DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION TYPE CERTIFICATE DATA SHEET NO. 1E8

DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION TYPE CERTIFICATE DATA SHEET NO. 1E8 DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION 1E8 Revision 18 PRATT & WHITNEY AIRCRAFT TURBO WASP JT3D-1 JT3D-3 JT3D-1A JT3D-3B JT3D-1-MC6 JT3D-3C JT3D-1A-MC6 JT3D-7 JT3D-1-MC7 JT3D-7A JT3D-1A-MC7

More information

F135 Propulsion Integration Topics for Symposium on Jet Engines Haifa, Israel

F135 Propulsion Integration Topics for Symposium on Jet Engines Haifa, Israel F135 Propulsion Integration Topics for Symposium on Jet Engines Haifa, Israel Tom Johnson Program Chief Engineer Operational Military Engines 25 October 2012 J6924_F135_Propulsion_2012-1 Agenda F135 Development

More information

AIAA Foundation Undergraduate Team Aircraft Design Competition. RFP: Cruise Missile Carrier

AIAA Foundation Undergraduate Team Aircraft Design Competition. RFP: Cruise Missile Carrier AIAA Foundation Undergraduate Team Aircraft Design Competition RFP: Cruise Missile Carrier 1999/2000 AIAA FOUNDATION Undergraduate Team Aircraft Design Competition I. RULES 1. All groups of three to ten

More information

Study on Flow Fields in Variable Area Nozzles for Radial Turbines

Study on Flow Fields in Variable Area Nozzles for Radial Turbines Vol. 4 No. 2 August 27 Study on Fields in Variable Area Nozzles for Radial Turbines TAMAKI Hideaki : Doctor of Engineering, P. E. Jp, Manager, Turbo Machinery Department, Product Development Center, Corporate

More information

Versatile Affordable Advanced Turbine Engines Provide Game Changing Capability with Superior Fuel Efficiency

Versatile Affordable Advanced Turbine Engines Provide Game Changing Capability with Superior Fuel Efficiency Versatile Affordable Advanced Turbine Engines Provide Game Changing Capability with Superior Fuel Efficiency 11 th Annual Science & Engineering Technology Conference/DoD Tech Expo Daniel E Thomson Turbine

More information

APPLICATION OF STAR-CCM+ TO TURBOCHARGER MODELING AT BORGWARNER TURBO SYSTEMS

APPLICATION OF STAR-CCM+ TO TURBOCHARGER MODELING AT BORGWARNER TURBO SYSTEMS APPLICATION OF STAR-CCM+ TO TURBOCHARGER MODELING AT BORGWARNER TURBO SYSTEMS BorgWarner: David Grabowska 9th November 2010 CD-adapco: Dean Palfreyman Bob Reynolds Introduction This presentation will focus

More information

Aircraft Propulsion Technology

Aircraft Propulsion Technology Unit 90: Aircraft Propulsion Technology Unit code: L/601/7249 QCF level: 4 Credit value: 15 Aim This unit aims to develop learners understanding of the principles and laws of aircraft propulsion and their

More information

Reducing Landing Distance

Reducing Landing Distance Reducing Landing Distance I've been wondering about thrust reversers, how many kinds are there and which are the most effective? I am having a debate as to whether airplane engines reverse, or does something

More information

DESIGN AND PERFORMANCE ANALYSIS OF SINGLE INLET MULTIPLE OUTLET JET NOZZLE WITH THRUST VECTOR CONTROL

DESIGN AND PERFORMANCE ANALYSIS OF SINGLE INLET MULTIPLE OUTLET JET NOZZLE WITH THRUST VECTOR CONTROL DESIGN AND PERFORMANCE ANALYSIS OF SINGLE INLET MULTIPLE OUTLET JET NOZZLE WITH THRUST VECTOR CONTROL PV Senthiil 1,VS Mirudhuneka 2, Aakash Shirrushti 3 1 Head, Advance Manufacturing Technology, Mechanical

More information

Flight Test Evaluation of C-130H Aircraft Performance with NP2000 Propellers

Flight Test Evaluation of C-130H Aircraft Performance with NP2000 Propellers Flight Test Evaluation of C-130H Aircraft Performance with NP2000 Propellers Lance Bays Lockheed Martin - C-130 Flight Sciences Telephone: (770) 494-8341 E-Mail: lance.bays@lmco.com Introduction Flight

More information

European Aviation Safety Agency

European Aviation Safety Agency European Aviation Safety Agency EASA TYPE CERTIFICATE DATA SHEET Number : IM.E.026 Issue : 03 Date : 04 January 2013 Type : Engine Alliance LLC GP7200 series engines Variants: GP7270 GP7277 List of Effective

More information

ENGINE STARTING PERFORMANCE EVALUATION AT STATIC STATE CONDITIONS USING SUPERSONIC AIR INTAKE

ENGINE STARTING PERFORMANCE EVALUATION AT STATIC STATE CONDITIONS USING SUPERSONIC AIR INTAKE 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES STARTING PERFORMANCE EVALUATION AT STATIC STATE CONDITIONS USING SUPERSONIC AIR INTAKE Author1* Takashi Nishikido Author2* Iwao Murata Author3**

More information

General Dynamics F-16 Fighting Falcon

General Dynamics F-16 Fighting Falcon General Dynamics F-16 Fighting Falcon http://www.globalsecurity.org/military/systems/aircraft/images/f-16c-19990601-f-0073c-007.jpg Adam Entsminger David Gallagher Will Graf AOE 4124 4/21/04 1 Outline

More information

1. Aero-Science B.Sc. Aero Science-I Total Mark: 100 Appendix A (Outlines of Tests) Aero-Engines : 100 Marks

1. Aero-Science B.Sc. Aero Science-I Total Mark: 100 Appendix A (Outlines of Tests) Aero-Engines : 100 Marks 1. Aero-Science B.Sc. Aero Science-I Total Mark: 100 Appendix A (Outlines of Tests) Aero-Engines : 100 Marks Note:- The questions will be set in each paper. Candidates are to attempt any five except in

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Lecture No. # 04 Turbojet, Reheat Turbojet and Multi-Spool Engines

More information

STUDY OF INFLUENCE OF ENGINE CONTROL LAWS ON TAKEOFF PERFORMANCES AND NOISE AT CONCEPTUAL DESIGN OF SSBJ PROPULSION SYSTEM

STUDY OF INFLUENCE OF ENGINE CONTROL LAWS ON TAKEOFF PERFORMANCES AND NOISE AT CONCEPTUAL DESIGN OF SSBJ PROPULSION SYSTEM 7 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES STUDY OF INFLUENCE OF ENGINE CONTROL LAWS ON TAKEOFF PERFORMANCES AND NOISE AT CONCEPTUAL DESIGN OF SSBJ PROPULSION SYSTEM Pavel A. Ryabov Central

More information

AE 452 Aeronautical Engineering Design II Installed Engine Performance. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering March 2016

AE 452 Aeronautical Engineering Design II Installed Engine Performance. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering March 2016 AE 452 Aeronautical Engineering Design II Installed Engine Performance Prof. Dr. Serkan Özgen Dept. Aerospace Engineering March 2016 Propulsion 2 Propulsion F = ma = m V = ρv o S V V o ; thrust, P t =

More information

AE 451 Aeronautical Engineering Design I Propulsion and Fuel System Integration. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017

AE 451 Aeronautical Engineering Design I Propulsion and Fuel System Integration. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017 AE 451 Aeronautical Engineering Design I Propulsion and Fuel System Integration Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017 Propulsion system options 2 Propulsion system options 3

More information

Corso di Motori Aeronautici

Corso di Motori Aeronautici Corso di Motori Aeronautici Mauro Valorani Laurea Magistrale in Ingegneria Aeronautica (MAER) Sapienza, Università di Roma Anno Accademico 2011-12 Sett. 13: Conclusioni 1 FP7 Aero Engine Scenario ERS Strategy

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN BY B.MADHAN KUMAR

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN BY B.MADHAN KUMAR International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 485 FLYING HOVER BIKE, A SMALL AERIAL VEHICLE FOR COMMERCIAL OR. SURVEYING PURPOSES BY B.MADHAN KUMAR Department

More information

In this lecture... Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

In this lecture... Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay 1 In this lecture... Intakes for powerplant Transport aircraft Military aircraft 2 Intakes Air intakes form the first component of all air breathing propulsion systems. The word Intake is normally used

More information

TYPE CERTIFICATE DATA SHEET

TYPE CERTIFICATE DATA SHEET TYPE CERTIFICATE DATA SHEET For Models: No. IM.E.102 for Engine GEnx Series Engines Type Certificate Holder GE Aviation One Neumann Way Cincinnati Ohio 45215 United States of America GEnx 1B GEnx 2B GEnx

More information

Introduction to Aerospace Propulsion

Introduction to Aerospace Propulsion Introduction to Aerospace Propulsion Introduction Newton s 3 rd Law of Motion as the cornerstone of propulsion Different types of aerospace propulsion systems Development of jet engines Newton s Third

More information

INVESTIGATION OF ICING EFFECTS ON AERODYNAMIC CHARACTERISTICS OF AIRCRAFT AT TSAGI

INVESTIGATION OF ICING EFFECTS ON AERODYNAMIC CHARACTERISTICS OF AIRCRAFT AT TSAGI INVESTIGATION OF ICING EFFECTS ON AERODYNAMIC CHARACTERISTICS OF AIRCRAFT AT TSAGI Andreev G.T., Bogatyrev V.V. Central AeroHydrodynamic Institute (TsAGI) Abstract Investigation of icing effects on aerodynamic

More information

State Legislation, Regulation or Document Reference. Civil Aviation Rule (CAR) ; Civil Aviation Rules (CAR) Part 21. Appendix C.

State Legislation, Regulation or Document Reference. Civil Aviation Rule (CAR) ; Civil Aviation Rules (CAR) Part 21. Appendix C. Annex or Recommended Practice Definition INTERNATIONAL STANDARDS AND RECOMMENDED PRACTICES PART I. DEFINITIONS AND SYMBOLS Civil Aviation Rule (CAR) 91.807; Civil Aviation Rules (CAR) Part 21 The s of

More information

SILENT SUPERSONIC TECHNOLOGY DEMONSTRATION PROGRAM

SILENT SUPERSONIC TECHNOLOGY DEMONSTRATION PROGRAM 25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES SILENT SUPERSONIC TECHNOLOGY DEMONSTRATION PROGRAM Akira Murakami* *Japan Aerospace Exploration Agency Keywords: Supersonic, Flight experiment,

More information

Hydraulic Starting of Marine Gas Turbine Engines

Hydraulic Starting of Marine Gas Turbine Engines 68-GT-29 The Society shall not be responsible for statements or opinions advanced in papers or in discussion at meetings of the Society or of its Divisions or Sections, or printed in its publications.

More information

CFM REGULATION THE POWER OF FLIGHT

CFM REGULATION THE POWER OF FLIGHT CFM56-3 3 REGULATION 1 CFM56-3 2 Speed Governing System Fuel Limiting System VBV VSV N1 Vs P Idling System HPTCCV N1 Vs Z N1 Vs T Main Tasks Additional Tasks Corrections MEC PMC CFM 56-3 ENGINE OPERATIONAL

More information

NASA/GE FAN AND COMPRESSOR RESEARCH ACCOMPLISHMENTS

NASA/GE FAN AND COMPRESSOR RESEARCH ACCOMPLISHMENTS THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 345 E. 47th St., New York, N.Y. 10017 C The Society shall not be responsible for statements or opinions advanced in r^ papers or discussion at meetings of the

More information

On-Demand Mobility Electric Propulsion Roadmap

On-Demand Mobility Electric Propulsion Roadmap On-Demand Mobility Electric Propulsion Roadmap Mark Moore, ODM Senior Advisor NASA Langley Research Center EAA AirVenture, Oshkosh July 22, 2015 NASA Distributed Electric Propulsion Research Rapid, early

More information

European Aviation Safety Agency

European Aviation Safety Agency European Aviation Safety Agency EASA TYPE-CERTIFICATE DATA SHEET Number : IM.E.043 Issue : 02 Date : 07 January 2013 Type : Pratt & Whitney PW4000-100 Series Engines Variants PW4164 PW4164C PW4164C/B PW4164-1D

More information

TYPE-CERTIFICATE DATA SHEET

TYPE-CERTIFICATE DATA SHEET TYPE-CERTIFICATE DATA SHEET For Models: No. IM.E.102 for Engine GEnx Series Engines Type Certificate Holder GE Aviation One Neumann Way Cincinnati - Ohio 45215 United States of America GEnx-1B GEnx-2B

More information

Noise Control of Marine Gas Turbines in Propulsion and Auxiliary Power Applications

Noise Control of Marine Gas Turbines in Propulsion and Auxiliary Power Applications 74-GT-110 Copyright 1974 by ASME $3.00 PER COPY The Society shall not be responsible for statements or opinions advanced in papers or in discussion at meetings of the Society or of its Divisions or Sections,

More information

FLEXIBLE, FAST AND HIGH FIDELITY APPROACH TO GTU PART-LOAD AND OFF-DESIGN PERFORMANCE PREDICTIONS

FLEXIBLE, FAST AND HIGH FIDELITY APPROACH TO GTU PART-LOAD AND OFF-DESIGN PERFORMANCE PREDICTIONS TETS 2018, Dayton Convention Center, Dayton, Ohio, Sept. 10-13, 2018 FLEXIBLE, FAST AND HIGH FIDELITY APPROACH TO GTU PART-LOAD AND OFF-DESIGN PERFORMANCE PREDICTIONS Presenter: Co-Authors: Company: Dr.

More information

THE EFFECT OF BLADE LEAN ON AN AXIAL TURBINE STATOR FLOW HAVING VARIOUS HUB TIP RATIOS. Dr. Edward M Bennett

THE EFFECT OF BLADE LEAN ON AN AXIAL TURBINE STATOR FLOW HAVING VARIOUS HUB TIP RATIOS. Dr. Edward M Bennett THE EFFECT OF BLADE LEAN ON AN AXIAL TURBINE STATOR FLOW HAVING VARIOUS HUB TIP RATIOS Dr. Edward M Bennett ABSTRACT The effect of simple lean on an axial turbine stator was examined using a threedimensional

More information

European Aviation Safety Agency

European Aviation Safety Agency European Aviation Safety Agency EASA TYPE CERTIFICATE DATA SHEET Number: IM.E.021 Issue: 05 Date: 03 January 2013 Type: General Electric Company CF34-10E Series Engines Variants CF34-10E2A1 CF34-10E5 CF34-10E5A1

More information

The Aircraft Engine Design Project Fundamentals of Engine Cycles

The Aircraft Engine Design Project Fundamentals of Engine Cycles GE Aviation The Aircraft Engine Design Project Fundamentals of Engine Cycles 1 Spring 2008 Peter Rock Earl Will DeShazer Ken Gould GE Aviation Technical History I-A - First U.S. jet engine (Developed in

More information

Propeller Blade Bearings for Aircraft Open Rotor Engine

Propeller Blade Bearings for Aircraft Open Rotor Engine NTN TECHNICAL REVIEW No.84(2016) [ New Product ] Guillaume LEFORT* The Propeller Blade Bearings for Open Rotor Engine SAGE2 were developed by NTN-SNR in the frame of the Clean Sky aerospace programme.

More information

European Aviation Safety Agency

European Aviation Safety Agency European Aviation Safety Agency EASA TYPE-CERTIFICATE DATA SHEET Number : IM.E.016 Issue : 07 Date : 21 May 2014 Type : Williams International Co. FJ44 Series Engines s FJ44-1A FJ44-1AP FJ44-2A FJ44-2C

More information

AUTOMATED SELECTION OF THE MATERIAL A FAN BLADE PS-90A

AUTOMATED SELECTION OF THE MATERIAL A FAN BLADE PS-90A AUTOMATED SELECTION OF THE MATERIAL A FAN BLADE PS-90A D. A. Akhmedzyanov, A. E. Kishalov, K. V. Markina USATU Ufa State Aviation Technical University, Russia Keywords: GTE, fan blade, composite material,

More information

Making Turbofan Engines More Energy Efficient

Making Turbofan Engines More Energy Efficient 78-GT-198 Copyright 1978 by ASME $3.00 PER COPY $1.50 TO ASME MEMBERS 1 00 I The Society shall not be responsible for statements or opinions advanced in papers or in discussion at meetings of the Society

More information

EXPERIMENTAL INVESTIGATION OF THE FLOWFIELD OF DUCT FLOW WITH AN INCLINED JET INJECTION DIFFERENCE BETWEEN FLOWFIELDS WITH AND WITHOUT A GUIDE VANE

EXPERIMENTAL INVESTIGATION OF THE FLOWFIELD OF DUCT FLOW WITH AN INCLINED JET INJECTION DIFFERENCE BETWEEN FLOWFIELDS WITH AND WITHOUT A GUIDE VANE Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference July 8-23, 999, San Francisco, California FEDSM99-694 EXPERIMENTAL INVESTIGATION OF THE FLOWFIELD OF DUCT FLOW WITH AN INCLINED JET

More information

DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION

DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION E4WE Revision 34 HONEYWELL (AlliedSignal, Garrett, AiResearch) TPE331-3 TPE331-8 TPE331-10N TPE331-11U TPE331-3U TPE331-8A TPE331-10P TPE331-11UA

More information

Design Considerations for Stability: Civil Aircraft

Design Considerations for Stability: Civil Aircraft Design Considerations for Stability: Civil Aircraft From the discussion on aircraft behavior in a small disturbance, it is clear that both aircraft geometry and mass distribution are important in the design

More information

Metrovick F2/4 Beryl. Turbo-Union RB199

Metrovick F2/4 Beryl. Turbo-Union RB199 Turbo-Union RB199 Metrovick F2/4 Beryl Development of the F2, the first British axial flow turbo-jet, began in f 940. After initial flight trials in the tail of an Avro Lancaster, two F2s were installed

More information

TYPE-CERTIFICATE DATA SHEET

TYPE-CERTIFICATE DATA SHEET TYPE-CERTIFICATE DATA SHEET No. E.062 for Type Certificate Holder Rolls-Royce plc 62 Buckingham Gate London SW1E 6AT United Kingdom For Models: RB211-22B-02, RB211-524-02, RB211-524B-02, RB211-524B-B-02,

More information

Classical Aircraft Sizing I

Classical Aircraft Sizing I Classical Aircraft Sizing I W. H. Mason from Sandusky, Northrop slide 1 Which is 1 st? You need to have a concept in mind to start The concept will be reflected in the sizing by the choice of a few key

More information

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

INDIAN INSTITUTE OF TECHNOLOGY KANPUR INDIAN INSTITUTE OF TECHNOLOGY KANPUR INDIAN INSTITUTE OF TECHNOLOGY KANPUR Removable, Low Noise, High Speed Tip Shape Tractor Configuration, Cant angle, Low Maintainence Hingelesss, Good Manoeuverability,

More information

Chapter 10 Parametric Studies

Chapter 10 Parametric Studies Chapter 10 Parametric Studies 10.1. Introduction The emergence of the next-generation high-capacity commercial transports [51 and 52] provides an excellent opportunity to demonstrate the capability of

More information

TURBOPROP ENGINE App. K AIAA AIRCRAFT ENGINE DESIGN

TURBOPROP ENGINE App. K AIAA AIRCRAFT ENGINE DESIGN CORSO DI LAUREA SPECIALISTICA IN Ingegneria Aerospaziale PROPULSIONE AEROSPAZIALE I TURBOPROP ENGINE App. K AIAA AIRCRAFT ENGINE DESIGN www.amazon.com LA DISPENSA E E DISPONIBILE SU http://www.ingindustriale.unisalento.it/didattica/

More information

Design Rules and Issues with Respect to Rocket Based Combined Cycles

Design Rules and Issues with Respect to Rocket Based Combined Cycles Respect to Rocket Based Combined Cycles Tetsuo HIRAIWA hiraiwa.tetsuo@jaxa.jp ABSTRACT JAXA Kakuda space center has been studying rocket based combined cycle engine for the future space transportation

More information

BAYLOR UNIVERSITY DEPARTMENT OF ENGINEERING. EGR 4347 Analysis and Design of Propulsion Systems Fall 2002 ASSIGNMENT GUIDELINES

BAYLOR UNIVERSITY DEPARTMENT OF ENGINEERING. EGR 4347 Analysis and Design of Propulsion Systems Fall 2002 ASSIGNMENT GUIDELINES BAYLOR UNIVERSITY DEPARTMENT OF ENGINEERING EGR 4347 Analysis and Design of Propulsion Systems Fall 2002 Design Project I Dr Van Treuren 100 points ASSIGNMENT GUIDELINES For this assignment, you may work

More information

Development of Large Scale Recuperator for Gas Turbine

Development of Large Scale Recuperator for Gas Turbine Proceedings of the International Gas Turbine Congress 23 Tokyo November 2-7, 23 IGTC23Tokyo TS-112 Development of Large Scale Recuperator for Gas Turbine Ryo AKIYOSHI 1, Kiwamu IMAI 2, Tatsuya SIODA 3,

More information

NASA centers team up to tackle sonic boom 18 March 2014, by Frank Jennings, Jr.

NASA centers team up to tackle sonic boom 18 March 2014, by Frank Jennings, Jr. NASA centers team up to tackle sonic boom 18 March 2014, by Frank Jennings, Jr. This rendering shows the Lockheed Martin future supersonic advanced concept featuring two engines under the wings and one

More information

NEWAC Overall Specification, Assessment and Concept Optimization

NEWAC Overall Specification, Assessment and Concept Optimization NEWAC Overall Specification, Assessment and Concept Optimization Andrew Rolt, Rolls-Royce plc. with contributions from: Konstantinos Kyprianidis, Cranfield University; Stefan Donnerhack and Wolfgang Sturm,

More information

Aerodynamic Testing of the A400M at ARA. Ian Burns and Bryan Millard

Aerodynamic Testing of the A400M at ARA. Ian Burns and Bryan Millard Aerodynamic Testing of the A400M at ARA by Ian Burns and Bryan Millard Aircraft Research Association Bedford, England Independent non-profit distributing research and development organisation Set up in

More information

ME3264: LAB 9 Gas Turbine Power System

ME3264: LAB 9 Gas Turbine Power System OBJECTIVE ME3264: LAB 9 Gas Turbine Power System Professor Chih-Jen Sung Spring 2013 A fully integrated jet propulsion system will be used for the study of thermodynamic and operating principles of gas

More information

Development of a High Efficiency Induction Motor and the Estimation of Energy Conservation Effect

Development of a High Efficiency Induction Motor and the Estimation of Energy Conservation Effect PAPER Development of a High Efficiency Induction Motor and the Estimation of Energy Conservation Effect Minoru KONDO Drive Systems Laboratory, Minoru MIYABE Formerly Drive Systems Laboratory, Vehicle Control

More information

Gujarat, India,

Gujarat, India, Experimental Analysis of Convergent, Convergent Divergent nozzles at various mass flow rates for pressure ratio and pressure along the length of nozzle Rakesh K. Bumataria 1, Darpan V. Patel 2, Sharvil

More information

Development of a Subscale Flight Testing Platform for a Generic Future Fighter

Development of a Subscale Flight Testing Platform for a Generic Future Fighter Development of a Subscale Flight Testing Platform for a Generic Future Fighter Christopher Jouannet Linköping University - Sweden Subscale Demonstrators at Linköping University RAVEN Rafale Flight Test

More information

Type Acceptance Report

Type Acceptance Report TAR 13/21B/2 Revision 1 WILLIAMS INTERNATIONAL FJ44 Series Aircraft Certification Unit TABLE OF CONTENTS EXECUTIVE SUMMARY 1 1. INTRODUCTION 1 2. ICAO TYPE CERTIFICATE DETAILS 1 3. TYPE ACCEPTANCE DETAILS

More information

Technology Application to MHPS Large Frame F series Gas Turbine

Technology Application to MHPS Large Frame F series Gas Turbine 11 Technology Application to MHPS Large Frame F series Gas Turbine JUNICHIRO MASADA *1 MASANORI YURI *2 TOSHISHIGE AI *2 KAZUMASA TAKATA *3 TATSUYA IWASAKI *4 The development of gas turbines, which Mitsubishi

More information

AIRCRAFT DESIGN SUBSONIC JET TRANSPORT

AIRCRAFT DESIGN SUBSONIC JET TRANSPORT AIRCRAFT DESIGN SUBSONIC JET TRANSPORT Analyzed by: Jin Mok Professor: Dr. R.H. Liebeck Date: June 6, 2014 1 Abstract The purpose of this report is to design the results of a given specification and to

More information

,62?925% HLIAI ELE ) w W/////7M //, aeoww. June 17, VI/27/702A 21, 1967 N SON S. Sheet 2 of 2 W. H. BROWN WARIABLE FLOW TURBOFAN ENGINE

,62?925% HLIAI ELE ) w W/////7M //, aeoww. June 17, VI/27/702A 21, 1967 N SON S. Sheet 2 of 2 W. H. BROWN WARIABLE FLOW TURBOFAN ENGINE June 17, 1969 Filed Dec. 21, 1967 W. H. BROWN WARIABLE FLOW TURBOFAN ENGINE 3 449 914 Sheet 2 of 2 N SON S RT,62?925% HLIAI ELE ) 77VI/27/702A w W/////7M //, aeoww C2 United States Patent Office Patented

More information

Technical Challenges and Barriers Affecting Turbo-electric and Hybrid Electric Aircraft Propulsion

Technical Challenges and Barriers Affecting Turbo-electric and Hybrid Electric Aircraft Propulsion Technical Challenges and Barriers Affecting Turbo-electric and Hybrid Electric Aircraft Propulsion Dr. Ajay Misra Deputy Director, Research and Engineering NASA Glenn Research Center Keynote presentation

More information

TYPE-CERTIFICATE DATA SHEET

TYPE-CERTIFICATE DATA SHEET TYPE-CERTIFICATE DATA SHEET No. IM.E.016 issue 10 for FJ44/FJ33 Series Engines Certificate Holder Williams International Co. Walled Lake Michigan 48390-0200 USA For Models: FJ44-1A FJ44-1AP FJ44-2A FJ44-2C

More information

New Design Concept of Compound Helicopter

New Design Concept of Compound Helicopter New Design Concept of Compound Helicopter PRASETYO EDI, NUKMAN YUSOFF and AZNIJAR AHMAD YAZID Department of Engineering Design & Manufacture, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur,

More information

ELECTRIC POWER TRAINS THE KEY ENABLER FOR CONTRA ROTATING PROPELLERS IN GENERAL AVIATION (& VICE VERSA)

ELECTRIC POWER TRAINS THE KEY ENABLER FOR CONTRA ROTATING PROPELLERS IN GENERAL AVIATION (& VICE VERSA) ELECTRIC POWER TRAINS THE KEY ENABLER FOR CONTRA ROTATING PROPELLERS IN GENERAL AVIATION (& VICE VERSA) ATI D3 EVENT 8 TH MAY 2018 THE EMERGENCE OF ELECTRIFICATION IN AEROSPACE NICK SILLS, CONTRA ELECTRIC

More information

Smoke Reduction Methods Using Shallow-Dish Combustion Chamber in an HSDI Common-Rail Diesel Engine

Smoke Reduction Methods Using Shallow-Dish Combustion Chamber in an HSDI Common-Rail Diesel Engine Special Issue Challenges in Realizing Clean High-Performance Diesel Engines 17 Research Report Smoke Reduction Methods Using Shallow-Dish Combustion Chamber in an HSDI Common-Rail Diesel Engine Yoshihiro

More information

D. A. Davidson 7 th Annual Aerospace & Industrials 1-1 Conference Boston, Mass Standex Engineering Technologies Group.

D. A. Davidson 7 th Annual Aerospace & Industrials 1-1 Conference Boston, Mass Standex Engineering Technologies Group. D. A. Davidson 7 th Annual Aerospace & Industrials 1-1 Conference Boston, Mass Standex Engineering Technologies Group December 8, 2015 Company History Spincraft; North Billerica, MA Acquired by Standex

More information

Effect of Compressor Inlet Temperature on Cycle Performance for a Supercritical Carbon Dioxide Brayton Cycle

Effect of Compressor Inlet Temperature on Cycle Performance for a Supercritical Carbon Dioxide Brayton Cycle The 6th International Supercritical CO2 Power Cycles Symposium March 27-29, 2018, Pittsburgh, Pennsylvania Effect of Compressor Inlet Temperature on Cycle Performance for a Supercritical Carbon Dioxide

More information

TYPE-CERTIFICATE DATA SHEET

TYPE-CERTIFICATE DATA SHEET TYPE-CERTIFICATE DATA SHEET EASA.E.060 for RB211 Trent 500 Series Engines Type Certificate Holder 62 Buckingham Gate Westminster London SW1E 6AT United Kingdom For Models: RB211 Trent 553-61 RB211 Trent

More information

XIV.C. Flight Principles Engine Inoperative

XIV.C. Flight Principles Engine Inoperative XIV.C. Flight Principles Engine Inoperative References: FAA-H-8083-3; POH/AFM Objectives The student should develop knowledge of the elements related to single engine operation. Key Elements Elements Schedule

More information

CONCEPTUAL DESIGN OF A NEW TYPE OF ENGINE FOR VARIOUS APPLICATIONS WITH EXPECTED 10% HIGHER OVERALL EFFICIENCY

CONCEPTUAL DESIGN OF A NEW TYPE OF ENGINE FOR VARIOUS APPLICATIONS WITH EXPECTED 10% HIGHER OVERALL EFFICIENCY International Journal of Mechanical and Production Engineering Research and Development (IJMPERD ) Vol.1, Issue 2 Dec 2011 58-65 TJPRC Pvt. Ltd., CONCEPTUAL DESIGN OF A NEW TYPE OF ENGINE FOR VARIOUS APPLICATIONS

More information

Unlocking the Future of Hypersonic Flight and Space Access

Unlocking the Future of Hypersonic Flight and Space Access SABRE Unlocking the Future of Hypersonic Flight and Space Access Tom Burvill Head of Applied Technologies 28/02/18 Proprietary information Contents Introduction Sixty Years of Space Access The SABRE Engine

More information

Cessna Citation Model Stats

Cessna Citation Model Stats Cessna Citation Model Stats Cessna Citation Sovereign - Dimensions Length 63 ft 6 in (19.35 m) Height 20 ft 4 in (6.20 m) Wingspan 72 ft 4 in (22.04 m) Wing Wing Area Wing Sweep Wheelbase Tread 516 sq

More information

aviation week A New Approach To VTOL Page 36 Secure Collaboration On The Internet THE FIGHT OVER F-22 & SPACE TECHNOLOGY Page 53 Page 44

aviation week A New Approach To VTOL Page 36 Secure Collaboration On The Internet THE FIGHT OVER F-22 & SPACE TECHNOLOGY Page 53 Page 44 THE FIGHT OVER F-22 aviation $6.00 JULY 20, 2009 week & SPACE TECHNOLOGY A New Approach To VTOL Page 36 Secure Collaboration On The Internet Page 44 Page 53 AviationWeek.com/awst Page 1 of 1 Print This

More information

(Refer Slide Time: 1:13)

(Refer Slide Time: 1:13) Fluid Dynamics And Turbo Machines. Professor Dr Dhiman Chatterjee. Department Of Mechanical Engineering. Indian Institute Of Technology Madras. Part A. Module-2. Lecture-2. Turbomachines: Definition and

More information

THERMAL MANAGEMENT OF AIRCRAFT BRAKING SYSTEM

THERMAL MANAGEMENT OF AIRCRAFT BRAKING SYSTEM ABSTRACT THERMAL MANAGEMENT OF AIRCRAFT BRAKING SYSTEM Shivakumar B B 1, Ganga Reddy C 2 and Jayasimha P 3 1,2,3 HCL Technologies Limited, Bangalore, Karnataka, 560106, (India) This paper presents the

More information

Introduction to the ICAO Engine Emissions Databank

Introduction to the ICAO Engine Emissions Databank Introduction to the ICAO Engine Emissions Databank Background Standards limiting the emissions of smoke, unburnt hydrocarbons (HC), carbon monoxide (CO) and oxides of nitrogen (NOx) from turbojet and turbofan

More information

A Different Approach to Gas Turbine Exhaust Silencing

A Different Approach to Gas Turbine Exhaust Silencing 74-GT-26 Copyright 1974 by ASME $3.00 PER COPY $1.00 TO ASME MEMBERS The Society shall not be responsible for statements or opinions advanced in papers or in discussion at meetings of the Society or of

More information

Pneumatic Starting Systems

Pneumatic Starting Systems $1.50 PER COPY 75C TO ASME MEMBERS The Society shall not be responsible for statements or opinions advanced in papers or in discussion at meetings of the Society or of its 67-GT-15 Divisions or Sections,

More information

Development of Variable Geometry Turbocharger Contributes to Improvement of Gasoline Engine Fuel Economy

Development of Variable Geometry Turbocharger Contributes to Improvement of Gasoline Engine Fuel Economy Development of Variable Geometry Turbocharger Contributes to Improvement of Gasoline Engine Fuel Economy 30 MOTOKI EBISU *1 YOSUKE DANMOTO *1 YOJI AKIYAMA *2 HIROYUKI ARIMIZU *3 KEIGO SAKAMOTO *4 Every

More information