2ND EXAM OF MAIN MACHINERY AND AUXILIARY MARINE SYSTEMS

Size: px
Start display at page:

Download "2ND EXAM OF MAIN MACHINERY AND AUXILIARY MARINE SYSTEMS"

Transcription

1 2ND EXAM OF MAIN MACHINERY AND AUXILIARY MARINE SYSTEMS MASTER DEGREE IN NAVAL ARCHITECTURE AND MARINE ENGINEERING MECHANICAL ENGINEERING DEPARTMENT UNIVERSITY OF LISBON 28th JANUARY 2016 (Duration 3 hr) 1. (2v) You are designing a four-stroke diesel engine to provide a brake power of 300 [kw] naturally aspirated at its maximum rated speed. 1.1 Based on typical values for break mean effective pressure and maximum mean piston speed, estimate the required engine displacement, and the bore and stroke for sensible cylinder geometry and number of engine cylinders; 1.2 What is the maximum rated engine speed [rpm] for your design? 1.3 What would be the break torque [N.m], and the fuel flow rate [g/h] at this maximum speed? You may assume that the maximum mean piston speed is 12 [m/s]; 1.4 State what are the basic choices when selecting a ship s prime mover. Give examples of five typical combined propulsion plant alternatives. There is a current trend to adopt a fully electrical propulsion plant on large cruise vessels. State the reasons for such option. 1.5 State what are the basic choices when selecting a ship s propulsor. Define a theoretical propeller curve, and draw on the same sketch two typical propeller curves corresponding to a displacement vessel and a planing craft. On the same sketch, draw as well a typical performance diagram of a diesel engine having adequate margins to be installed onboard the planing craft, and state what is the aim of this adjustment procedure between the propeller curve and the engine performance diagram. 2. (3v) A ship has a main propulsion system constituted of a diesel engine, a reduction gearbox and a propulsion shaft line, whose engine performance diagram is shown in Annex A. Considering there is a Power Take-Off (PTO) installed at the gearbox to drive an hydraulic circuit, whose speed reduction ratio is 4.1:1 and its power is directly proportional to the shaft speed delivering 110 [kw] at top speed. Determine: 2.1 What would be the maximum brake power available to propel the ship? 2.2 Assuming the propeller has been designed to absorb all the brake power of the main engine when the propeller shaft rotates at a rotational speed of 410 [rpm], what would be the most adequate speed reduction ratio so that all the brake power available could be utilized? 2.3 In case the PTO s clutch was disengaged from the gearbox, state if the ship would be able to sail at a higher speed? Justify your answer. 2.4 What would be the maximum rated power absorbed at the main engine when its crankshaft rotates at a rotational speed of 1500 [rpm]? 3 (2v) Figure 1 shows an articulated rod or link type ram of a steering gear with two double-effect cylinders having each a stroke of 300 [mm] and a tiller to rudder stock distance of 500 [mm], which has been designed to develop a torque of 20 [kn.m]. Determine:

2 3.1 The nominal diameter of the cylinders, assuming a mechanical efficiency of the cylinders of 90% (when design pressure of the hydraulic oil is 120 [bar]). 3.2 The flow rate and power of this rotational vane type pump, assuming that hydraulic pump efficiency is 70%. 3.3 Draw a single-line diagram and explain its working principle of a typical steering gear arrangement of a small boat whose HPU is directly coupled to the main engine (Power Take- Off). Figure 1 Steering gear arrangement. 4. (2.5v) Consider the crane shown in Figure 2, which should be installed onboard a vessel. 4.1 Determine: The power of the winch and its torque which should allow to hoist (move up or down) the cargo hook. You should assume a mechanical transmission efficiency of 96% The winch power reduction if a double hoist block (with two single sheaves, as shown on bottom right corner of Figure 2) was fitted on top of the cargo boom. 4.2 State what would be the other two basic functions required to handle the boom and the cargo of a typical marine crane. Figure 2 Crane arrangement.

3 5. (2.5v) As illustrated in Figure 3, an axial fan is to be selected to cool a machinery room whose dimensions are 12 x 4 x 4 [m]. Half of the volume in the room is expected to be filled with machinery and equipment and the other half to be air space. A 5 [m] diameter hole is available at the upper deck of the machinery room (below the funnel) for the installation of the fan that is to replace the air in the void spaces of the room once every 100 seconds. A few fan-motor combined units are available in the market and their efficiency is estimated to be 30%. Considering air density is 1.2 [kg/m 3 ], determine: 5.1 The electrical power input of the fan-motor unit to be purchased; 5.2 The pressure difference across the fan. Figure 3 Schematic of the axial fan arrangement. 6. (3v) 6.1 Consider a patrol boat having a design displacement = 660 [ t] height GM t = 2.50 [ m] where the fin s lever is r = 4.00 [ m], and a transverse metacentric. Figure 4 shows fins position and orientation angles over the ship s hull, F, the fin lift coefficient at the origin is dc L = , and the maximum angle of attack is α = 25 º. Assuming for a certain dα deg α = 0º design point, that the seaway wave slope is θ = 5º, and the maximum sustained ship s advance speed is U 20 [ kts] w =, determine the planform area of each fin. 6.2 State and justify what would be the most adequate roll stabilisation system to be installed onboard large rectangular pontoon where safety of passengers to be embarked or disembarked from this moored platform is a major concern. Figure 4 Definition of the fins position and orientation angles over the ship s hull.

4 7. (1v) What material is usually utilized to manufacture both inboard and outboard shafting and their shaft sleeves? State what are the two main functions of a thrust block on a shaft line. Explain why some modern thrust blocks are fitted with circular pads. 8. (1v) Provide a distinction between hull equipment and deck machinery and give five examples of each type. 9. (1v) Briefly, but clearly describe the operating principle of rudder roll stabilization system and state which factors do influence the roll damping efficiency that can be achieved by this roll stabilization system. 10. (1v) The rules of the Classification Societies contain tables of required equipment, state which items onboard a typical merchant vessel are identified by, and sized in accordance with an Equipment Number (EN = 2/3 + 2 h 0 B + A/10) included in those tables. Also indicate the meaning of the variables on the right hand side of the EN formulation. Sketch a typical anchorhandling arrangement of a bulk-carrier. 11. (1v) One of the major concerns of pollution from ships is the discharge of oily water from the bilges of machinery spaces. State what are the major reasons why water with high concentration levels of hydrocarbons accumulates in the bilges of the machinery space. Describe the process to prevent discharge of oily water directly to the sea, and, if necessary, you may draw a sketch of the system configuration showing its major components onboard.

5 Annex A

OPERATIONS SEAFARER CERTIFICATION GUIDANCE NOTE SA MARITIME QUALIFICATIONS CODE. Deck: Ship s Power Plants

OPERATIONS SEAFARER CERTIFICATION GUIDANCE NOTE SA MARITIME QUALIFICATIONS CODE. Deck: Ship s Power Plants Page 1 of 8 Compiled by Approved by Chief Examiner Syllabus Committee: 26 February 2013 OPERATIONS SEAFARER CERTIFICATION GUIDANCE NOTE SA MARITIME QUALIFICATIONS CODE Deck: Page 2 of 8 KNOWLEDGE, UNDERSTANDING

More information

The Benefits of Podded Propulsion in the Offshore Market

The Benefits of Podded Propulsion in the Offshore Market DYNAMIC POSITIONING CONFERENCE THRUSTERS AND DRIVE SYSTEMS The Benefits of Podded Propulsion in the Offshore Market S J Raynor Cegelec Projects Limited (United Kingdom) Synopsis Over the last few years,

More information

Shipboard fittings and supporting hull structures associated with towing and mooring on conventional vessels ships

Shipboard fittings and supporting hull structures associated with towing and mooring on conventional vessels ships (Jan 2004) (Corr.1 Feb 2004) Rev.1 July 2004) (Rev.2 Sept 2006) (Rev.3 July 2007) (Corr.1 Sept 2014) (Rev.4 Oct 2016) Shipboard fittings and supporting hull structures associated with towing and mooring

More information

GEARBOXES CUSTOM PROPELLERS, SHAFTS AND RUDDERS TUNNEL THRUSTERS AZIMUTH THRUSTERS CONTROLLABLE PITCH PROPELLER SYSTEMS

GEARBOXES CUSTOM PROPELLERS, SHAFTS AND RUDDERS TUNNEL THRUSTERS AZIMUTH THRUSTERS CONTROLLABLE PITCH PROPELLER SYSTEMS CONTROLLABLE PITCH PROPELLER SYSTEMS AZIMUTH THRUSTERS TUNNEL THRUSTERS CUSTOM PROPELLERS, SHAFTS AND RUDDERS GEARBOXES Josiah Stone little knew how successful the company that bears his name would become

More information

TUTORIAL QUESTIONS FOR THE INDUSTRIAL HYDRAULICS COURSE TEP 4205

TUTORIAL QUESTIONS FOR THE INDUSTRIAL HYDRAULICS COURSE TEP 4205 TUTORIAL QUESTIONS FOR THE INDUSTRIAL HYDRAULICS COURSE TEP 4205 The book for the course is Principles of Hydraulic System Design, by Peter J Chapple. Published by Coxmoor Publishing Co., UK. Available

More information

ZF 7600 V. Marine Propulsion Systems

ZF 7600 V. Marine Propulsion Systems Marine Propulsion Systems 8 V-drive, remote mount marine transmission. Description 3 shaft, reverse reduction transmission with hydraulic clutch mounted on the input shaft and another one mounted on the

More information

(Chapter II-1, Regulations 29.1, , 29.3, 29.4, , 29.14, 28.2 and 28.3)

(Chapter II-1, Regulations 29.1, , 29.3, 29.4, , 29.14, 28.2 and 28.3) (Jan 2011) (Corr.1 Aug 2011) Arrangements for steering capability and function on ships fitted with propulsion and steering systems other than traditional arrangements for a ship s directional control

More information

ZF 3360 Vertical offset, direct or remote mount marine transmission.

ZF 3360 Vertical offset, direct or remote mount marine transmission. Marine Propulsion Systems Vertical offset, direct or remote mount marine transmission. Maximum Input** Duty kw hp RPM Pleasure 1791 2400 2450 Light 1635 2191 2450 ** Must not be exceeded Description 3

More information

ZF 3355 Vertical offset, direct or remote mount marine transmission.

ZF 3355 Vertical offset, direct or remote mount marine transmission. Marine Propulsion Systems Vertical offset, direct or remote mount marine transmission. Maximum Input** Duty kw hp RPM Pleasure 1589 2130 2600 Light 1431 1917 2600 Medium 1239 1660 2600 ** Must not be exceeded

More information

ZF Marine Propulsion Systems

ZF Marine Propulsion Systems Marine Propulsion Systems Vertical offset, remote mount marine transmission. Description 3 shaft, reverse reduction transmission with hydraulic clutch mounted on the input shaft and another one mounted

More information

BACKACTER 1100 World s strongest dredge

BACKACTER 1100 World s strongest dredge BACKACTER 1100 World s strongest dredge Introduction Yard De Donge designed and build the strongest type of dredger; the Backacter 1100. The first very large dedicated marine dipperdredger excavator in

More information

ZF Marine Propulsion Systems

ZF Marine Propulsion Systems Marine Propulsion Systems Vertical offset, remote mount marine transmission. Description 3 shaft, reverse reduction transmission with hydraulic clutch mounted on the input shaft and another one mounted

More information

ZF 7600 A 8 Down angle, remote mount marine transmission.

ZF 7600 A 8 Down angle, remote mount marine transmission. Marine Propulsion Systems 8 Down angle, remote mount marine transmission. Description Maximum Input** Duty kw hp RPM Pleasure 2880 3860 2300 Light 2814 3771 2300 Medium 2471 3311 2300 Continuous 1847 2475

More information

ZF 9050 Vertical offset, remote mount marine transmission.

ZF 9050 Vertical offset, remote mount marine transmission. Marine Propulsion Systems Vertical offset, remote mount marine transmission. Description Maximum Input** Duty kw hp RPM Pleasure 3694 4950 2300 Light 3440 4609 2300 Medium 2931 3928 2300 Continuous 2395

More information

(Chapter II-1, Regulations 29.1, , 29.3, 29.4, , 29.14, 28.2 and 28.3)

(Chapter II-1, Regulations 29.1, , 29.3, 29.4, , 29.14, 28.2 and 28.3) (Jan 2011) (Corr.1 Aug 2011) (Rev.1 Apr 2016, Deleted on 20 Dec 2017) (Corr.1 Aug 2011 reinstated from 21 Dec 2017) Arrangements for steering capability and function on ships fitted with propulsion and

More information

ZF 305 A 7 Down angle, direct mount marine transmission.

ZF 305 A 7 Down angle, direct mount marine transmission. Marine Propulsion Systems 7 Down angle, direct mount marine transmission. Description Maximum Input** Duty kw hp RPM Pleasure 617 827 3000 Light 559 749 3000 Medium 426 572 3000 Continuous 388 521 3000

More information

ZF 3000 A. Marine Propulsion Systems

ZF 3000 A. Marine Propulsion Systems Marine Propulsion Systems 10 Down angle, direct or remote mount marine transmission. Description 3 shaft, reverse reduction transmission with hydraulic clutch mounted on the input shaft and another one

More information

ZF 3050 A 10 Down angle, direct or remote mount marine transmission.

ZF 3050 A 10 Down angle, direct or remote mount marine transmission. Marine Propulsion Systems 10 Down angle, direct or remote mount marine transmission. Description Maximum Input** Duty kw hp RPM Pleasure 1431 1917 2600 Light 1373 1840 2600 Medium 1159 1553 2600 Continuous

More information

ZF Marine Propulsion Systems

ZF Marine Propulsion Systems Marine Propulsion Systems Vertical offset, direct or remote mount marine transmission. Description 3 shaft, reverse reduction transmission with hydraulic clutch mounted on the input shaft and another one

More information

Fig.2. Thordon industrial bearing group

Fig.2. Thordon industrial bearing group Thordon Bearings Company Descriptions Thordon Bearings Inc. Thordon Bearings Inc. designs and manufactures a complete range of polymer bearing and shaft line products for the marine, clean power generation,

More information

Shipboard fittings and supporting hull structures associated with towing and mooring on conventional ships

Shipboard fittings and supporting hull structures associated with towing and mooring on conventional ships (Jan 2004) (Corr.1 Feb 2004) Rev.1 July 2004) (Rev.2 Sept 2006) (Rev.3 July 2007) (Corr.1 Sept 2014) (Rev.4 Oct 2016) (Corr.1 Dec 2016) (Corr.2 Mar 2017) Shipboard fittings and supporting hull structures

More information

ZF 3050 A. Marine Propulsion Systems

ZF 3050 A. Marine Propulsion Systems Marine Propulsion Systems 10 Down angle, direct or remote mount marine transmission. Description 3 shaft, reverse reduction transmission with hydraulic clutch mounted on the input shaft and another one

More information

Universidad Nacional Experimental Marítima del Caribe Vicerrectorado Académico Coordinación de Idiomas English VI. Maritime Engineering

Universidad Nacional Experimental Marítima del Caribe Vicerrectorado Académico Coordinación de Idiomas English VI. Maritime Engineering Universidad Nacional Experimental Marítima del Caribe Vicerrectorado Académico Coordinación de Idiomas English VI. Maritime Engineering Marine facilities Unit V. Auxiliary machinery Speaking and writing.

More information

Propeller Shaft Clutch (PSC)

Propeller Shaft Clutch (PSC) Propeller Shaft Clutch (PSC) 1 Propeller Shaft Clutch Clutches that provide flexibility RENK marine clutches for merchant ships with 2-stroke engines are universally ac knowledged as a hallmark of maritime

More information

ZF 30 M. Marine Propulsion Systems

ZF 30 M. Marine Propulsion Systems Marine Propulsion Systems Vertical offset, direct mount marine transmission. Description Reverse reduction marine transmission with mechanically actuated multi-disc clutches. Suitable for high performance

More information

ZF 301 C. Marine Propulsion Systems

ZF 301 C. Marine Propulsion Systems Marine Propulsion Systems Co-axial, direct mount marine transmission. Description Robust design also withstands continuous duty in workboat applications. Fully works tested, reliable and simple to install.

More information

ZF 220. Marine Propulsion Systems

ZF 220. Marine Propulsion Systems Marine Propulsion Systems Vertical offset, direct mount marine transmission. Description Robust design also withstands continuous duty in workboat applications. Fully works tested, reliable and simple

More information

ZF A 7 Down angle, direct mount marine transmission.

ZF A 7 Down angle, direct mount marine transmission. Marine Propulsion Systems 7 Down angle, direct mount marine transmission. Description Robust design also withstands continuous duty in workboat applications. Fully works tested, reliable and simple to

More information

ZF Marine Propulsion Systems

ZF Marine Propulsion Systems Marine Propulsion Systems Vertical offset, direct mount marine transmission. Description Suitable for high performance applications in luxury motoryachts, sport fishers, express cruisers etc. Reverse reduction

More information

ZF 25 MA. Marine Propulsion Systems

ZF 25 MA. Marine Propulsion Systems Marine Propulsion Systems 8 Down angle, direct mount marine transmission. Description Reverse reduction marine transmission with mechanically actuated multi-disc clutches. Suitable for high performance

More information

ZF 15 MA. Marine Propulsion Systems

ZF 15 MA. Marine Propulsion Systems Marine Propulsion Systems 8 Down angle, direct mount marine transmission. Description Reverse reduction marine transmission with mechanically actuated multi-disc clutches. Suitable for high performance

More information

RO-PAX FERRY April 28 th, Gabriel, Shaun, Timothy

RO-PAX FERRY April 28 th, Gabriel, Shaun, Timothy RO-PAX FERRY April 28 th, 2016 Gabriel, Shaun, Timothy Introduction ROPAX Ferry Concept Design for WFSA competition Low-cost vessel for service between the islands of Indonesia Ferry Accidents China 6%

More information

ZF Marine Propulsion Systems

ZF Marine Propulsion Systems Marine Propulsion Systems Vertical offset, direct mount marine transmission. Description Reverse reduction marine transmission with hydraulically actuated multi-disc clutches. Suitable for high performance

More information

(Chapter II-1, Regulations 29.1, , 29.3, 29.4, , 29.14, 28.2 and 28.3 and 30.2)

(Chapter II-1, Regulations 29.1, , 29.3, 29.4, , 29.14, 28.2 and 28.3 and 30.2) (Jan 2011) (Corr.1 Aug 2011) (Rev.1 Apr 2016) Arrangements for steering capability and function on ships fitted with propulsion and steering systems other than traditional arrangements for a ship s directional

More information

ZF 15 M. Marine Propulsion Systems

ZF 15 M. Marine Propulsion Systems Marine Propulsion Systems Vertical offset, direct mount marine transmission. Description Reverse reduction marine transmission with mechanically actuated multi-disc clutches. Suitable for high performance

More information

ZF Marine Propulsion Systems

ZF Marine Propulsion Systems Marine Propulsion Systems Vertical offset, direct or remote mount marine transmission. Description 3 shaft, reverse reduction transmission with hydraulic clutch mounted on the input shaft and another one

More information

ZF 25 M. Marine Propulsion Systems

ZF 25 M. Marine Propulsion Systems Marine Propulsion Systems Vertical offset, direct mount marine transmission. Description Reverse reduction marine transmission with mechanically actuated multi-disc clutches. Suitable for high performance

More information

ZF 301 A 10 Down angle, direct mount marine transmission.

ZF 301 A 10 Down angle, direct mount marine transmission. Marine Propulsion Systems 10 Down angle, direct mount marine transmission. Maximum Input** Duty kw hp RPM Pleasure 385 516 3000 Light 347 465 3000 Medium 273 366 3000 Continuous 204 273 3000 ** Must not

More information

ZF 220 A. Marine Propulsion Systems

ZF 220 A. Marine Propulsion Systems Marine Propulsion Systems 10 Down angle, direct mount marine transmission. Description Reverse reduction marine transmission with hydraulically actuated multi-disc clutches. Suitable for high performance

More information

ZF 360 A 7 Down angle, direct mount marine transmission.

ZF 360 A 7 Down angle, direct mount marine transmission. Marine Propulsion Systems Description 7 Down angle, direct mount marine transmission. Maximum Input** Duty kw hp RPM Pleasure 875 1172 3000 Light 797 1069 3000 Medium 638 856 3000 Continuous 540 724 3000

More information

ZF A. Marine Propulsion Systems

ZF A. Marine Propulsion Systems Marine Propulsion Systems 7 Down angle, direct mount marine transmission. Maximum Input** Duty kw hp RPM Pleasure 1173 1573 3000 Light 1069 1433 3000 Medium 808 1083 3000 Continuous 745 999 3000 ** Must

More information

ZF 2050 A. Marine Propulsion Systems

ZF 2050 A. Marine Propulsion Systems Marine Propulsion Systems 10 Down angle, direct or remote mount marine transmission. Description 3 shaft, reverse reduction transmission with hydraulic clutch mounted on the input shaft and another one

More information

R10 Set No: 1 ''' ' '' '' '' Code No: R31033

R10 Set No: 1 ''' ' '' '' '' Code No: R31033 R10 Set No: 1 III B.Tech. I Semester Regular and Supplementary Examinations, December - 2013 DYNAMICS OF MACHINERY (Common to Mechanical Engineering and Automobile Engineering) Time: 3 Hours Max Marks:

More information

APPLICATION TO A CHEMICAL TANKER

APPLICATION TO A CHEMICAL TANKER CHEMICAL TANKER 157 m # of wingsails 1 to 3 23,5 m 9,6 m 19.350 dwt 5.110 kw 13 kt Rotterdam N. Orleans 4.729 NM 364 hours (15 days) 316 hours (13 days) 0,578 Tn/h 210,2 Tn (per one way trip) 0,578

More information

IHC Beaver 300 SE Cutter suction dredger

IHC Beaver 300 SE Cutter suction dredger The IHC Beaver 300 SE is an extremely successful tried-and-tested vessel. The dredger is dismountable and can be easily transported to any location. With its robust design, it is the preferred choice in

More information

ZF Marine Propulsion Systems

ZF Marine Propulsion Systems Marine Propulsion Systems Vertical offset, direct mount marine transmission. Description Robust design also withstands continuous duty in workboat applications. Fully works tested, reliable and simple

More information

TUTORIAL QUESTIONS FOR COURSE TEP 4195

TUTORIAL QUESTIONS FOR COURSE TEP 4195 TUTORIL QUESTIONS FOR COURSE TEP 4195 Data: Hydraulic Oil Density 870 kg/m 3 bsolute viscosity 0.03 Ns/m 2 Spool valve discharge coefficient 0.62. 1) hydrostatic transmission has a variable displacement

More information

ZF A 7 Down angle, direct mount marine transmission.

ZF A 7 Down angle, direct mount marine transmission. Marine Propulsion Systems 7 Down angle, direct mount marine transmission. Description Robust design also withstands continuous duty in workboat applications. Fully works tested, reliable and simple to

More information

ZF 63 A. Marine Propulsion Systems

ZF 63 A. Marine Propulsion Systems Marine Propulsion Systems 8 Down angle, direct mount marine transmission. Maximum Input** Duty kw hp RPM Pleasure 391 524 5500 Light 373 500 5500 Medium 317 425 5500 Continuous 150 202 3200 ** Must not

More information

ZF 45 A 8 Down angle, direct mount marine transmission.

ZF 45 A 8 Down angle, direct mount marine transmission. Marine Propulsion Systems 8 Down angle, direct mount marine transmission. Description Maximum Input** Duty kw hp RPM Pleasure 259 347 5500 Light 247 331 5500 Medium 210 281 5500 Continuous 99 133 3200

More information

ZF NR2H Horizontal offset, remote mount marine transmission.

ZF NR2H Horizontal offset, remote mount marine transmission. Marine Propulsion Systems Horizontal offset, remote mount marine transmission. Description Maximum Input** Duty kw hp RPM Light 10209 13680 1350 Medium 8795 11786 1350 Continuous 7329 9821 1350 ** Must

More information

SHIP HYDRODYNAMICS LECTURE NOTES OF PROPULSION PART

SHIP HYDRODYNAMICS LECTURE NOTES OF PROPULSION PART SHIP HYDRODYNAMICS LECTURE NOTES OF PROPULSION PART Course Outline Contents Time Date Week 1. Propulsion Systems a) History and Development of Screw Propeller b) Modern Propulsion Systems i- Fixed pitch

More information

ZF 85 A 8 Down angle, direct mount marine transmission.

ZF 85 A 8 Down angle, direct mount marine transmission. Marine Propulsion Systems 8 Down angle, direct mount marine transmission. Description Maximum Input** Duty kw hp RPM Pleasure 501 671 4500 Light 469 628 4500 Medium 376 505 4500 Continuous 222 298 3200

More information

ZF 80 A 8 Down angle, direct mount marine transmission.

ZF 80 A 8 Down angle, direct mount marine transmission. Marine Propulsion Systems 8 Down angle, direct mount marine transmission. Description Maximum Input** Duty kw hp RPM Pleasure 442 593 4500 Light 414 555 4500 Medium 332 445 4500 Continuous 197 264 3200

More information

ZF 45-1 Vertical offset, direct mount marine transmission.

ZF 45-1 Vertical offset, direct mount marine transmission. Marine Propulsion Systems Vertical offset, direct mount marine transmission. Maximum Input** Duty kw hp RPM Pleasure 259 347 5500 Light 250 335 5500 Medium 241 324 5500 Continuous 137 184 3200 ** Must

More information

RULES FOR THE CONSTRUCTION AND CLASSIFICATION OF SHIPS IDENTIFIED BY THEIR MISSION DREDGERSAND MUD BARGES SECTION 3 HULL EQUIPMENT CHAPTERS APPROACH

RULES FOR THE CONSTRUCTION AND CLASSIFICATION OF SHIPS IDENTIFIED BY THEIR MISSION DREDGERSAND MUD BARGES SECTION 3 HULL EQUIPMENT CHAPTERS APPROACH PART II RULES FOR THE CONSTRUCTION AND CLASSIFICATION OF SHIPS IDENTIFIED BY THEIR MISSION TITLE 43 DREDGERSAND MUD BARGES SECTION 3 HULL EQUIPMENT CHAPTERS A B C D E F APPROACH DOCUMENTS, REGULATIONS

More information

ZF 80 A 8 Down angle, direct mount marine transmission.

ZF 80 A 8 Down angle, direct mount marine transmission. Marine Propulsion Systems 8 Down angle, direct mount marine transmission. Maximum rated input: 324kW (435hp) Available for Pleasure, Light, Medium and Continuous Duty applications. Description Reverse

More information

casualty information Dear Captain General Requirements Encl.: 7 pages

casualty information Dear Captain General Requirements Encl.: 7 pages casualty information no. 88 MARCH 2012 Norwegian Hull Club wishes to contribute to increased safety on board, focusing on Lives, Health, Environment and Assets and to distribute Useful Experience. In this

More information

ZF W220. Marine Propulsion Systems

ZF W220. Marine Propulsion Systems Marine Propulsion Systems Vertical offset, direct mount marine transmission. Maximum Input** Duty kw hp RPM Medium 253 339 3200 Continuous 213 285 3200 ** Must not be exceeded Description Reverse reduction

More information

ZF W220 Vertical offset, direct mount marine transmission.

ZF W220 Vertical offset, direct mount marine transmission. Marine Propulsion Systems Vertical offset, direct mount marine transmission. Maximum Input** Duty kw hp RPM Medium 253 339 3200 Continuous 213 285 3200 ** Must not be exceeded Description Robust design

More information

OPERATIONS SEAFARER CERTIFICATION GUIDANCE NOTE. Level 3 Assessment Chief and Second Engineer <3000kW

OPERATIONS SEAFARER CERTIFICATION GUIDANCE NOTE. Level 3 Assessment Chief and Second Engineer <3000kW Page 1 of 7 Compiled by Chief Examiner Approved by Executive Head: Centre of Seafarers OPERATIONS SEAFARER CERTIFICATION GUIDANCE NOTE and Second Engineer Page 2 of 7 Content STCW 78 CHIEF AND SECOND ENGINEER

More information

ZF W650. Marine Propulsion Systems

ZF W650. Marine Propulsion Systems Marine Propulsion Systems Vertical offset, direct mount marine transmission. Description Reverse reduction marine transmission with hydraulically actuated multi-disc clutches. Robust design also withstands

More information

Reliable, Silent, Efficient. Voith Linear Jet

Reliable, Silent, Efficient. Voith Linear Jet Reliable, Silent, Efficient. Voith Linear Jet 1 A New Propulsion Standard. The Voith Linear Jet (VLJ) combines the best elements of two existing technologies conventional screw propellers and water jets.

More information

PART 8 MACHINERY INSTALLATIONS

PART 8 MACHINERY INSTALLATIONS PART 8 MACHINERY INSTALLATIONS PART 8 MACHINERY INSTALLATIONS SECTION SUBJECT 8.1 General 8.2 Auxiliary engines 8.3 Stern gear 8.4 Propeller and nozzles 8.5 Rudders 8.6 Steering gear 8.7 Tables 8.7.1

More information

ZF 286 A. Marine Propulsion Systems

ZF 286 A. Marine Propulsion Systems Marine Propulsion Systems 7 Down angle, direct mount marine transmission. Description Reverse reduction marine transmission with hydraulically actuated multi-disc clutches. Suitable for high performance

More information

ZF 88 C. Marine Propulsion Systems

ZF 88 C. Marine Propulsion Systems Marine Propulsion Systems Co-axial, direct mount marine transmission. Description Reverse reduction marine transmission with hydraulically actuated multi-disc clutches. Suitable for high performance applications

More information

Contents 1 General on Ship Design 2 Selection of Main Dimensions and Calculation of Basic Ship Design Values

Contents 1 General on Ship Design 2 Selection of Main Dimensions and Calculation of Basic Ship Design Values Contents 1 General on Ship Design... 1 1.1 Conventional and Advanced Marine Vehicles... 1 1.2 Maritime Transport Innovative Design Concepts, Energy Efficiency and Environmental Impact... 4 1.3 Introduction

More information

ZF 63. Marine Propulsion Systems

ZF 63. Marine Propulsion Systems Marine Propulsion Systems Vertical offset, direct mount marine transmission. Description Reverse reduction marine transmission with hydraulically actuated multi-disc clutches. Suitable for high performance

More information

ZF 665 ATS. Marine Propulsion Systems

ZF 665 ATS. Marine Propulsion Systems Marine Propulsion Systems 10 Down angle, direct mount marine transmission. Description Fully works tested, reliable and simple to install. Design, manufacture and quality control standards comply with

More information

ZF NR2B. Marine Propulsion Systems

ZF NR2B. Marine Propulsion Systems Marine Propulsion Systems Vertical offset, remote mount marine transmission. Description Design, manufacture and quality control standards comply with ISO 9001 and AQAP. Marine transmission with reduction

More information

ZF 25 Vertical offset, direct mount marine transmission.

ZF 25 Vertical offset, direct mount marine transmission. Marine Propulsion Systems Vertical offset, direct mount marine transmission. Description Maximum Input** Duty kw hp RPM Pleasure 178 239 5500 Light 136 183 5500 Medium 116 156 5500 Continuous 55 73 3200

More information

T24C1 T24C m 3 Chemical & Product Tanker

T24C1 T24C m 3 Chemical & Product Tanker 20 000 m 3 Chemical & Product Tanker Brief description 20 000 m 3 Chemical & Product Tanker GENERAL The FKAB is a 20 000 m 3, TIER III oil product tanker for chemicals (IMO II and III) and oil products.

More information

ZF NR2H. Marine Propulsion Systems

ZF NR2H. Marine Propulsion Systems Marine Propulsion Systems Horizontal offset, remote mount marine transmission. Description 2 shaft non reverse reduction transmission with hydraulic clutch mounted on the input shaft. Horizontal offset.

More information

DESIGN DATA SHEET CALCULATION OF SURFACE SHIP ENDURANCE FUEL REQUIREMENTS DEPARTMENT OF THE NAVY NAVAL SEA SYSTEMS COMMAND WASHINGTON, DC

DESIGN DATA SHEET CALCULATION OF SURFACE SHIP ENDURANCE FUEL REQUIREMENTS DEPARTMENT OF THE NAVY NAVAL SEA SYSTEMS COMMAND WASHINGTON, DC DDS 200-1 REV 1 DESIGN DATA SHEET CALCULATION OF SURFACE SHIP ENDURANCE FUEL REQUIREMENTS DEPARTMENT OF THE NAVY NAVAL SEA SYSTEMS COMMAND WASHINGTON, DC 20376-5124 DISTRIBUTION STATEMENT A. APPROVED FOR

More information

ZF 360 IV. Marine Propulsion Systems

ZF 360 IV. Marine Propulsion Systems Marine Propulsion Systems 14 V-drive, direct mount marine transmission. Description Reverse reduction marine transmission with hydraulically actuated multi-disc clutches. Suitable for high performance

More information

ZF 665 TS. Marine Propulsion Systems

ZF 665 TS. Marine Propulsion Systems Marine Propulsion Systems Vertical offset, direct mount marine transmission. Description Fully works tested, reliable and simple to install. Design, manufacture and quality control standards comply with

More information

ZF 45 C Co-axial, direct mount marine transmission.

ZF 45 C Co-axial, direct mount marine transmission. Marine Propulsion Systems Co-axial, direct mount marine transmission. Maximum Input** Duty kw hp RPM Pleasure 305 409 5500 Light 227 305 5500 ** Must not be exceeded Description Reverse reduction marine

More information

1.2 For the purpose of this UR, the following definitions apply: Low-Speed Engines means diesel engines having a rated speed of less than 300 rpm.

1.2 For the purpose of this UR, the following definitions apply: Low-Speed Engines means diesel engines having a rated speed of less than 300 rpm. (Feb 2015) (Corr.1 June 2016) Type Testing of I.C. Engines 1. General 1.1 Type approval of I.C. engine types consists of drawing approval, specification approval, conformity of production, approval of

More information

1100 Series M250C Marine Propulsion Engine 186 kw ( rpm

1100 Series M250C Marine Propulsion Engine 186 kw ( rpm These are the latest addition to the common platform concept of 1106 Series diesel engines. Assembled on a new high technology production line, these ultra clean engines will provide a superior replacement

More information

M-24 OUTBORD ENGINES

M-24 OUTBORD ENGINES Guideline No.: M-24(201510) M-24 OUTBORD ENGINES Issued date: October 20,2015 China Classification Society Foreword: This Guide is a part of CCS Rules, which contains technical requirements, inspection

More information

(Chapter II-1, Regulations 29.1, , 29.3, 29.4, , 29.14, 28.3 and 30.2)

(Chapter II-1, Regulations 29.1, , 29.3, 29.4, , 29.14, 28.3 and 30.2) (Jan 2011) (Corr.1 Aug 2011) (Rev.1 Apr 2016) Arrangements for steering capability and function on ships fitted with propulsion and steering systems other than traditional arrangements for a ship s directional

More information

UNIFIED INTERPRETATION OF PROVISIONS OF IMO SAFETY, SECURITY, AND ENVIRONMENT RELATED CONVENTIONS

UNIFIED INTERPRETATION OF PROVISIONS OF IMO SAFETY, SECURITY, AND ENVIRONMENT RELATED CONVENTIONS E SUB-COMMITTEE ON SHIP SYSTEMS AND EQUIPMENT 4th session Agenda item 12 11 January 2017 Original: ENGLISH UNIFIED INTERPRETATION OF PROVISIONS OF IMO SAFETY, SECURITY, AND ENVIRONMENT RELATED CONVENTIONS

More information

ZF 85 IV 12 V-drive, direct mount marine transmission.

ZF 85 IV 12 V-drive, direct mount marine transmission. Marine Propulsion Systems 12 V-drive, direct mount marine transmission. Maximum Input** Duty kw hp RPM Pleasure 389 522 3500 Light 365 489 3500 Medium 311 416 3500 Continuous 232 311 3200 ** Must not be

More information

Jan-Erik Räsänen, ABB Marine and Cranes/Tanker day Spore, ABB Marine Energy Efficiency Tanker day Singapore Oct 11th 2013

Jan-Erik Räsänen, ABB Marine and Cranes/Tanker day Spore, ABB Marine Energy Efficiency Tanker day Singapore Oct 11th 2013 Jan-Erik Räsänen, ABB Marine and Cranes/Tanker day Spore, 11.10.2013 ABB Marine Energy Efficiency Tanker day Singapore Oct 11th 2013 ABB Group October 11, 2013 Slide 1 ABB Marine Energy Efficiency Content

More information

Engines for Blue Water Craft TDI BW TDI BW

Engines for Blue Water Craft TDI BW TDI BW S U P E R I O R T E C H N O L O G Y Engines for Blue Water Craft TDI 140-5 BW TDI 230-6 BW Engines for Blue Water Craft S U P E R I O R T E C H N O L O G Y Since our very beginning, Volkswagen Marine has

More information

Main changes in BV Rules for Steel Ships

Main changes in BV Rules for Steel Ships Main changes in BV Rules for Steel Ships Main changes in Bureau Veritas Rules for the Classification of Steel Ships (July 2018 edition, into force on July 1st, 2018), regarding the previous edition (January

More information

ST. VINCENT AND THE GRENADINES

ST. VINCENT AND THE GRENADINES ST. VINCENT AND THE GRENADINES MARITIME ADMINISTRATION CIRCULAR N POL 012 AMENDMENTS OF THE SUPPLEMENT (FORM A AND B) OF THE IOPP CERTIFICATE TO: SHIPOWNERS, SHIPS OPERATORS AND MANAGERS, MASTERS, RECOGNIZED

More information

150 MARINE ENGINEERING CRAFT

150 MARINE ENGINEERING CRAFT EXAMINATION STRUCTURE The trade consists of the following trade related courses: 191 General Metal Work 193 Building/Engineering Drawing 194 Basic Electricity EXAMINATION SCHEME 150 MARINE ENGINEERING

More information

ZF 9050 NR2H Horizontal offset, remote mount marine transmission.

ZF 9050 NR2H Horizontal offset, remote mount marine transmission. Marine Propulsion Systems Horizontal offset, remote mount marine transmission. Maximum Input** Duty kw hp RPM Pleasure 3694 4950 2300 Light 3440 4609 2300 Medium 2931 3928 2300 Continuous 2395 3209 2300

More information

ZF 9000 NR2H. Marine Propulsion Systems

ZF 9000 NR2H. Marine Propulsion Systems Marine Propulsion Systems Horizontal offset, remote mount marine transmission. Description 2 shaft non reverse reduction transmission for waterjet applications and ccp`s. Hydraulic clutch mounted on the

More information

ZF 85 IV. Marine Propulsion Systems

ZF 85 IV. Marine Propulsion Systems Marine Propulsion Systems 12 V-drive, direct mount marine transmission. Description Reverse reduction marine transmission with hydraulically actuated multi-disc clutches. Suitable for high performance

More information

HYDRAULIC STEERING & ACCESSORIES ELECTRONIC CONTROLS PNEUMATIC CONTROLS PUSH-PULL CONTROLS DISC BRAKES

HYDRAULIC STEERING & ACCESSORIES ELECTRONIC CONTROLS PNEUMATIC CONTROLS PUSH-PULL CONTROLS DISC BRAKES HYDRAULIC STEERING & ACCESSORIES ELECTRONIC CONTROLS PNEUMATIC CONTROLS PUSH-PULL CONTROLS DISC BRAKES FOR THE LATEST INFORMATION PLEASE VISIT www.kobelt.com CONTROL YOUR SHIP WITH COMPLETE SYSTEMS AND

More information

Y-fl'. MINISTRY OF TRANSPORT AND COMMUNICATIONS DEPARTMENT OF MARINE ADMINISTRATION

Y-fl'. MINISTRY OF TRANSPORT AND COMMUNICATIONS DEPARTMENT OF MARINE ADMINISTRATION MINISTRY OF TRANSPORT AND COMMUNICATIONS DEPARTMENT OF MARINE ADMINISTRATION No-363/421, Corner of Merchant & Theinbyu Road, Botataung Township, Yangon, Myanmar E-mail : d gdma.mm@ gmail.com; dma.myan@smail.com

More information

ZF 9050 NR2. Marine Propulsion Systems

ZF 9050 NR2. Marine Propulsion Systems Marine Propulsion Systems Vertical offset, remote mount marine transmission. Description 2 shaft non reverse reduction transmission for waterjet applications and ccp`s. Input shaft vertical obove the output

More information

FAR FROM THE COASTS, CLOSE TO THE BEST CHOICE YOU EVER MADE

FAR FROM THE COASTS, CLOSE TO THE BEST CHOICE YOU EVER MADE FAR FROM THE COASTS, CLOSE TO THE BEST CHOICE YOU EVER MADE Absolute expertise, absolute accuracy, absolute reliability. Nothing else. M.E.P. Pellegrini Marine Equipments proposes a complete fshore crane

More information

KEEL MARINE LTD Naval Architects, Marine Engineers and Surveyors

KEEL MARINE LTD Naval Architects, Marine Engineers and Surveyors KEEL MARINE LTD Naval Architects, Marine Engineers and Surveyors Ridgeway Office Park, Unit 6 8 Bedford Road, Petersfield, GU32 3QF UNITED KINGDOM 18 m Wind Farm Support Vessel Outline Specification GENERAL

More information

Hydraulic lift crane LR 1110 LR

Hydraulic lift crane LR 1110 LR Hydraulic lift crane LR 111 EN LR 11.2 Concept and characteristics LR 111 Standard Excellent lifting capacities thanks to optimized distribution of forces New cabin with improved and ergonomic operating

More information

Off-Highway Drive and Motion Technologies Deck Cranes. Brevini motion systems from Dana for deck crane applications

Off-Highway Drive and Motion Technologies Deck Cranes. Brevini motion systems from Dana for deck crane applications Off-Highway Drive and Motion Technologies Deck Cranes Brevini motion systems from Dana for deck crane applications Dana Your Single Source for Motion Systems to Support Deck Cranes A Trusted Partner PROVEN

More information

Mandatory Ship Type and Enhanced Survey Programme (ESP) Notations

Mandatory Ship Type and Enhanced Survey Programme (ESP) Notations (1993) (Rev 1 1996) (Rev.2 June 2000) (Rev.3 July 2004) (Rev.4 Mar 2011) (Rev.5 Sept 2015) Mandatory Ship Type and Enhanced Survey Programme (ESP) Notations 1 PREAMBLE 1.1 The regime of enhanced surveys

More information

2013 THERMAL ENGINEERING-I

2013 THERMAL ENGINEERING-I SET - 1 II B. Tech II Semester, Regular Examinations, April/May 2013 THERMAL ENGINEERING-I (Com. to ME, AME) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~

More information