Planes, Trains and Stationary Power

Size: px
Start display at page:

Download "Planes, Trains and Stationary Power"

Transcription

1 Planes, Trains and Stationary Power

2 Outline Product Portfolio Thermodynamic Cycles (Gas Turbine, Diesel, Natural Gas) Fuels Perspective / Renewables

3 Outline Product Portfolio Thermodynamic Cycles (Gas Turbine, Diesel, Natural Gas) Fuels Perspective / Renewables

4 GE Commercial Aviation Portfolio 10 klbs thrust 20 klbs thrust 30 klbs thrust 40 klbs thrust 50 klbs thrust 60 klbs thrust 70 klbs thrust 80 klbs thrust 90 klbs thrust 100 klbs thrust 110 klbs thrust CF-34 CF6 GP7200 CFM-56 GEnx GE-90 ~ 24,000 lbs/hr at TO

5 GE Transportation Product Portfolio Multiple configurations available (I6, I8, V12, V16) 100 kw 200 kw 300 kw 400 kw 600 kw 1000 kw 2000 kw 3000 kw 4000 kw 6000 kw kw 1500 lbs/hr at Notch kw ( bhp) GEVO/ kw ( bhp) V kw (3685 bhp) P616

6 Jenbacher Product Portfolio Lean-burn combustion systems Electrical Efficiency up to 45% Thermal Efficiency up to 50% kw ( bhp) Type kw ( bhp) Type kw ( bhp) Type kw ( bhp) Type kw ( bhp) Type 2

7 Waukesha Product Portfolio Multiple configurations available Lean-burn and rich-burn combustion systems ( bhp) 275GL ( bhp) APG ( bhp) VGF bhp) VHP

8 Outline Product Portfolio Ideal Cycles (Gas Turbine, Diesel, Natural Gas) Fuels Perspective / Renewables

9 Modern Aircraft Engine Bypass Air Core Air BypassRatio = MassFlowRate_ BypassAir MassFlowRate_ Core

10 Modern Aircraft Engine Vflight Thrust Device (I.e. Aircraft Engine) Vexit From conservation of momentum 1) Power Required to Propel Aircraft= mdot(v exit -V flight )*V flight From first law 2) Power Delivered To Exhaust Jet= mdot(v 2 exit-v 2 flight)/2 mdot(v exit -V flight )*V flight mdot(v 2 exit-v 2 flight)/2 Efficiency is more than just thermal efficiency Propulsive Efficiency Target High Bypass Ratio Engines Thrust from HIGH mdot, LOW delta V. Big, Low pressure ratio fans

11 Gas Turbine Basics Efficiency Run Engines to high pressure ratios for efficiency Power Specific Density Work Run engines hot for high efficiency and power density Hotter Engine Temp Ratio=5.5 Temp Ratio=6.0 Temp Ratio= Pressure Ratio Pressure Ratio

12 Gas Turbine Cycle (Brayton Cycle) Aircraft Engine Cycle is not a Brayton Cycle but the basics still drive efficiency Increase Thermal Efficiency-Pressure Ratio, Temperature Ratio Increase Propulsive Efficiency- Bypass ratio Increase Component Efficiencies- LPT Reduce Component Cooling- HPT

13 Increase Propulsive Efficiency..Open Rotor What is open Rotor? - Means of getting ultra high bypass ratio / high propulsive efficiency - Resembles a turboprop - Two counter-rotating blade rows - Acoustics is a challenge

14 Increased Thermal Efficiency. Pulsed Detonation What is Pulsed Detonation? Unsteady Combustion Process Unlike gas turbine, pressure rises across the combustor Traveling shock wave propagates through fuel air mixture Video Potential step change in thermodynamic efficiency

15 Beyond Gas Turbines Hybrid Image (NASA/ The Boeing Company) Hybridization for Aircraft Concepts are being actively researched Gas turbine for takeoff Electric Motor utilization depending on range

16 Outline Product Portfolio Thermodynamic Cycles (Gas Turbine, Diesel, Natural Gas) Fuels Perspective

17 Diesel Cycle Modern Diesel Cycle different from ideal cycle but.. Improved cycle efficiency comes from Increasing the expansion ratio. Extreme Miller Cycle, Two Stage Turbocharging Reducing air handling losses Reducing heat transfer losses

18 Hybrid Loco Recover and store wasted dynamic braking energy Save fuel & increase power 10-15% fuel savings also +2,000 HP boost Technology Highlights Locomotive power management Battery charging & power control Advanced batteries: all-temp, long life

19 Electric Turbocompounding? p 2 3 Engine + Power Turbine Waste Heat Recovery via mechanical means Save fuel & increase power p EO 4 Turbocharging + Turbocompounding Power Source 5% fuel savings also p HP boost V c V c +V d C T CAC T Cylinders Turbocompound V Technology Highlights Increases total expansion downstream of engine Reduces thermodynamic losses that take place at exhaust valve opening Speed of auxiliary turbine can be regulated by load and optimized for efficiency Provides overall BSFC reduction

20 Outline Product Portfolio Thermodynamic Cycles (Gas Turbine, Diesel, Natural Gas) Fuels Perspective / Renewables

21 Natural Gas Engines SI NG engine resembles an Otto cycle. Improved cycle efficiency comes from: Extreme Miller Cycle with High Compression Ratio and Two-Stage Charging Combustion optimization including Pressure Based Controls Waste heat recovery

22 Natural Gas Engines- Operability Range 30 Compression Ratio Baseline Compression Ratio increase 25 BMEP [bar] Knock Ignition system, Control, etc. EIVC / LIVC Opt. Combustion concept Opt. cooling Control, etc. Misfire 5 Lambda [-]

23 Natural Gas Engines- J920 Rapid Burn Pre-Chamber Combustion Heat 920 rapid Release combustion Rate Open chamber - Open chamber - Conventional pre chamber PC - J920 prechamber Ultra lean rapid burn combustion Low NOx emissions High efficiency High stability low sensitivity Burn rate Burn rate [ CA] Crank angle

24 Natural Gas Engines- Two Stage Turbocharging Charging efficiency type6 J 624 TSTC J 920 PR ~ 10 type3 PR ~ 5.1 PR~ 10 type2 PR~ 4.5 PR ~ 3.5 time

25 Natural Gas Engines- Clean Cycle Clean Cycle is a production waste heat recovery system Clean Cycle TM 125 generator converts waste heat into electricity with no additional fuel or emissions The Clean Cycle TM is based on an organic rankine cycle. Similar to a steam cycle except that it uses an organic fluid in place of water. Organic fluid allows the product to capture low-temperature heat. IPM Organic Rankine Cycle (ORC) Waste heat source

26 Outline Product Portfolio Thermodynamic Cycles (Gas Turbine, Diesel, Natural Gas) Fuels Perspective / Renewables

27 Fuel Price Outlook Up cycle continues Oil ($/bbl) Crude oil: Brent '02 '04 '06 '08 '10 '12 '14 '16 '18 ' N.Am. NG Disconnect Natural Gas ($/MMBtu) NG: Europe Border Index NG: US Henry Hub '02 '04 '06 '08 '10 '12 '14 '16 '18 ' Widening Spreads Normalized ($/MMBtu) Crude Oil: WTI NG: US H. Hub Coal: US CAPP '02 '04 '06 '08 '10 '12 '14 '16 '18 '20 With higher oil prices look for oil substitution Source: GE Energy, Fuel COE, May

28 Renewable energy Through 2010: 5-10%* Tolerate to accommodate 2010 to 2020: 10-20% Accommodate to embrace GW (Cumulative) Wind Solar PV Renewables w/o hydropower 4.0% 3.0% 2.0% 1.0% Total Energy % Source: GE Energy Analysis, EIA, DOE * Percentage of total energy use 28

29 Hybrid Power Plant Fuel Flex 50 Combined Cycle Power Plant - Developed from ground up for quick load response to grid demands and renewable swings - 61 % combined cycle efficiency Sun Tower (E-Solar technology) - Concentrated Solar Thermal - Array of mirrors focus energy on tower to boil water - Produces steam to augment combined cycle power plant Integrated Plant announced in Turkey for

30 Rethinking the role of gas Bridge Fuel Destination Fuel Old way of thinking Role of gas temporary bridge to low carbon economy US gas supply constrained US facing future of high import dependency New way of thinking Role of gas key long term solution to achieving a low carbon economy US gas supply abundant US facing a more secure energy future 30

31 Summary GE provides a wide range of engine technology including gas turbines, steam turbines, wind turbines, and recips Thermal efficiencies will continue to be driven largely by first principals (higher pressure ratios, temperature ratios, faster & leaner combustion, etc) But, efficiencies beyond thermal are a large focus Aircraft- Propulsive Efficiency Loco- hybrid systems, greater electrification Stationary Power Recips- Waste heat recovery Stationary Power (General)- Flex Efficiency GE s strategy regarding next generation engines / fuels is tied with renewables

32

33 Natural Gas Engines- Fuel Flex and tailor-made solutions Coal mine gas Landfill gas Island mode Sewage gas Associated petroleum gas Cogeneration (Natural gas) Special gases Greenhouse applications Biogas

Diesel Power Generating Plants. Introduction

Diesel Power Generating Plants. Introduction Diesel Power Generating Plants Introduction Steve Mackay Dean of Engineering Worked for 30 years in Industrial Automation 30 years experience in mining, oil and gas, electrical and manufacturing industries

More information

Powertrain Efficiency Technologies. Turbochargers

Powertrain Efficiency Technologies. Turbochargers Powertrain Efficiency Technologies Turbochargers Turbochargers increasingly are being used by automakers to make it possible to use downsized gasoline engines that consume less fuel but still deliver the

More information

Efficiency Increase of a High Performance Gas Engine for Distributed Power Generation

Efficiency Increase of a High Performance Gas Engine for Distributed Power Generation Efficiency Increase of a High Performance Gas Engine for Distributed Power Generation M. Grotz, R. Böwing, J. Lang and J. Thalhauser (GE) P. Christiner and A. Wimmer (LEC) February 27, 2015 Imagination

More information

The Future of Engine Technology

The Future of Engine Technology Airfinance Journal Roundtable Summit The Future of Engine Technology Samer Dajani Regional Marketing Director Expanded portfolio ( 07 Rev $, in billions) Commercial Engines Engines & Services Commercial

More information

Energy, the Environment and Transportation Natural Gas Reciprocating Engine Technolgy July 24, 2012

Energy, the Environment and Transportation Natural Gas Reciprocating Engine Technolgy July 24, 2012 Energy, the Environment and Transportation Natural Gas Reciprocating Engine Technolgy July 24, 2012 Introduction 2 Dave Petruska Engineering Manager at Woodward Licensed Professional Engineer (PE) BS and

More information

Chapter 9 GAS POWER CYCLES

Chapter 9 GAS POWER CYCLES Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 9 GAS POWER CYCLES Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

The Aircraft Engine Design Project Fundamentals of Engine Cycles

The Aircraft Engine Design Project Fundamentals of Engine Cycles GE Aviation The Aircraft Engine Design Project Fundamentals of Engine Cycles 1 Spring 2008 Peter Rock Earl Will DeShazer Ken Gould GE Aviation Technical History I-A - First U.S. jet engine (Developed in

More information

A Second Law Perspective on Critical IC Research for High Efficiency Low Emissions Gasoline Engines

A Second Law Perspective on Critical IC Research for High Efficiency Low Emissions Gasoline Engines A Second Law Perspective on Critical IC Research for High Efficiency Low Emissions Gasoline Engines University of Wisconsin Symposium on Low Emission Technologies for IC Engines June 8-9 25 J.T. Farrell,

More information

Chapter 9 GAS POWER CYCLES

Chapter 9 GAS POWER CYCLES Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 9 GAS POWER CYCLES Mehmet Kanoglu University of Gaziantep Copyright The McGraw-Hill

More information

ENGINE Demonstration Programmes in Clean Sky & Clean Sky 2

ENGINE Demonstration Programmes in Clean Sky & Clean Sky 2 ENGINE Demonstration Programmes in Clean Sky & Clean Sky 2 Jean-François BROUCKAERT SAGE & ENGINES ITD Project Officer Aerodays 2015, London, 20-23 October 2015 Innovation Takes Off Outline 1. Open-Rotor

More information

Welcome to Aerospace Engineering

Welcome to Aerospace Engineering Welcome to Aerospace Engineering DESIGN-CENTERED INTRODUCTION TO AEROSPACE ENGINEERING Notes 5 Topics 1. Course Organization 2. Today's Dreams in Various Speed Ranges 3. Designing a Flight Vehicle: Route

More information

Power Cycles. Ideal Cycles, Internal Combustion

Power Cycles. Ideal Cycles, Internal Combustion Gas Power Cycles Power Cycles Ideal Cycles, Internal Combustion Otto cycle, spark ignition Diesel cycle, compression ignition Sterling & Ericsson cycles Brayton cycles Jet-propulsion cycle Ideal Cycles,

More information

Chapter 6. Supercharging

Chapter 6. Supercharging SHROFF S. R. ROTARY INSTITUTE OF CHEMICAL TECHNOLOGY (SRICT) DEPARTMENT OF MECHANICAL ENGINEERING. Chapter 6. Supercharging Subject: Internal Combustion Engine 1 Outline Chapter 6. Supercharging 6.1 Need

More information

1. Combustion Engine Power Plants. Asko Vuorinen Aalto University

1. Combustion Engine Power Plants. Asko Vuorinen Aalto University 1. Combustion Engine Power Plants Asko Vuorinen 10.3.2016 Aalto University 1 Engine cycles Diesel Cycle Otto Cycle Combined Cycles 2 Diesel Cycle T P T 3 p = const 3 P=constant 2 Q 1 3 Q 1 T 2 4 T 1 Q

More information

CFM Technology. realizing the promise 50% LOWER NOX EMISSIONS. ANOTHER LEAP FORWARD FOR LEAP TECHNOLOGY.

CFM Technology. realizing the promise 50% LOWER NOX EMISSIONS. ANOTHER LEAP FORWARD FOR LEAP TECHNOLOGY. 50% LOWER NOX EMISSIONS. CFM Technology realizing the promise ANOTHER LEAP FORWARD FOR LEAP TECHNOLOGY. Bill Brown General Manger CFM Marketing June 2010 CFM International Proprietary Information The information

More information

Combustion engines. Combustion

Combustion engines. Combustion Combustion engines Chemical energy in fuel converted to thermal energy by combustion or oxidation Heat engine converts chemical energy into mechanical energy Thermal energy raises temperature and pressure

More information

Heat engine. Heat engine

Heat engine. Heat engine Heat engine Device that transforms heat into work. It requires two energy reservoirs at different temperatures An energy reservoir is a part of the environment so large wrt the system that its temperature

More information

Potential of Modern Internal Combustion Engines Review of Recent trends

Potential of Modern Internal Combustion Engines Review of Recent trends Potential of Modern Internal Combustion Engines Review of Recent trends David Kittelson Department of Mechanical Engineering University of Minnesota February 15, 2011 Outline Background Current engine

More information

What does the future bring?

What does the future bring? Gebhardt Lecture Georgia Institute of Technology January 23, 2014 Dr. M.J. Benzakein Director, Propulsion and Power Center What does the future bring? A look at Technologies for Commercial Aircraft in

More information

Content : 4.1 Brayton cycle-p.v. diagram and thermal efficiency. 4Marks Classification of gas turbines.

Content : 4.1 Brayton cycle-p.v. diagram and thermal efficiency. 4Marks Classification of gas turbines. Content : 4.1 Brayton cycle-p.v. diagram and thermal efficiency. 4Marks Classification of gas turbines. 4.2 Construction and working of gas turbines i) Open cycle ii) Closed cycle gas Turbines, P.V. and

More information

Electricity Technology in a Carbon-Constrained Future

Electricity Technology in a Carbon-Constrained Future Electricity Technology in a Carbon-Constrained Future March 15, 2007 PacifiCorp Climate Working Group Bryan Hannegan Vice President - Environment EPRI Role Basic Research and Development Collaborative

More information

LECTURE NOTES INTERNAL COMBUSTION ENGINES SI AN INTEGRATED EVALUATION

LECTURE NOTES INTERNAL COMBUSTION ENGINES SI AN INTEGRATED EVALUATION LECTURE NOTES on INTERNAL COMBUSTION ENGINES SI AN INTEGRATED EVALUATION Integrated Master Course on Mechanical Engineering Mechanical Engineering Department November 2015 Approach SI _ indirect injection

More information

Electrification of Vehicles in the Transportation Class

Electrification of Vehicles in the Transportation Class Electrification of Vehicles in the Transportation Class 1 Amy Jankovsky Co-Contributors: Dr. Cheryl Bowman, Ralph Jansen, Dr. Rodger Dyson NASA Glenn Research Center AIAA Aviation 2017, June 5-9, 2017

More information

Technologies for Clean Engines Future Power Train 2019

Technologies for Clean Engines Future Power Train 2019 Technologies for Clean Engines Future Power Train 2019 February 2019 Professor Robert Morgan Joint Secretary of UnICEG Deputy Head of the AEC Scope of presentation 2 What I won t do - make a case for the

More information

ME3264: LAB 9 Gas Turbine Power System

ME3264: LAB 9 Gas Turbine Power System OBJECTIVE ME3264: LAB 9 Gas Turbine Power System Professor Chih-Jen Sung Spring 2013 A fully integrated jet propulsion system will be used for the study of thermodynamic and operating principles of gas

More information

COOPERATIVE PATENT CLASSIFICATION

COOPERATIVE PATENT CLASSIFICATION CPC - Y02T - 2014.07 - Interleaved - page 1 CPC COOPERATIVE PATENT CLASSIFICATION Y02T CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION WARNING - Subclass Y02T and its groups are not complete

More information

New propulsion systems for non-road applications and the impact on combustion engine operation

New propulsion systems for non-road applications and the impact on combustion engine operation Research & Technology, New Propulsion Systems (TR-S) New propulsion systems for non-road applications and the impact on combustion engine operation London, 14 th March 2014, Benjamin Oszfolk Content 1

More information

Chapter 8 Production of Power from Heat

Chapter 8 Production of Power from Heat Chapter 8 Production of Power from Heat Different sources of power, such as solar energy (from sun), kinetic energy from atmospheric winds and potential energy from tides. The most important source of

More information

Engine Technology Development to Address Local Air Quality Concerns

Engine Technology Development to Address Local Air Quality Concerns Engine Technology Development to Address Local Air Quality Concerns John Moran Corporate Specialist Combustion Rolls-Royce Associate Fellow - Combustion Overview This presentation summarizes material presented

More information

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines ADVANCED COMBUSTION SYSTEMS AND ALTERNATIVE POWERPLANTS The Lecture Contains: DIRECT INJECTION STRATIFIED CHARGE (DISC) ENGINES Historical Overview Potential Advantages of DISC Engines DISC Engine Combustion

More information

Ignition Improvements to Support High-efficiency Natural Gas Combustion

Ignition Improvements to Support High-efficiency Natural Gas Combustion Ignition Improvements to Support High-efficiency Natural Gas Combustion 2005 UW ERC Symposium on Low- Emissions Combustion Technologies for Internal Combustion Engines Corey Honl Sr. Development Engineer

More information

HTS Machines for Applications in All-Electric Aircraft

HTS Machines for Applications in All-Electric Aircraft University Research Engineering Technology Institute on Aeropropulsion & Power Technology Power Engineering Society General Meeting 2007 HTS Machines for Applications in All-Electric Aircraft Philippe

More information

SuperGen - Novel Low Cost Electro-Mechanical Mild Hybrid and Boosting System. Jason King, Chief Engineer

SuperGen - Novel Low Cost Electro-Mechanical Mild Hybrid and Boosting System. Jason King, Chief Engineer SuperGen - Novel Low Cost Electro-Mechanical Mild Hybrid and Boosting System Jason King, Chief Engineer FPC2015 Quick overview of Integral Powertrain (IPT) SuperGen concept Analysis results Test results

More information

FUEL FLEXIBLE, ULTRALOW-EMISSIONS COMBUSTION SYSTEM FOR INDUSTRIAL GAS TURBINES

FUEL FLEXIBLE, ULTRALOW-EMISSIONS COMBUSTION SYSTEM FOR INDUSTRIAL GAS TURBINES US DEPARTMENT OF ENERGY COOPERATIVE AGREEMENT NO. DE-FC02-00CH11053 FUEL FLEXIBLE, ULTRALOW-EMISSIONS COMBUSTION SYSTEM FOR Peer Review - March 2002 Ian Critchley, Honeywell - Principal Investigator 3/20/2002-1

More information

End of Book Questions Chapter 7 Aircraft Power Plants

End of Book Questions Chapter 7 Aircraft Power Plants End of Book Questions Chapter 7 Aircraft Power Plants 7-1. What engine does NOT draw air from the outside to fuel the combustion process? A. Gas turbine B. Rocket C. Turboprop D. Turboshaft 7-2. How many

More information

Combustion Systems What we might have learned

Combustion Systems What we might have learned Combustion Systems What we might have learned IMechE ADSC, 6 December 2012 Chris Whelan Contents Engines Big & Small Carnot, Otto & Diesel Thermodynamic Cycles Combustion Process & Systems Diesel & Otto

More information

Low pressure gas engines The industry standard. CIMAC discussion Athens 22. January 2015 Marcel Ott, General Manager, DF Technology

Low pressure gas engines The industry standard. CIMAC discussion Athens 22. January 2015 Marcel Ott, General Manager, DF Technology Low pressure gas engines The industry standard CIMAC discussion Athens 22. January 2015 Marcel Ott, General Manager, DF Technology Development path for gas powered marine engines 29 km3 LNGC MV Venator

More information

Advanced gas turbine power cycles

Advanced gas turbine power cycles Advanced gas turbine power cycles Chris Hodrien INLET FUEL INLET COMPRESSOR COMBUSTORS POWER TURBINE EXHAUST Typical aero-derivative GE LM6000, 40 MW Heavy-duty GT (GE9H) 370 tonnes GT design convergence

More information

Introduction to Gas Turbine Engines

Introduction to Gas Turbine Engines Introduction to Gas Turbine Engines Introduction Gas Turbine Engine - Configurations Gas Turbine Engine Gas Generator Compressor is driven by the turbine through an interconnecting shaft Turbine is driven

More information

Gas Power System. By Ertanto Vetra

Gas Power System. By Ertanto Vetra Gas Power System 1 By Ertanto Vetra Outlines Introduction Internal Combustion Engines Otto Cycles Diesel Cycles Gas Turbine Cycles Gas Turbine Based Combined Cycles Gas Turbines for Aircrafts Turbojets

More information

Gas Turbine Power Plant Mr.B.Ramesh, M.E.,(Ph.D)

Gas Turbine Power Plant Mr.B.Ramesh, M.E.,(Ph.D) Gas Turbine Power Plant By Mr.B.Ramesh, M.E.,(Ph.D) Research Scholar, CEG, Anna University, Chennai. Associate Professor of Mechanical Engineering, St. Joseph s College of Engineering, Jeppiaar Trust,

More information

Natural Gas in High Horsepower Engine Applications

Natural Gas in High Horsepower Engine Applications The global leader in natural gas engines. Our products work here to keep this clear. Natural Gas in High Horsepower Engine Applications Westport Innovations Dale Goudie, PEng Overview Introduction to Westport

More information

Introduction. Internal Combustion Engines

Introduction. Internal Combustion Engines Introduction Internal Combustion Engines Internal Combustion Engines A heat engine that converts chemical energy in a fuel into mechanical energy. Chemical energy first converted into thermal energy (Combustion)

More information

VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE

VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE Page 1 of 13 EFFECT OF VALVE TIMING DIAGRAM ON VOLUMETRIC EFFICIENCY: Qu. 1:Why Inlet valve is closed after the Bottom Dead Centre

More information

Turbocharging: Key technology for high-performance engines

Turbocharging: Key technology for high-performance engines Engine technology Turbocharging: Key technology for high-performance engines Authors: Dr. Johannes Kech Head of Development Turbocharging Ronald Hegner Team Leader, Design of Turbocharging Systems Tobias

More information

Climate change challenge

Climate change challenge Climate Change & GE s ecomagination Strategy Vijayant Singh Climate change challenge Why an aviation issue emissions are growing Ground level partially regulated Targeted smog and ozone control: NOx, HC,

More information

Ken Pendlebury. Director, Gasoline Engines Ricardo UK Ltd. Sponsors

Ken Pendlebury. Director, Gasoline Engines Ricardo UK Ltd. Sponsors Ken Pendlebury Director, Gasoline Engines Ricardo UK Ltd Sponsors Gasoline Engines in an Electrified World CENEX LCV September 2017 Ken Pendlebury, Director, Technical Consultants, Ricardo A decade of

More information

Paper No: 05-IAGT-1.1 INDUSTRIAL APPLICATION OF GAS TURBINES COMMITTEE

Paper No: 05-IAGT-1.1 INDUSTRIAL APPLICATION OF GAS TURBINES COMMITTEE Paper No: 05-IAGT-1.1 INDUSTRIAL APPLICATION OF GAS TURBINES COMMITTEE Mercury 50 Field Evaluation and Product Introduction by David Teraji of Solar Turbines Incorporated San Diego, California, USA 1 AUTHORS

More information

Application of the SuperGen Electro-Mechanical Supercharger to Miller-Cycle Gasoline Turbocharged Engines

Application of the SuperGen Electro-Mechanical Supercharger to Miller-Cycle Gasoline Turbocharged Engines Application of the SuperGen Electro-Mechanical Supercharger to Miller-Cycle Gasoline Turbocharged Engines A. H. Guzel, J. Martin North American GT Conference 2017 11/14/2017 1 Overview Program Goal & Technology

More information

Introduction to Aerospace Propulsion

Introduction to Aerospace Propulsion Introduction to Aerospace Propulsion Introduction Newton s 3 rd Law of Motion as the cornerstone of propulsion Different types of aerospace propulsion systems Development of jet engines Newton s Third

More information

Numerical simulation of detonation inception in Hydrogen / air mixtures

Numerical simulation of detonation inception in Hydrogen / air mixtures Numerical simulation of detonation inception in Hydrogen / air mixtures Ionut PORUMBEL COMOTI Non CO2 Technology Workshop, Berlin, Germany, 08.03.2017 09.03.2017 Introduction Objective: Development of

More information

ADVANTAGES OF GTE s Weight reduction of 70% Simplicity Reduced manning requirements Quicker response time Faster Acceleration/deceleration Modular rep

ADVANTAGES OF GTE s Weight reduction of 70% Simplicity Reduced manning requirements Quicker response time Faster Acceleration/deceleration Modular rep USES OF GAS TURBINE ENGINES Aircraft Engines Main Propulsion Arleigh Burke, Tichonderoga, Spruance, Oliver Hazard Perry LCACS, Pegasus Auxiliary Applications Electric generators ADVANTAGES OF GTE s Weight

More information

Innovation Takes Off. Not legally binding

Innovation Takes Off. Not legally binding Innovation Takes Off Not legally binding Clean Sky 2 Information Day dedicated to the 1 st Call for Proposals (CFP01) Innovation Takes Off Engine ITD François Mirville, SAFRAN/Snecma Keith Nurney, Rolls-Royce

More information

A FEASIBILITY STUDY ON WASTE HEAT RECOVERY IN AN IC ENGINE USING ELECTRO TURBO GENERATION

A FEASIBILITY STUDY ON WASTE HEAT RECOVERY IN AN IC ENGINE USING ELECTRO TURBO GENERATION A FEASIBILITY STUDY ON WASTE HEAT RECOVERY IN AN IC ENGINE USING ELECTRO TURBO GENERATION S.N.Srinivasa Dhaya Prasad 1 N.Parameshwari 2 1 Assistant Professor, Department of Automobile Engg., SACS MAVMM

More information

Future Large Civil Propulsion The Need for Speed?

Future Large Civil Propulsion The Need for Speed? RAeS Lecture, London 26 th May 2016 Future Large Civil Propulsion The Need for Speed? Phil Curnock Chief Engineer Civil Large Future Programmes 2016 Rolls-Royce plc The information in this document is

More information

Investing in Technology for a greener future

Investing in Technology for a greener future IACC Conference Investing in Technology for a greener future Vijayant Singh Regional marketing leader - APAC The information contained in this document is GE proprietary information and is disclosed in

More information

Gaseous Fuels in Transportation -- Prospects and Promise

Gaseous Fuels in Transportation -- Prospects and Promise Gaseous Fuels in Transportation -- Prospects and Promise Dr. James J. Eberhardt, Director U.S. Department of Energy Presented at the Gas Storage Workshop Kingston, Ontario, Canada July 11-12, 2001 OHVT

More information

Fuse: On-wing engine inspection

Fuse: On-wing engine inspection Figure 1 Assembled Commercial Turbofan Aircraft Engine -Trimetric View Figure 2 Assembled Commercial Turbofan Aircraft Engine Trimetric View - Partial Cutaway 1 1. Fan 2. Low Pressure Compressor (Booster)

More information

1. Aero-Science B.Sc. Aero Science-I Total Mark: 100 Appendix A (Outlines of Tests) Aero-Engines : 100 Marks

1. Aero-Science B.Sc. Aero Science-I Total Mark: 100 Appendix A (Outlines of Tests) Aero-Engines : 100 Marks 1. Aero-Science B.Sc. Aero Science-I Total Mark: 100 Appendix A (Outlines of Tests) Aero-Engines : 100 Marks Note:- The questions will be set in each paper. Candidates are to attempt any five except in

More information

LIFE13 ENV/FR/ ORC TECHNOLOGY GENERAL PRESENTATION OPEN DAY ANCONA, 08 SEPT Pierre LEDUC Pascal SMAGUE IFPEN

LIFE13 ENV/FR/ ORC TECHNOLOGY GENERAL PRESENTATION OPEN DAY ANCONA, 08 SEPT Pierre LEDUC Pascal SMAGUE IFPEN LIFE13 ENV/FR/000851 ORC TECHNOLOGY GENERAL PRESENTATION OPEN DAY ANCONA, 08 SEPT. 2017 1 Pierre LEDUC Pascal SMAGUE IFPEN WHO IS IFPEN? A French public-sector Research & Innovation body A training center

More information

Potentials for Efficiency Improvement of Gas Engines

Potentials for Efficiency Improvement of Gas Engines Potentials for Efficiency Improvement of Gas Engines Dr. Shinsuke Murakami Development Engineer Commercial and Large Engines Engineering and Technology Powertrain Systems 1 Content Fuel Efficiency Are

More information

Week 10. Gas Power Cycles. ME 300 Thermodynamics II 1

Week 10. Gas Power Cycles. ME 300 Thermodynamics II 1 Week 10 Gas Power Cycles ME 300 Thermodynamics II 1 Today s Outline Gas power cycles Internal combustion engines Four-stroke cycle Thermodynamic cycles Ideal cycle ME 300 Thermodynamics II 2 Gas Power

More information

Laser Spark Ignition for Advanced Reciprocating Engines

Laser Spark Ignition for Advanced Reciprocating Engines Laser Spark Ignition for Advanced Reciprocating Engines Presenter: Mike McMillian December 3, 2003 2003 Distributed Energy Peer Review ARES Overview: Program Benefits The ARES Program provides greater

More information

Development of High-efficiency Gas Engine with Two-stage Turbocharging System

Development of High-efficiency Gas Engine with Two-stage Turbocharging System 64 Development of High-efficiency Gas Engine with Two-stage Turbocharging System YUTA FURUKAWA *1 MINORU ICHIHARA *2 KAZUO OGURA *2 AKIHIRO YUKI *3 KAZURO HOTTA *4 DAISUKE TAKEMOTO *4 A new G16NB gas engine

More information

Idealizations Help Manage Analysis of Complex Processes

Idealizations Help Manage Analysis of Complex Processes 8 CHAPTER Gas Power Cycles 8-1 Idealizations Help Manage Analysis of Complex Processes The analysis of many complex processes can be reduced to a manageable level by utilizing some idealizations (fig.

More information

Large Engines Competence Center

Large Engines Competence Center Large Engines Competence Center Meeting the Challenges for Tomorrow s Power Generation Using Variable Intake Valve Train for Gas Engines May 5 th, 2017 Jan Zelenka, Claudio Hoff 8 th CIMAC Cascades Helsinki

More information

Aerospace Propulsion Systems

Aerospace Propulsion Systems Brochure More information from http://www.researchandmarkets.com/reports/1288672/ Aerospace Propulsion Systems Description: Aerospace Propulsion Systems is a unique book focusing on each type of propulsion

More information

Powering a better world: Rolls-Royce and the environment

Powering a better world: Rolls-Royce and the environment Powering a better world: Rolls-Royce and the environment Tony Davis CEO Rolls-Royce Australasia RAeS New Zealand Division Sustainable Aviation Seminar, Wellington 28 March 2008 Rolls-Royce plc Civil Aerospace

More information

On-Demand Mobility Electric Propulsion Roadmap

On-Demand Mobility Electric Propulsion Roadmap On-Demand Mobility Electric Propulsion Roadmap Mark Moore, ODM Senior Advisor NASA Langley Research Center EAA AirVenture, Oshkosh July 22, 2015 NASA Distributed Electric Propulsion Research Rapid, early

More information

Operating Results of J-series Gas Turbine and Development of JAC

Operating Results of J-series Gas Turbine and Development of JAC 16 Operating Results of J-series Gas Turbine and Development of JAC MASANORI YURI *1 JUNICHIRO MASADA *2 SATOSHI HADA *3 SUSUMU WAKAZONO *4 Mitsubishi Hitachi Power Systems, Ltd. (MHPS) has continued to

More information

TMA Power,LLC Draft Engimeering Report ER032 A Rankine-Microturbine Power Plant for Generating Electricity January 2008

TMA Power,LLC Draft Engimeering Report ER032 A Rankine-Microturbine Power Plant for Generating Electricity January 2008 RANKINE MICROTURBINE POWER PLANT Jon W. Teets -TMA Power, LLC tmapower@cox.net J. Michael Teets -TMA Power,LLC tmapower@bellsouth.net www.tmapower.com ABSTRACT A Rankine-Microturbine Power Plant is a combined

More information

SOFC Development for Aircraft Application

SOFC Development for Aircraft Application SOFC Development for Aircraft Application G. Schiller German Aerospace Center (DLR) Institute of Technical Thermodynamics Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany 1 st International Workshop on

More information

Looking ahead into the future of turbocharging. Knowledge Library. borgwarner.com

Looking ahead into the future of turbocharging. Knowledge Library. borgwarner.com Looking ahead into the future of turbocharging Knowledge Library borgwarner.com Knowledge Library Looking ahead into the future of turbocharging Turbocharging system manufacturers are steadily increasing

More information

THE NEW POWER TO FUEL OUR FUTURE

THE NEW POWER TO FUEL OUR FUTURE THE NEW POWER TO FUEL OUR FUTURE Content The PowerCollector TM 4 HELLO WE ARE SOLARUS. WE ARE A NEW KIND OF COMPANY Technical specifications 6 We have an important story to tell about the PowerCollector.

More information

RANKINE -MICROTURBINE POWER PLANT

RANKINE -MICROTURBINE POWER PLANT RANKINE -MICROTURBINE POWER PLANT Jon W. Teets, TMA Power, LLC, tmapower@cox.net J. Michael Teets, TMA Power, LLC, tmapower@bellsouth.net ABSTRACT A Rankine-Microturbine Power Plant is a combined cycle

More information

German Weisser WÄRTSILÄ SWITZERLAND LTD. 3rd Technical Meeting 2013/14 of The Greek Section of The Society of Naval Architects and Marine Engineers

German Weisser WÄRTSILÄ SWITZERLAND LTD. 3rd Technical Meeting 2013/14 of The Greek Section of The Society of Naval Architects and Marine Engineers German Weisser WÄRTSILÄ SWITZERLAND LTD Current Trends in the Development of Large Two-Stroke Marine Diesel Engines in the Light of Significantly Changing Market Requirements and Environmental Regulations

More information

Challenges and Opportunities in Managing CO 2 in Petroleum Refining

Challenges and Opportunities in Managing CO 2 in Petroleum Refining Challenges and Opportunities in Managing CO 2 in Petroleum Refining Theresa J. Hochhalter ExxonMobil Research & Engineering Fairfax, VA GCEP Workshop on Carbon Management in Manufacturing Industries STANFORD

More information

Hybrid Electric Propulsion

Hybrid Electric Propulsion Europe-Japan Symposium Electrical Technologies for the Aviation of the Future Tokyo, Japan 26 th and 27 th of March 2015 Presented by JL Delhaye Prepared in collaboration with Peter ROSTEK Hybrid Electric

More information

Onboard DC Grid. Jan Fredrik DP Conference 2011; Houston. for enhanced DP operation in ships

Onboard DC Grid. Jan Fredrik DP Conference 2011; Houston. for enhanced DP operation in ships Onboard Grid Jan Fredrik Hansen @ DP Conference 2011; Houston for enhanced DP operation in ships Traditional System Onboard Grid Up to 20% fuel saving potential Quicker and more dynamic system performance

More information

Thermoelectric Network Meeting Engineering Challenges and the Thermoelectric Roadmap Market Applications and Future Activities

Thermoelectric Network Meeting Engineering Challenges and the Thermoelectric Roadmap Market Applications and Future Activities Thermoelectric Network Meeting Engineering Challenges and the Thermoelectric Roadmap Market Applications and Future Activities Dr Cedric Rouaud, Chief Engineer, Engines Product Group 2 Content Key market

More information

GT-Suite Users International Conference Frankfurt a.m., October 22 nd 2012

GT-Suite Users International Conference Frankfurt a.m., October 22 nd 2012 GT-Suite Users International Conference Frankfurt a.m., October 22 nd 2012 Computational Analysis of Internal and External EGR Strategies combined with Miller Cycle Concept for a Two Stage Turbocharged

More information

Internal Combustion Engines

Internal Combustion Engines Internal Combustion Engines Reading Problems 8-3 8-7 8-35, 8-45, 8-52 Definitions 1. spark ignition: a mixture of fuel and air is ignited by a spark plug applications requiring power to about 225 kw (300

More information

Press Release. For Worldwide Release: July 2, 2012 Release Number: EEPR1212. Caterpillar Introduces New Line of Gas Generator Sets

Press Release. For Worldwide Release: July 2, 2012 Release Number: EEPR1212. Caterpillar Introduces New Line of Gas Generator Sets Press Release For Worldwide Release: July 2, 2012 Release Number: EEPR1212 Caterpillar Introduces New Line of Gas Generator Sets PEORIA, IL Demonstrating a commitment to provide its customers with reliable

More information

A Research Oriented Study On Waste Heat Recovery System In An Ic Engine

A Research Oriented Study On Waste Heat Recovery System In An Ic Engine International Journal of Engineering Inventions e-issn: 2278-7461, p-issn: 2319-6491 Volume 3, Issue 12 [December. 2014] PP: 72-76 A Research Oriented Study On Waste Heat Recovery System In An Ic Engine

More information

51/60G. Four-stroke gas engine

51/60G. Four-stroke gas engine 51/60G Four-stroke gas engine MAN Diesel & Turbo is the world s leading designer and manufacturer of low and medium speed engines. Our involvement with electrical power generators goes back to 1904 when

More information

THERMAL MANAGEMENT SYNERGY THROUGH INTEGRATION PETE BRAZAS

THERMAL MANAGEMENT SYNERGY THROUGH INTEGRATION PETE BRAZAS THERMAL MANAGEMENT SYNERGY THROUGH INTEGRATION PETE BRAZAS 1 Propulsion System Trends Evolution of the TMM A Closer Look at Electrification System Integration Approach Outlook Powertrain Technology Roadmap

More information

D etonation in Light Aircraft

D etonation in Light Aircraft D etonation in Light Aircraft Yes it s true, the topic of pre-ignition and detonation has been previously written about in grueling detail. However, almost every article published on the subject broaches

More information

SAGD Cogeneration: Towards Lower Carbon Power & Oil Sands Production

SAGD Cogeneration: Towards Lower Carbon Power & Oil Sands Production SAGD Cogeneration: Towards Lower Carbon Power & Oil Sands Production David B. Layzell, PhD, FR. Professor and Director, Canadian Energy Systems Analysis Research (CESAR) Initiative, Univ. of Calgary. Web:

More information

What is the impact of changing patterns in energy markets on EU competitiveness? A refining industry perspective

What is the impact of changing patterns in energy markets on EU competitiveness? A refining industry perspective What is the impact of changing patterns in energy markets on EU competitiveness? A refining industry perspective Energy transition: A multifaceted Challenge for Europe 1 st Symposium, Brussels, 30 April

More information

Kazuhiro Yuki Niigata Power Systems Co., Ltd.

Kazuhiro Yuki Niigata Power Systems Co., Ltd. Advanced Development of Medium Speed Gas Engine Targeting to Marine Kazuhiro Yuki Niigata Power Systems Co., Ltd. Background Nowadays, regulation of exhaust emission from engines is becoming more strict

More information

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions Module 3: Influence of Engine Design and Operating Parameters on Emissions Effect of SI Engine Design and Operating Variables on Emissions The Lecture Contains: SI Engine Variables and Emissions Compression

More information

AERONAUTICAL ENGINEERING

AERONAUTICAL ENGINEERING AERONAUTICAL ENGINEERING SHIBIN MOHAMED Asst. Professor Dept. of Mechanical Engineering Al Ameen Engineering College Al- Ameen Engg. College 1 Aerodynamics-Basics These fundamental basics first must be

More information

FUNDAMENTALS OF POWER PLANTS. Asko Vuorinen

FUNDAMENTALS OF POWER PLANTS. Asko Vuorinen FUNDAMENTALS OF POWER PLANTS Asko Vuorinen 1 Engine cycles Carnot Cycle Otto Cycle Diesel Cycle Brayton Cycle Rankine Cycle Combined Cycles 2 Carnot Engine 3 Carnot Cycle 4 Carnot Cycle, continued Ideal

More information

Technical Challenges and Barriers Affecting Turbo-electric and Hybrid Electric Aircraft Propulsion

Technical Challenges and Barriers Affecting Turbo-electric and Hybrid Electric Aircraft Propulsion Technical Challenges and Barriers Affecting Turbo-electric and Hybrid Electric Aircraft Propulsion Dr. Ajay Misra Deputy Director, Research and Engineering NASA Glenn Research Center Keynote presentation

More information

UNECE Gas Centre/ESCWA Conference

UNECE Gas Centre/ESCWA Conference UNECE Gas Centre/ESCWA Conference T L Fletcher BSc NGVA Europe Chairman 1 Natural Gas as a Vehicle Fuel Natural Gas is a clean burning, abundant fuel; In both compressed (CNG) and liquefied (LNG) form,

More information

Ignition- and combustion concepts for lean operated passenger car natural gas engines

Ignition- and combustion concepts for lean operated passenger car natural gas engines Ignition- and combustion concepts for lean operated passenger car natural gas engines Patrik Soltic 1, Thomas Hilfiker 1 Severin Hänggi 2, Richard Hutter 2 1 Empa, Automotive Powertrain Technologies Laboratory,

More information

Meeting the Future of Combustion Engines

Meeting the Future of Combustion Engines CALL FOR PAPERS 19 CONGRESS VANCOUVER, JUNE 10-14, 2019 Meeting the Future of Combustion Engines 29th CIMAC WORLD CONGRESS Combustion Engine Technology for Ship Propulsion Power Generation Rail Traction

More information

Sensors & Controls. Everything you wanted to know about gas engine ignition technology but were too afraid to ask.

Sensors & Controls. Everything you wanted to know about gas engine ignition technology but were too afraid to ask. Everything you wanted to know about gas engine ignition technology but were too afraid to ask. Contents 1. Introducing Electronic Ignition 2. Inductive Ignition 3. Capacitor Discharge Ignition 4. CDI vs

More information

Energy Challenges and Costs for Transport & Mobility. 13th EU Hitachi Science and Technology Forum: Transport and Mobility towards 2050

Energy Challenges and Costs for Transport & Mobility. 13th EU Hitachi Science and Technology Forum: Transport and Mobility towards 2050 Energy Challenges and Costs for Transport & Mobility 13th EU Hitachi Science and Technology Forum: Transport and Mobility towards 25 Dr. Lewis Fulton Head, Energy Policy and Technology, IEA www.iea.org

More information

System Level Applications and Requirements

System Level Applications and Requirements Europe-Japan Symposium Electrical Technologies for the Aviation of the Future Tokyo, Japan 26 th and 27 th of March 2015 System Level Applications and Requirements Setting the Scene Johannes Stuhlberger

More information