Proceedings of the ASME Internal Combustion Engine Division 2009 Fall Technical Conference ICEF2009 September 20-24, 2009, Lucerne, Switzerland

Size: px
Start display at page:

Download "Proceedings of the ASME Internal Combustion Engine Division 2009 Fall Technical Conference ICEF2009 September 20-24, 2009, Lucerne, Switzerland"

Transcription

1 Proceedings of the ASME Internal Combustion Engine Division 9 Fall Technical Conference ICEF9 September -, 9, Lucerne, Switzerland ICEF9- CRANKCASE EMISSION CONTRIBUTIONS TO PM FOR TWO TIER NE-HAUL LOCOMOTIVES Dustin T. Osborne Southwest Research Institute Joseph McDonald United States EPA Imad Khalek Southwest Research Institute ABSTRACT This paper documents the quantification and characterization of particulate matter (PM) emitted from two Tier diesel locomotives, and the impact of crankcase ventilation (CCV) on PM. Emission testing was performed on one General Electric (GE) model ESDC locomotive, and one Electro-Motive Diesel (EMD) model SDACe. A semicontinuous organic carbon/elemental carbon (OC/EC) analytical procedure was used to collect and determine the OC and EC of PM. PM was also measured gravimetrically using membrane filters. Testing was performed for the locomotives in an unmodified configuration with CCV, and then again without the CCV included in the measurements. Without CCV, the two-stroke SDACe brake specific filterbased PM and OC/EC PM, over the Line-haul Locomotive Duty Cycle (LHLDC), were reduced by approximately % to %, respectively, compared to testing with CCV. The - stroke ESDC showed a reduction of % for the OC/EC PM which was mainly due to a reduction in OC PM. When crankcase were not included, OC PM was reduced for nearly all throttle notches, and especially under high load conditions, although the differences were not always significant at a 9% confidence interval. With CCV, the relative OC portion of the Line-haul composite PM value for both locomotives was approximately -%. Without CCV, the absolute brake-specific OC PM over the LHLDC was reduced by %, thereby reducing the relative OC portion to approximately -%. This work showed that the OC PM fraction is significant for the locomotives tested, and controlling OC can lead to more than percent reduction in PM. Furthermore, almost onethird of the OC PM was contributed by CCV, therefore better control of blow-by PM from both locomotive types can lead to a significant reduction in OC PM. INTRODUCTION On April, the U.S. Environmental Protection Agency (U.S. EPA) proposed Tier and Tier exhaust emission standards for new locomotives. These proposed standards were finalized on May,. The transition from Tier to Tier standards for line-haul locomotives consists of a % reduction in line-haul composite PM. Also, by, Tier line-haul locomotives will have to meet Tier switch cycle standards, which include a % PM reduction from the current Tier switch cycle PM limit. Tier Locomotive Standards apply to newly manufactured locomotives starting January,. The same standards will apply to newly remanufactured Tier line-haul locomotives starting January,. Tier exhaust emission standards for locomotives will take effect in and will require an additional % reduction in PM from Tier standards, as well as approximately a % reduction in oxides of nitrogen (NO x ). The most likely technological pathway towards meeting Tier Locomotive Standards is the transfer of exhaust catalyst technology developed to control NOx and PM from onhighway and nonroad heavy-duty engines in the U.S., Europe, and Japan into heavy-haul and switch locomotives. Diesel exhaust PM is comprised of the following materials: elemental carbon (EC) or soot, organic carbon (OC), metallic ash, and sulfates. The sulfate portion of PM is derived from sulfur contained in fuel and lubricant. This portion of PM is minimized with the use of ultra low sulfur diesel (ULSD) fuel, which is currently available for use as an EPA certification fuel for locomotives. Metallic ash is a small portion of PM and is derived from lubricant additives and engine wear metals. The OC portion of PM is made of condensed hydrocarbons originating from fuel or lubricant. This portion of PM is of particular interest because diesel oxidation catalyst (DOC) technology can be effective in removing OC PM precursors from engine exhaust. However, one source of OC PM that is difficult to apply DOC technology toward is crankcase ventilation. This is mainly due to the low blow-by temperature that is insufficient to promote OC oxidation over the DOC. For most locomotive engines, blow-by is filtered using a coalescent filter to minimize the entrained lubricant before venting to exhaust. In order to reduce this source of PM, it will likely be necessary to optimize the effectiveness of blow-by filtering for the transition to Tier and Tier locomotive PM standards.

2 This paper provides PM measurement results for two Tier heavy-haul locomotives currently operating in the United States. One locomotive from each of the two major U.S. manufacturers, General Electric (GE) and Electro-Motive Diesel (EMD), was tested. Both locomotive manufacturers currently rout crankcase ventilation to the exhaust stack. The effects of crankcase ventilation on tailpipe PM are quantified in this work. PM measurements were taken at the exhaust stack with the locomotive in its original configuration, and again with the crankcase vented away from the stack, so as not to include any crankcase. PM was determined analytically using two OC/EC instruments to measure OC and EC at each operating condition. PM was also determined gravimetrically using mm membrane filters. The differences in PM and speciation between the two configurations are reported. Results from this testing help provide guidance in the transition to Tier and Tier emission levels. NOMENCLATURE BNSF BNSF Railway Company CO Carbon monoxide CCV Crankcase Ventilation EC Elemental Carbon PM EMD Electro-Motive Diesels, Inc. (formerly General Motors Electro-Motive Division) EPA Environmental Protection Agency FTP Federal Test Procedure GE General Electric Company HC Hydrocarbons kw kilowatt NDIR Nondispersive Infrared NO x Oxides of Nitrogen OC Organic carbon PM PFA Perfluoroalkoxy PFDS Partial flow dilution system PM particulate matter ppm parts per million PTFE Polytetrafluoroethylene SwRI Southwest Research Institute TPM Total Particulate Matter ULSD Ultra-Low Sulfur Diesel UPRR Union Pacific Railroad Company locomotive equipped with a -GC, two stroke, Tier engine. Test Fuels A summary of the available fuel properties from this test program is presented in Table. Test Fuel A was a commercial grade of ultra-low sulfur diesel fuel (ULSD) used for testing the ESDC locomotive in the as-received condition which included crankcase. During the course of testing, test fuel A became contaminated with a small fraction of nonroad diesel fuel that increased its fuel sulfur content from ppm to. ppm. The contaminated fuel was designated test Fuel B. Testing of the ESDC locomotive in a configuration that did not include crankcase was inadvertently conducted using Fuel B. All of the testing of the SDACe was conducted using a commercial grade of ULSD designated test Fuel C. Table. Locomotive Specifications Manufacturer and Model GE ESDC EMD SD ACe Road Number BNSF UP Engine Model GEVOLDB -GC- T Year of Manufacture Rated Traction Power (kw) Operating Cycle -Stroke -Stroke Uniflow Scavenged Cylinder Arrangement V- V- Bore mm mm Stroke mm 9 mm Displacement/. L. L Cylinder Rated Engine Speed Fuel Injection 9 Direct Inject Electronic Unit Pump System Direct Electronic Unit Injection TECHNICAL APPROACH Presented below is an overview of the experimental methods used to conduct the engine exhaust testing. Additional description of the test setup can be found in the EPA Locomotive and Marine Docket. Test Locomotives A summary of the specifications of the two locomotives tested is contained within Table. Both locomotives were certified to Federal Tier locomotive emission standards. Locomotive BNSF, shown in Figure, was obtained from the BNSF Railway Company and was a General Electric (GE) ESDC locomotive equipped with a GE GEVO-V, four stroke, Tier engine. Locomotive UP, shown in Figure, was obtained from Union Pacific Railroad Company (UPRR) and was an Electro-Motive Diesel (EMD) SDACe Figure. BNSF GE ESDC Test Locomotive

3 Figure. UP EMD SDACe Test Locomotive Analytical Properties Distillation (ASTM D) Table. Fuel Properties Test Fuel Test Fuel A B Test Fuel C IBP: C C C %: C C C %: 9 C C C 9%: C 9 C C EP: C C C Sulfur (ASTM D). ppm. ppm. ppm HC Composition (ASTM D9) Olefins:.%.%.% Aromatics:.%.%.% Saturates:.9%.%.% Flashpoint (ASTM D9) C C 9 C Kinematic Viscosity (ASTM D). cst. cst. cst Cetane Number (ASTM D).9.9. Cetane Index (ASTM D9)... Carbon Mass Fraction (ASTM D)... Net Heat of Combustion... (ASTM D) C MJ/kg. g/cm MJ/kg. g/cm MJ/kg. g/cm Gaseous Emissions Gaseous emission measurements of hydrocarbon (HC), carbon monoxide (CO), and oxides of nitrogen (NO x ) were conducted using raw gaseous sampling procedures specified within the Federal Test Procedures for Locomotives. PM Emissions PM were sampled using a partial flow dilution system (PFDS) and were measured using PM sampling and measurement procedures specified in CFR Part. Two exceptions existed to the procedures in CFR Part : ) the raw exhaust sampling probe was not a single holed probe facing upstream, but instead a probe consistent with the locomotive federal test procedures described in CFR Part 9, and ) the dilution ratios for each discrete mode did not follow the guidelines of CFR.(d)()(iv), but instead the dilution ratio was dependent on sample temperature. The new regulatory guidelines on exhaust dilution ratio were not finalized in time to be included in this project. A slight negative pressure was maintained within the PFDS tunnel, and an adjustable valve regulated the flow of dilution air into the system. Also, a valve could be manually adjusted to regulate raw exhaust flow into the dilution tunnel. For each operation mode, the positions of these valves were optimized to provide a sample zone temperature within the tunnel of ± C. The resulting dilution ratio was determined via NO x concentration, and ranged in value from to 9. Two sampling trains were used in parallel to provide duplicate and simultaneous filter sampling from the PFDS. PM mass were determined gravimetrically using mm diameter Polytetrafluoroethylene (PTFE) membrane filters with integral perfluoroalkoxy (PFA) support rings. Following gravimetric analysis, a portion of the PTFE membranes were extracted with a %/% isopropanol/water mixture and sulfate content was determined via ion chromatography analysis of aliquots of the extracted material. Sulfate mass was determined on the basis of H SO hydrated to the temperature and humidity conditions of the PM gravimetric determination. Two Sunset Laboratories semicontinuous OC/EC instruments with NDIR detection were used simultaneously and in parallel to collect and speciate the OC and EC constituents of PM. The first OC/EC instrument sampled directly from a diluted exhaust stream onto a quartz tissue filter placed inside the instrument. The second OC/EC instrument sampled from the same source of dilute exhaust used by the first instrument, but the sample path included a quartz filter placed upstream of the quartz filter used inside the instrument. The OC measured by the second instrument was subtracted from the OC measured by the first instrument to correct for gas-phase positive OC artifacts collected by the quartz filter used in the first OC/EC instrument. Quartz filters are known to adsorb gas phase hydrocarbon species and can overestimate relative to PTFE membrane filters if used without correcting for the gas-phase hydrocarbon artifact. The effort used in the OC/EC work was intended to minimize gas phase hydrocarbon positive artifacts adsorbed onto the quartz filter. A schematic of the PM sampling system described above is displayed in Figure.

4 Figure. PM sampling system schematic. A partial flow dilution system supplied dilute exhaust for the OC/EC sampling setup and the dual mm filter sampling setup. Crankcase ventilation configuration Exhaust were measured for both locomotives with the crankcase ventilation systems in their original configurations. The arrangement of crankcase ventilation ducting to the exhaust stack for an EMD series engine is shown in Figure, and in Figure for a GEVOLDB engine. To determine the impact of crankcase ventilation on PM, testing was repeated after the crankcase ventilation was diverted away from the exhaust stack using a variable speed positive displacement blower. The blower speed was adjusted to maintain crankcase pressure to within. kpa relative to the original configuration at each tested condition. Figure. Crankcase ventilation system on an EMD -series engine. Crankcase gases and any remaining entrained lubricating oil not trapped with in the coalescing filter are vented to the exhaust stack immediately downstream of the exhaust turbocharger.

5 Crankcase gases vented to exhaust stack via eductor Coalescing filter Figure. Crankcase ventilation system on a GEVOLDB engine. Crankcase gases and any remaining entrained lubricating oil not trapped with in the coalescing filter are vented to the exhaust stack immediately downstream of the exhaust turbocharger. PM measurements were performed three times during each steady state test condition. Each measurement consisted of twin mm filters and simultaneous OC/EC sampling. Table presents the sampling matrix completed for each test. A full test was completed for both locomotives in the as-received configuration, and again with the crankcase vented separately from the exhaust stack, for a total of four tests. Test cycle Most line-haul locomotives are equipped with the dynamic brake feature in which the electric motors normally used for traction are reverse-excited to become generators for slowing the train. The electrical power generated is dissipated in onboard resistance grids. Locomotives with the self-load feature can dissipate the main alternator power into these dynamic brake resistance grids. The ESDC and SDACe are both equipped with dynamic brake grids capable of dissipating full engine power, and they were used to load the engine during testing. Power was determined by measurement of main alternator voltage and current, and measurement of the auxiliary power. GE and EMD supplied alternator efficiencies were used to calculate brake power. Test conditions included operation at low and high idle, operation at the dynamic brake setting and operation at all eight loaded locomotive power settings or throttle notches. Each throttle setting consists of a manufacturer assigned engine speed and load. The ESDC and SDACe are equipped with multiple idle speeds that were activated for separate test modes. For dynamic brake mode operation during testing, the locomotive dynamic brake control was activated resulting in notch engine speed with a reduced engine load. Table presents the duty cycles that were applied to the individual steady-state notch data points to compute the EPA line-haul and switch duty cycle weighted composite results. The duty cycles were originally developed by the EPA with industry input and are a result of event recorder data collected from in-use locomotives. Gaseous and particulate were measured per EPA locomotive test procedures and did not include transient during throttle notch position changes. Table. EPA Locomotive Line-haul Duty Cycle used to compute weighted averages Throttle Notch Setting Low Idle Idle Dynamic Brake Notch Notch Notch Notch Notch Notch Notch Notch TOTAL EPA Line- EPA Switch Haul Cycle Cycle 9. % 9.9% 9. % 9.9%. %.%. %.%. %.%. %.%. %.%. %.%.9 %.%. %.%. %.%. % %

6 Table. The sampling matrix that was completed for each test configuration (with and without crankcase ) for each of the two locomotives. a Throttle Notch Number of OC/EC Samples Low Idle Idle Dynamic Brake Table. Summary of brake specific weighted over the EPA Switcher Locomotive Duty Cycle with both locomotives in the stock configuration (blowby included) Number of mm filter samplesa BNSF UP GE EMD Pollutant ESDC SDACe Locomotive Locomotive ULSD Fuel ULSD Fuel PM.. NOx.. HC.. CO.. d. U.S. EPA c Tier limits d c Tier line-haul locomotives must also meet Tier switch standards. The switch cycle PM standard for new Tier locomotives will change from. to. g/kw-hr on January,. d Twin mm filter samples taken in conjunction with each OC/EC Sample. TEST RESULTS Regulated brake-specific weighted over the EPA Line-haul Locomotive Duty Cycle are shown in Table for both locomotives in their original configurations. Table summarizes the brake-specific weighted over the EPA Switch Locomotive Duty Cycle. All regulated from the two locomotives were within future Tier locomotive standards during the testing for this program. However, due to factors such as process variation, deterioration factor, and compliance at altitude, these results may not meet manufacturer s Tier compliance margins. Table and Table present the line-haul cycle PM summary for the ESDC and the SDACe, respectively. Gravimetric measurements from filter loadings are listed along with the carbonaceous PM analytical results from the OC\EC and the relative portion of OC over the linehaul cycle. The data from Table and Table is shown graphically in Figure for the ESDC, and Figure for the SDACe. Filter measurements and OC\EC analyses correlated well to each other for the SDACe locomotive, where the relative change induced by the exclusion of crankcase was close to % for both the filter derived PM and OC/EC carbonaceous PM over the line-haul cycle. Line-haul composite carbonaceous PM for the ESDC was reduced by % as measured with OC/EC analyses, but the total PM measured gravimetrically from the filters was reduced by only % over the line-haul cycle. For all testing in this work, sulfate PM was less than % of the total brake specific PM over the Line-haul Locomotive Duty Cycle. OC PM accounted for approximately % to % of total carbon PM over the Line-haul cycle for both locomotives in their stock configurations. The relative OC portion of total carbon PM was reduced to approximately % to % of the line-haul composite when the crankcase were not included in the measurements. Table. Summary of brake specific weighted over the EPA Line-haul Locomotive Duty Cycle with locomotives in the stock configuration (blowby included) BNSF UP Current GE EMD U.S. Pollutant ESDC SDACe EPA Locomotive Locomotive Tier ULSD Fuel ULSD Fuel limits PM b... NOx..9. HC... CO.9.. Current U.S. EPA Tier limits U.S. EPA Tier limits.... Table. BNSF ESDC Summary of brake specific PM weighted over the EPA Line-haul Locomotive Duty Cycle b The PM standard for newly remanufactured Tier line-haul locomotives will change to. g/kw-hr on January,. Locomotive Configuration Stock e %change e PM OC/EC PM, %OC,, mm OC/EC OC/EC instruments instruments Filters.. %.. % -% -% -9% Percentages calculated before rounding of numbers for table

7 Locomotive Configuration Stock %change e OC/EC PM %OC,, OC/EC OC/EC instruments instruments.. %.9.9 % -% -% -%.. TPM EC % %... TPM % EC. % OC.. % %. mm Filters OC+EC w/o crankcase mm Filters w/o crankcase Figure. The relative contribution of EC and OC PM measured over the Line-haul Duty Cycle using the OC/EC instrument setup for the UP EMD SDACe locomotive. The percentages indicate the contribution of OC and EC to total carbon (EC+OC) PM. The error bars represent a 9% confidence interval.... OC+EC Percentages calculated before rounding of numbers for table Line-ha ul cycle compos ite PM e PM, mm Filters Line-haul cycl e com posite PM (g /kw-hr) Table. UP SDACe Summary of brake specific PM weighted over the EPA Line-haul Locomotive Duty Cycle OC.. % Emissions of EC and OC for each locomotive throttle notch position are shown in Figure and Figure for the locomotives in their stock configurations. OC PM accounted for approximately % to % of the total carbon PM mass at the high-load notch position and notch position (maximum power) conditions. OC PM on a massrate basis were highest at the notch position condition for both locomotives. The relatively high organic fraction over the Line-haul Duty Cycle and particularly at high-load conditions differs considerably from results of modern highspeed diesel engines tested over steady-state cycles or at high load conditions., EC PM mass were highest at notch positions and for the ESDC and notch position for the SDACe. OC PM both with and without the inclusion of crankcase are shown in Figure and Figure. OC measurements taken from the ESDC locomotive with the normal crankcase ventilation system routing into the exhaust stack were more variable than OC measurements for the other tested conditions. This was particularly the case at the locomotive notch position, where OC variability significantly contributed to variability in total carbon PM (Figure ). %. OC+EC mm Filters OC+EC w/o crankcase mm Filters w/o crankcase Figure. The relative contribution of EC and OC PM measured over the Line-haul Duty Cycle using the OC/EC instrument setup for the BNSF GE ESDC locomotive. The percentages indicate the contribution of OC and EC to total carbon (EC+OC) PM. The error bars represent a 9% confidence interval. The gravimetrically determined PM mass emission rates with and without crankcase are shown for each throttle notch in Figure for the ESDC, and Figure 9 for the SDACe. Although a general trend of reduced PM through the notches existed for both locomotives in the configuration without crankcase, the reduction was not always significant at a 9% confidence interval. The largest PM reduction measured was at notch for the SDACe locomotive, where the exclusion of crankcase caused a % drop in PM mass emission rate.

8 Stock Configuration Elemental Carbon PM PM Mass Emission Rate ( g/hr) PM Mas s Emission R ate (g/hr) Organic Carbon PM % % % % % Idle DB Idle DB % % % % % % Figure. PM mass emission rates measured with mm membrane filters for each locomotive throttle notch position for the BNS F GE ESDC locomotive. The error bars represent a 9% confidence interval. Figure. The relative contribution of EC and OC to total Carbon PM measured at each locomotive throttle notch position for the BNSF GE ESDC locomotive in the stock configuration. The percentages indicate the contribution of OC to total carbon (EC+OC) PM. The error bars represent a 9% confidence interval for total carbon PM. Stock Configuration Elemental Carbon PM Organic Carbon PM PM Mass Emissio n Rate (g/hr) PM Mass Emission Rate (g/hr) 9% Idle DB % % % 9% Figure 9. PM mass emission rates measured with mm membrane filters for each locomotive throttle notch position for the UP EMD SDACe locomotive. The error bars represent a 9% confidence interval. Idle DB % % % % % % Figure. The relative contribution of EC and OC to total Carbon PM measured at each locomotive throttle notch position for the UP EMD SDACe Locomotive in the stock configuration. The percentages indicate the contribution of OC to total carbon (EC+OC) PM. The error bars represent a 9% confidence interval for total carbon PM. Similar to the filter measured PM, there was a trend of reduced OC PM when tested without crankcase for nearly all of the throttle notch settings, although the differences were not always significant at a 9% confidence interval for all of the locomotive throttle notch positions. Reductions in OC PM of % to % were observed during operation in notch position when testing without crankcase. These results suggest that OC from crankcase is a significant contributor to OC PM at high load conditions. For model year and later heavy-duty diesel on-highway truck engines, crankcases are closed under regulation in the sense that crankcase count toward the emission limits of the engine. However, for many of these applications improvements in filtration of crankcase gases have allowed venting of crankcase gases into the atmosphere while still achieving stringent PM limits. Based on the current test results, a similar approach may provide improvements over the current PM.

9 For gravimetrically determined PM, the exclusion of crankcase caused a reduction over the line-haul cycle of % for the GE ESDC locomotive, and % for the EMD SDACe locomotive. OC/EC determined total carbon PM was reduced by % for the ESDC and % for the SDACe over the line-haul cycle when crankcase were not included. The relative OC portion of total carbon PM over the Line-haul Locomotive Duty Cycle was reduced from % for the ESDC in stock configuration, to % when crankcase were not included in the measurement. Similarly, the SDACe total carbon PM over the Line-haul Cycle was % OC in stock configuration, and % OC without the inclusion of crankcase. Stock Configuration OC PM Mass Emission R ate (g/hr) ACKNOWLEDGMENTS The authors wish to thank Michael E. Iden of Union Pacific Railroad for use of the UP locomotive and Mark Stehly of BNSF Railway for use of the BNSF locomotive. The authors also wish to thank Steve G. Fritz, P.E. of Southwest Research Institute for his assistance with locomotive testing and test logistics. Idle DB Figure. A comparison of organic carbon PM from the BNSF GE ESDC locomotive with and without the inclusion of crankcase. The error bars represent a 9% confidence interval. REFERENCES Stock Configuration CFR Parts 9,, et al., Control of Emissions of Air Pollution From Locomotive Engines and Marine Compression-Ignition Engines Less Than Liters per Cylinder; Final Rule, Federal Register, Vol., No., Tuesday, May,, Rules and Regulations, p. O C PM Mass Emission Rate ( g/hr) PM Emissions from Two Tier Locomotives, Locomotive and Marine Docket, EPA-HQ-OAR-9-9.,. Title of the U.S. Code of Federal Regulations, Part 9,. Idle DB Title of the U.S. Code of Federal Regulations, Part,. Y.J. Kim, M.J. Kim, K.H. Lee, S.S. Park. Investigation of carbon pollution episodes using semi-continuous instrument in Incheon, Korea. Atomospheric Environment, Volume, No., pg. -, July. Figure. A comparison of organic carbon PM from the UP EMD SDACe locomotive with and without the inclusion of crankcase. The error bars represent a 9% confidence interval. SUMMARY The -% contribution of organic carbon PM to total PM over the Line-haul Duty Cycle is approximately twice the amount that would be predicted if PM composition was based solely on data acquired from high-speed heavy duty on-highway diesel engines. At high load conditions, this appears to be in part due to the manner in which crankcase gases are scavenged and filtered from the engine. For both the GE and EMD engines, crankcase ventilation contributed to %-% of the tailpipe OC PM at rated power. OC PM was reduced for nearly all throttle notches, although the differences were not always significant at a 9% confidence interval. Emissions of elemental carbon PM are comparable to that of modern high-speed diesel engines on a brake-specific basis. Khalek, I.A. Diesel Particulate Measurement Research. CRC Project E- Phase Final Report, Coordinating Research Council, C.Y. Liang, K.J. Baumgard, R.A. Gorse, Jr., J.E. Orban, J.M.E. Storey, J.C. Tan, J.E. Thoss, W. Clark. Effects of Diesel Fuel Sulfur Level on Performance of a Continuously Regenerating Diesel Particulate Filter and a Catalyzed Particulate Filter. SAE Technical Paper Series, No. --,. E. Jacob, R. Lämmermann, A. Pappenheimer, Diether Rothe. Exhaust Gas Aftertreatment System for Euro Heavy-duty Engines. MTZ Motor Technische Zeitschrift, June. 9

10 9 W. Clark, G.M. Sverdrup, G. Keller, D. McKinnon, M.J. Quinn, R.L. Graves. Overview of Diesel Emission Control-Sulfur Effects Program. SAE Technical Paper Series, No. --9,. C. Schenk, J. McDonald, B. Olson. "High Efficiency NOx and PM Exhaust Emission Control for Heavy-Duty On- Highway Diesel Engines. SAE Technical Paper Series, No. --,. J.D. Andersson, C.A. Jemma, D. Bosteels, R.A. Searles. "Partikelemission eines EU Heavy-Duty Dieselmotors mit katalytischem Partikelfilter und selektiver katalytischer Reduktion: Große, Anzahl, Masse und Chemie.. Aachener Kolloquium Fahrzeug- und Motorentechnik.

IAPH Tool Box for Port Clean Air Programs

IAPH Tool Box for Port Clean Air Programs ENGINE STANDARDS Background Ports around the world depend on the efficiency of the diesel engine to power port operations in each source category ocean/sea-going vessels, harbor craft, cargo handling equipment,

More information

Copyright Statement FPC International, Inc

Copyright Statement FPC International, Inc Copyright Statement All rights reserved. All material in this document is, unless otherwise stated, the property of FPC International, Inc. Copyright and other intellectual property laws protect these

More information

Advanced Emission Reduction Technologies for Locomotives: Fuels & Lubes

Advanced Emission Reduction Technologies for Locomotives: Fuels & Lubes Advanced Emission Reduction Technologies for Locomotives: Fuels & Lubes by Steven G. Fritz, P.E. Southwest Research Institute 210-522-3645 sfritz@swri.org Railroad Energy Consumption * 1999 Class I Railroads:»20,254

More information

New Catalytic Stripper System for the Measurement of Solid Particle Mass, Number, and Size Emissions from Internal Combustion Engines

New Catalytic Stripper System for the Measurement of Solid Particle Mass, Number, and Size Emissions from Internal Combustion Engines New Catalytic Stripper System for the Measurement of Solid Particle Mass, Number, and Size Emissions from Internal Combustion Engines Imad A. Khalek, Ph.D. Southwest Research Institute Department of Emissions

More information

Emissions Characterization for D-EGR Vehicle

Emissions Characterization for D-EGR Vehicle Emissions Characterization for D-EGR Vehicle Cary Henry Advance Science. Applied Technology Baseline GDI Vehicle 2012 Buick Regal GS Buick Regal GS uses state-of-the-art turbocharged, direct-injected gasoline

More information

FREQUENTLY ASKED QUESTIONS TIER 4 INTERIM / STAGE IIIB PRODUCTS

FREQUENTLY ASKED QUESTIONS TIER 4 INTERIM / STAGE IIIB PRODUCTS FAQ FREQUENTLY ASKED QUESTIONS TIER 4 INTERIM / STAGE IIIB PRODUCTS 1 For generations, Caterpillar has been committed to our customers success. As the industry leader, we have a full complement of resources

More information

What to Expect from Your New Low (and Ultra-Low) Sulfur Fuels

What to Expect from Your New Low (and Ultra-Low) Sulfur Fuels What to Expect from Your New Low (and Ultra-Low) Sulfur Fuels Presented at the Universities National Oceanographic Laboratories System (UNOLS) Research Vessel Operator s Committee (RVOC) F. W. Girshick

More information

Retrofit Crankcase Ventilation for Diesel Engines

Retrofit Crankcase Ventilation for Diesel Engines mdec Mining Diesel Emissions Conference Toronto Airport Marriott Hotel, October 7-9th, 2014 Retrofit Crankcase Ventilation for Diesel Engines John Stekar, Catalytic Exhaust Products Diesel Engine Crankcase

More information

Measurement of Real-World Locomotive Engine Activity and Emissions using a Portable Emissions Measurement System

Measurement of Real-World Locomotive Engine Activity and Emissions using a Portable Emissions Measurement System Measurement of Real-World Locomotive Engine Activity and Emissions using a Portable Emissions Measurement System Brandon M. Graver, H. Christopher Frey, and Jiangchuan Hu Mobile Air Pollution Engineering

More information

Copyright Statement FPC International, Inc

Copyright Statement FPC International, Inc Copyright Statement All rights reserved. All material in this document is, unless otherwise stated, the property of FPC International, Inc. Copyright and other intellectual property laws protect these

More information

The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition

The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition John Stetter, Nate Forster Jaal Ghandhi, David Foster University of Wisconsin-Madison

More information

A New Catalytic Stripper for Removal of Volatile Particles

A New Catalytic Stripper for Removal of Volatile Particles A New Catalytic Stripper for Removal of Volatile Particles David Kittelson University of Minnesota Martin Stenitzer Technische Universität, Wien 7th ETH Conference on Combustion Generated Particles Zurich,

More information

Oxidation Technologies for Stationary Rich and Lean Burn Engines

Oxidation Technologies for Stationary Rich and Lean Burn Engines Oxidation Technologies for Stationary Rich and Lean Burn Engines ICAC MARAMA Advances in Air Pollution Control Technologies May 18-19, 2011 Baltimore, MD 1 Overview Oxidation catalyst technologies Oxidation

More information

Particle Sensor Performance & Durability for OBD Applications & Beyond

Particle Sensor Performance & Durability for OBD Applications & Beyond Particle Sensor Performance & Durability for OBD Applications & Beyond Imad Khalek & Vinay Premnath, SwRI June 30, 2015 19 th ETH Conference on Combustion Generated Nanoparticles, Zurich, Switzerland Southwest

More information

Pioneering MTU C&I diesel engines for U.S. EPA Tier 4

Pioneering MTU C&I diesel engines for U.S. EPA Tier 4 Technical Background Article Contact: Mirko Gutemann Phone: +49 7541 90-4741 E-mail: mirko.gutemann@tognum.com Pioneering MTU C&I diesel engines for U.S. EPA Tier 4 For more than 100 years, diesel engines

More information

Emission Control Technologies for Locomotive Diesel Engines

Emission Control Technologies for Locomotive Diesel Engines WRITTEN COMENTS OF THE MANUFACTURERS OF EMISSION CONTROLS ASSOCIATION ON TRANSPORT CANADA S PROPOSED RULEMAKING TO CONTROL EMISSIONS OF AIR POLLUTION FROM NEW LOCOMOTIVE ENGINES January 20, 2011 MECA is

More information

Measuring Procedure for the Determination of Nitrogen Dioxide Emissions from Diesel Engines Fitted with Particulate Reduction Systems

Measuring Procedure for the Determination of Nitrogen Dioxide Emissions from Diesel Engines Fitted with Particulate Reduction Systems Section I 3.2 1 November 2010 Measuring Procedure for the Determination of Nitrogen Dioxide Emissions from Diesel Engines Fitted with Particulate Reduction Systems General remarks and explanatory notes:

More information

ETV Joint Verification Statement

ETV Joint Verification Statement THE ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM U.S. Environmental Protection Agency TECHNOLOGY TYPE: APPLICATION: ETV Joint Verification Statement Diesel Fuel Additive On-road and Off-road Heavy-duty

More information

This is a new permit condition titled, "2D.1111 Subpart ZZZZ, Part 63 (Existing Non-Emergency nonblack start CI > 500 brake HP)"

This is a new permit condition titled, 2D.1111 Subpart ZZZZ, Part 63 (Existing Non-Emergency nonblack start CI > 500 brake HP) This is a new permit condition titled, "2D.1111 Subpart ZZZZ, Part 63 (Existing Non-Emergency nonblack start CI > 500 brake HP)" Note to Permit Writer: This condition is for existing engines (commenced

More information

Regulatory Announcement

Regulatory Announcement EPA Finalizes More Stringent Emissions Standards for Locomotives and Marine Compression-Ignition Engines The U.S. Environmental Protection Agency (EPA) is adopting standards that will dramatically reduce

More information

The Effect of Biodiesel Fuel Blends on Diesel Particulate Filter Operation. Project Summary

The Effect of Biodiesel Fuel Blends on Diesel Particulate Filter Operation. Project Summary The Effect of Biodiesel Fuel Blends on Diesel Particulate Filter Operation, October 10-13, 2006 Hannu Jääskeläinen, University of Toronto Lisa Graham, Environment Canada Cara Baas, Environment Canada James

More information

Emission from gasoline powered vehicles are classified as 1. Exhaust emission 2. Crank case emission 3. Evaporative emission. Table 1.

Emission from gasoline powered vehicles are classified as 1. Exhaust emission 2. Crank case emission 3. Evaporative emission. Table 1. Introduction: Main three types of automotive vehicle being used 1. Passenger cars powered by four stroke gasoline engines 2. Motor cycles, scooters and auto rickshaws powered mostly by small two stroke

More information

Particle Sensor Performance & Durability for OBD Applications & Beyond

Particle Sensor Performance & Durability for OBD Applications & Beyond Particle Sensor Performance & Durability for OBD Applications & Beyond Imad Khalek* & Vinay Premnath, SwRI CE-CERT Workshop, April 11, 2013 Ikhalek@swri.org Southwest Research Institute San Antonio, Texas

More information

14 th ETH-Conference on Combustion Generated Nanoparticles Zurich, Switzerland August 1 st -4 th 2010

14 th ETH-Conference on Combustion Generated Nanoparticles Zurich, Switzerland August 1 st -4 th 2010 14 th ETH-Conference on Combustion Generated Nanoparticles Zurich, Switzerland August 1 st -4 th 21 IN-LINE, REAL-TIME EXHAUST PM EMISSIONS SENSOR FOR USE IN EMISSION CONTROL AND OBD APPLICATION Marc C.

More information

Euro VI Programme and Emissions Results on European Cycles

Euro VI Programme and Emissions Results on European Cycles Overview of the AECC Heavy-duty Euro VI Programme and Emissions Results on European Cycles Dr. R. J. Brisley AECC Technical Steering Committee AECC Technical Seminar on Heavy-duty Engine Emissions Brussels,

More information

Emission and chemical composition of PM from medium speed 4-stroke marine Diesel engines for different fuels

Emission and chemical composition of PM from medium speed 4-stroke marine Diesel engines for different fuels 9 th ETH-Conference on Combustion Generated Nanoparticles 2005 Zürich Emission and chemical composition of PM from medium speed 4-stroke marine Diesel engines for different fuels P. Lauer 1, C. Kurok 2

More information

Introduction of Current Clean Diesel Technology and Subjects for Passenger Car, Application for Thailand

Introduction of Current Clean Diesel Technology and Subjects for Passenger Car, Application for Thailand Introduction of Current Clean Diesel Technology and Subjects for Passenger Car, Application for Thailand Norio Suzuki Thai-Nichi Institute of Technology ABSTRACT Diesel emission regulations have become

More information

Spiracle Crankcase Filtration Technology

Spiracle Crankcase Filtration Technology Technical Article Spiracle Crankcase Filtration Technology Author: Veli Kalayci Spiracle Systems Team Leader Figure 1 emissions Contributions tailpipe & CrAnkCAse Percent of Total PM Emissions 100% 90%

More information

FEATURE ARTICLE. Advanced Function Analyzers: Real-time Measurement of Particulate Matter Using Flame Ionization Detectors. Hirokazu Fukushima

FEATURE ARTICLE. Advanced Function Analyzers: Real-time Measurement of Particulate Matter Using Flame Ionization Detectors. Hirokazu Fukushima FEATURE ARTICLE FEATURE ARTICLE Advanced Function Analyzers: Real-time Measurement of Particulate Matter Using Flame Ionization Detectors Advanced Function Analyzers: Real-time Measurement of Particulate

More information

RICE NESHAP Implementation. Ray Lukkarinen, P.E. Stanley Consultants, Inc.

RICE NESHAP Implementation. Ray Lukkarinen, P.E. Stanley Consultants, Inc. RICE NESHAP Implementation Ray Lukkarinen, P.E. Stanley Consultants, Inc. Presentation Outline RICE NESHAP Overview (Existing CI Engines) Definition Compliance deadline Engine Categories CO Emission Limits

More information

Frequently Asked Questions

Frequently Asked Questions Efficient Fuel Solutions www.fuelspec.com FuelSpec Combustion Catalysts a green technology Frequently Asked Questions All rights reserved. 1 FuelSpec Combustion Catalysts Frequently Asked Questions What

More information

Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels

Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels W. Stuart Neill National Research Council Canada Ottawa, Ontario, Canada 9 th DEER Conference, Newport, Rhode Island August

More information

PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF

PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF PROJECT REFERENCE NO. : 37S1036 COLLEGE BRANCH GUIDES : KS INSTITUTE OF TECHNOLOGY, BANGALORE

More information

Appendix A.1 Calculations of Engine Exhaust Gas Composition...9

Appendix A.1 Calculations of Engine Exhaust Gas Composition...9 Foreword...xi Acknowledgments...xiii Introduction... xv Chapter 1 Engine Emissions...1 1.1 Characteristics of Engine Exhaust Gas...1 1.1.1 Major Components of Engine Exhaust Gas...1 1.1.2 Units Used for

More information

Transient Measurement of Diesel Nano-Particles by a Newly Developed DDMA

Transient Measurement of Diesel Nano-Particles by a Newly Developed DDMA Transient Measurement of Diesel Nano-Particles by a Newly Developed DDMA Terunao KAWAI Rahman M. Montajir*, Yuichi GOTO, Matsuo Odaka N T S E L National Traffic Safety and Environment Laboratory JAPAN

More information

Evaluation of Emissions and Performance of NJ Transit Diesel Locomotives with B20 Biodiesel Blends. Research Project Summary

Evaluation of Emissions and Performance of NJ Transit Diesel Locomotives with B20 Biodiesel Blends. Research Project Summary Evaluation of Emissions and Performance of NJ Transit Diesel Locomotives with B20 Biodiesel Blends Research Project Summary ABSTRACT In an effort to explore the feasibility of reducing its carbon footprint,

More information

Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment *

Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment * Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment * L. Bromberg **, D.R. Cohn **, J. Heywood ***, A. Rabinovich **, K. Hadidi **,N. Alexeev, A. Samokhin Massachusetts

More information

m b e E M I S S I O N S E N G I N E

m b e E M I S S I O N S E N G I N E m b e 4 0 0 0 2 0 0 7 E M I S S I O N S E N G I N E We re DRIVING TECHNOLOGY. Detroit Diesel and Mercedes-Benz have over 150 combined years of experience designing, testing and manufacturing diesel engines.

More information

Meeting Sulfur Specifications for 2000 and Beyond

Meeting Sulfur Specifications for 2000 and Beyond Meeting Sulfur Specifications for 2000 and Beyond March 26-29, 2000, San Francisco Trends in diesel fuel sulfur regulations Zoltan C. Mester, ZKM Consulting Services, Laguna Niguel, CA 92677 T/Fax: 949-495-9513

More information

I. Ježek et al. Correspondence to: I. Ježek and G. Močnik

I. Ježek et al. Correspondence to: I. Ježek and G. Močnik Supplement of Atmos. Chem. Phys. Discuss., 1, 1 1, 01 http://www.atmos-chem-phys-discuss.net/1/1/01/ doi:.1/acpd-1-1-01-supplement Author(s) 01. CC Attribution.0 License. Supplement of Black carbon, particle

More information

CONFERENCE ON AVIATION AND ALTERNATIVE FUELS

CONFERENCE ON AVIATION AND ALTERNATIVE FUELS CAAF/09-IP/11 19/10/09 English only CONFERENCE ON AVIATION AND ALTERNATIVE FUELS Rio de Janeiro, Brazil, 16 to 18 November 2009 Agenda Item 1: Environmental sustainability and interdependencies IMPACT

More information

built for the next generation Cat

built for the next generation Cat built for the next generation Cat Tier 4 Interim / Stage IiIB Technologies 1 advancing technology building customer value The Next Phase in Emissions Reduction Cat Tier 4 Interim/Stage IIIB engines meet

More information

Overview of Diesel Emission Control Retrofit Options

Overview of Diesel Emission Control Retrofit Options 1 Overview of Diesel Emission Control Retrofit Options Tim Johnson December 2004 Diesel emission control retrofit programs are spreading throughout the world California and Switzerland are mandating retrofits

More information

PERFORMANCE DATA [1HZ00788] JULY 09, 2014 For Help Desk Phone Numbers Click here

PERFORMANCE DATA [1HZ00788] JULY 09, 2014 For Help Desk Phone Numbers Click here PERFORMANCE DATA [1HZ00788] JULY 09, 2014 For Help Desk Phone Numbers Click here Perf No: DM4683 Change Level: 02 General Heat Rejection Emissions Regulatory Altitude Derate Cross Reference General Notes

More information

Investigation of the Feasibility of Achieving Euro VI Heavy-Duty Diesel Emissions Limits by Advanced Emissions Controls

Investigation of the Feasibility of Achieving Euro VI Heavy-Duty Diesel Emissions Limits by Advanced Emissions Controls Investigation of the Feasibility of Achieving Euro VI Heavy-Duty Diesel Emissions Limits by Advanced Emissions Controls D Bosteels, J May AECC Association for Emissions Control by Catalyst, Belgium A J

More information

Real time measurements of ash particle emissions. David Kittelson, David Gladis, and Winthrop Watts

Real time measurements of ash particle emissions. David Kittelson, David Gladis, and Winthrop Watts Real time measurements of ash particle emissions David Kittelson, David Gladis, and Winthrop Watts Outline Introduction and background Results Tests performed Lube oil spray calibration experiments Steady

More information

Permit Holder. Permitted Equipment

Permit Holder. Permitted Equipment Air Quality Registration Stationary Compression Ignition Internal Combustion Engine (Less than 400 Brake Horsepower) Permit No. Project No. Description Date Testing No Plant Number: Under the Direction

More information

Modifications on a Small Two Wheeler Two Stroke SI Engine for Reducing Fuel Consumption and Exhaust Emissions

Modifications on a Small Two Wheeler Two Stroke SI Engine for Reducing Fuel Consumption and Exhaust Emissions RIO 5 - World Climate & Energy Event, 15-17 February 5, Rio de Janeiro, Brazil Modifications on a Small Two Wheeler Two Stroke SI Engine for Reducing Fuel Consumption and Exhaust Emissions Kunam Anji Reddy,

More information

Future Challenges in Automobile and Fuel Technologies For a Better Environment. Diesel WG Report. September 25, 2000

Future Challenges in Automobile and Fuel Technologies For a Better Environment. Diesel WG Report. September 25, 2000 1 Future Challenges in Automobile and Fuel Technologies For a Better Environment Diesel WG Report September 25, 2000 JCAP Diesel WG Toshiaki Kakegawa, Akihiro Misumi 2 Objectives To research diesel engine

More information

Monitoring Air Emissions on Ships. Restricted Siemens AG 2014 All rights reserved.

Monitoring Air Emissions on Ships. Restricted Siemens AG 2014 All rights reserved. Monitoring Air Emissions on Ships siemens.com/answers Why emission monitoring in the marine industry? Main drivers: Meeting regulations: NOx and SOx reduction Energy optimization; CO 2 reduction Resolution

More information

WRITTEN COMMENTS OF THE MANUFACTURERS OF EMISSION CONTROLS ASSOCIATION ON THE U.S. EPA-HQ-OAR

WRITTEN COMMENTS OF THE MANUFACTURERS OF EMISSION CONTROLS ASSOCIATION ON THE U.S. EPA-HQ-OAR WRITTEN COMMENTS OF THE MANUFACTURERS OF EMISSION CONTROLS ASSOCIATION ON THE U.S. ENVIRONMENTAL PROTECTION AGENCY S PROPOSAL CONCERNING ATTRIBUTES OF FUTURE SCR SYSTEMS DOCKET ID NO. EPA-HQ-OAR-2010-0444

More information

EPA Tier 4 and the Electric Power Industry

EPA Tier 4 and the Electric Power Industry EPA Tier 4 and the Electric Power Industry The initiative to lower diesel engine emissions started with on-highway engines in 1973 and now extends to non-road mobile equipment, marine and locomotive engines,

More information

Optimization of Partial Filter Technology for Diesel Engines

Optimization of Partial Filter Technology for Diesel Engines 27-1- 425 Optimization of Partial Filter Technology for Diesel Engines Pavel Farafontov, John Muter, Shazam Williams DCL International Inc., P.O. Box 9, Concord, Ontario, Canada, L4K 1B2 Copyright 27 SAE

More information

Test Engine. torque [Nm] power [kw] speed [rpm] Liebherr Dieselmotor 934 S A6 4 Cylinders Turbodiesel, intercooler, unit pump, EDC

Test Engine. torque [Nm] power [kw] speed [rpm] Liebherr Dieselmotor 934 S A6 4 Cylinders Turbodiesel, intercooler, unit pump, EDC power [kw] torque [Nm] BFH Bern University of Applied Sciences Test Engine Liebherr Dieselmotor 934 S A6 4 Cylinders Turbodiesel, intercooler, unit pump, EDC Power : 105 kw at 2000 rpm Displacement: 6,36

More information

AIR QUALITY PERMIT. Kennesaw State University - Marietta Campus

AIR QUALITY PERMIT. Kennesaw State University - Marietta Campus AIR QUALITY PERMIT Permit No. Effective Date February 11, 2016 In accordance with the provisions of the Georgia Air Quality Act, O.C.G.A. Section 12-9-1, et seq and the Rules, Chapter 391-3-1, adopted

More information

Non-Road Mobile Machinery EU Regulation

Non-Road Mobile Machinery EU Regulation Power topic #5410788 Technical information from Cummins Non-Road Mobile Machinery EU Regulation White Paper By Pedro Ponte, Project Application Engineer Over the past decade, raised awareness and concern

More information

WRITTEN STATEMENT OF THE MANUFACTURERS OF EMISSION CONTROLS ASSOCIATION ON THE U.S

WRITTEN STATEMENT OF THE MANUFACTURERS OF EMISSION CONTROLS ASSOCIATION ON THE U.S WRITTEN STATEMENT OF THE MANUFACTURERS OF EMISSION CONTROLS ASSOCIATION ON THE U.S. ENVIRONMENTAL PROTECTION AGENCY S CONTROL OF EMISSIONS OF AIR POLUTION FROM NEW LOCOMOTIVE ENGINES AND NEW MARINE COMPRESSION-IGNITION

More information

INTERNATIONAL Diesel Engine Emissions Requirements & Technology

INTERNATIONAL Diesel Engine Emissions Requirements & Technology INTERNATIONAL 2010 Diesel Engine Emissions Requirements & Technology Independent Armored Car Operators Association, Inc. 2008 Annual Convention Monday, June 23, 2008 2007 EPA Emissions Standards 1994 500

More information

Board Administration and Regulatory Coordination Unit. Division 3. Air Resources Board

Board Administration and Regulatory Coordination Unit. Division 3. Air Resources Board 2423. Exhaust Emission Standards and Test Procedures--Heavy-Duty Off-Road Diesel Cycle Engines. (a) This section shall be applicable to new heavy-duty off-road compression-ignition engines, produced on

More information

Application & Installation Guide. Crankcase Ventilation Systems LEBW

Application & Installation Guide. Crankcase Ventilation Systems LEBW Application & Installation Guide Crankcase Ventilation Systems LEBW4958-04 Contents Crankcase Ventilation Systems... 1 Crankcase Emissions... 2 Blow-by... 2 Crankcase Ventilation... 3 Ingestive... 3 Low

More information

TIER 3 MOTOR VEHICLE FUEL STANDARDS FOR DENATURED FUEL ETHANOL

TIER 3 MOTOR VEHICLE FUEL STANDARDS FOR DENATURED FUEL ETHANOL 2016 TIER 3 MOTOR VEHICLE FUEL STANDARDS FOR DENATURED FUEL ETHANOL This document was prepared by the Renewable Fuels Association (RFA). The information, though believed to be accurate at the time of publication,

More information

AECC HEAVY DUTY NRMM TEST PROGRAMME: PARTICLE MEASUREMENT AND CHARACTERISATION

AECC HEAVY DUTY NRMM TEST PROGRAMME: PARTICLE MEASUREMENT AND CHARACTERISATION 14 th ETH-Conference on Combustion Generated Nanoparticles; 1-4 August 2010 AECC HEAVY DUTY NRMM TEST PROGRAMME: PARTICLE MEASUREMENT AND CHARACTERISATION John May 1, Cecile Favre 1, Dirk Bosteels 1, Jon

More information

THE IMPACT OF BIODIESEL FUEL BLENDS ON AFTERTREATMENT DEVICE PERFORMANCE IN LIGHT-DUTY VEHICLES

THE IMPACT OF BIODIESEL FUEL BLENDS ON AFTERTREATMENT DEVICE PERFORMANCE IN LIGHT-DUTY VEHICLES THE IMPACT OF BIODIESEL FUEL BLENDS ON AFTERTREATMENT DEVICE PERFORMANCE IN LIGHT-DUTY VEHICLES Matthew Thornton NREL, Marek Tatur and Dean Tomazic FEV Engine Technology Inc. National Biodiesel Conference

More information

Effect of Biodiesel Fuel on Emissions from Diesel Engine Complied with the Latest Emission Requirements in Japan Ref: JSAE Paper No.

Effect of Biodiesel Fuel on Emissions from Diesel Engine Complied with the Latest Emission Requirements in Japan Ref: JSAE Paper No. Biodiesel Technical Workshop Effect of Biodiesel Fuel on Emissions from Diesel Engine Complied with the Latest Emission Requirements in Japan Ref: JSAE Paper No.20135622 November 5-6, 2013 @ Kansas City,

More information

EXPERIMENTAL INVESTIGATION OF FOUR STROKE SINGLE CYLINDER DIESEL ENGINE WITH OXYGENATED FUEL ADDITIVES

EXPERIMENTAL INVESTIGATION OF FOUR STROKE SINGLE CYLINDER DIESEL ENGINE WITH OXYGENATED FUEL ADDITIVES EXPERIMENTAL INVESTIGATION OF FOUR STROKE SINGLE CYLINDER DIESEL ENGINE WITH OXYGENATED FUEL ADDITIVES 1 Bhavin Mehta, 2 Hardik B. Patel 1,2 harotar University of Science & Technology, Changa, Gujarat,

More information

Mack T-11 D EGR Engine Oil Test. Report Packet Version No. Conducted For

Mack T-11 D EGR Engine Oil Test. Report Packet Version No. Conducted For Report Packet Version No. Conducted For V = I = N = Valid; The reference oil/non-reference oil was evaluated in accordance with the test procedure. Invalid; The reference oil/non-reference oil was not

More information

2011 Air Emissions Inventory

2011 Air Emissions Inventory SECTION 3 HARBOR CRAFT This section presents emissions estimates for the commercial harbor craft source category, including source description (3.1), geographical delineation (3.2), data and information

More information

Prediction of Physical Properties and Cetane Number of Diesel Fuels and the Effect of Aromatic Hydrocarbons on These Entities

Prediction of Physical Properties and Cetane Number of Diesel Fuels and the Effect of Aromatic Hydrocarbons on These Entities [Regular Paper] Prediction of Physical Properties and Cetane Number of Diesel Fuels and the Effect of Aromatic Hydrocarbons on These Entities (Received March 13, 1995) The gross heat of combustion and

More information

Highway Engine Regulations in the U.S.

Highway Engine Regulations in the U.S. Development of Heavy-Duty On- Highway Engine Regulations in the U.S. The 4 th SINO-US Workshop on Motor Vehicle Pollution Prevention and Control U.S. Environmental Protection Agency Office of Transportation

More information

APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform Project Update

APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform Project Update APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform Project Update 9 th Diesel Engine Emissions Reduction Conference Newport, Rhode Island, 24-28 August 23 Prepared by Mike May Technical

More information

Diesel PM collection for marine emission using hole-type electrostatic precipitators

Diesel PM collection for marine emission using hole-type electrostatic precipitators Air Pollution XXII 145 Diesel PM collection for marine emission using hole-type electrostatic precipitators Y. Ehara 1, A. Osako 1, A. Zukeran 2, K. Kawakami 3 & T. Inui 3 1 Tokyo City University, Japan

More information

The California Demonstration Program for Control of PM from Diesel Backup Generators (BUGs)

The California Demonstration Program for Control of PM from Diesel Backup Generators (BUGs) The California Demonstration Program for Control of PM from Diesel Backup Generators (BUGs) U.S. Department of Energy s 9th Diesel Engine Emissions Reduction Conference Newport, Rhode Island August 24-28,

More information

Minimum Power 447 bkw 600 bhp Maximum Power 597 bkw 800 bhp Rated Speed

Minimum Power 447 bkw 600 bhp Maximum Power 597 bkw 800 bhp Rated Speed Specifications Power Rating On construction sites and mining operations, in agriculture and forestry, and in a wide range of industries, Cat C18 ACERT Diesel Engines deliver the power, performance and

More information

D ISM Lubricant Performance Test. Report Packet Version No. Method. Conducted For:

D ISM Lubricant Performance Test. Report Packet Version No. Method. Conducted For: D 7468 - ISM Lubricant Performance Test Report Packet Version No. Method Conducted For: V = I = N = Valid; The reference oil / non-reference oil was evaluated in accordance with the test procedure. Invalid;

More information

built for the next generation

built for the next generation built for the next generation Cat Tier 4 Interim Technologies 2 THE POWER OF INNOVATION HIGHER PERFORMANCE, LOWER EMISSIONS At Caterpillar, we know you re under constant pressure to do more work at a lower

More information

PATENTED TECHNOLOGY» PROVEN RESULTS» PAYBACK

PATENTED TECHNOLOGY» PROVEN RESULTS» PAYBACK 2328 Bellfort Ave. Houston, Texas 77051 Main 713-821-9600 Fax 713-821-9601 OVERVIEW OF ENVIROFUELS DFC (DIESEL FUEL CATALYZER) PERFORMANCE TESTS PUBLIC VERSION Revision Date February 14, 2008 EnviroFuels,

More information

March 11, Public Docket A U.S. Environmental Protection Agency Room M-1500, Waterside Mall 401 M Street, SW Washington, DC 20460

March 11, Public Docket A U.S. Environmental Protection Agency Room M-1500, Waterside Mall 401 M Street, SW Washington, DC 20460 March 11, 1999 Public Docket A-97-50 U.S. Environmental Protection Agency Room M-1500, Waterside Mall 401 M Street, SW Washington, DC 20460 To Whom It May Concern: The State and Territorial Air Pollution

More information

2011 Tier 4 Interim/Stage IIIB Emissions Standards. Technical Paper

2011 Tier 4 Interim/Stage IIIB Emissions Standards. Technical Paper 2011 Tier 4 Interim/Stage IIIB Emissions Standards Technical Paper 0 Abstract To address the 2011 U.S. Environmental Protection Agency (EPA) emission standards for off-highway diesel engines, Hyster Company

More information

PATENTED TECHNOLOGY» PROVEN RESULTS» PAYBACK

PATENTED TECHNOLOGY» PROVEN RESULTS» PAYBACK 2328 Bellfort Ave. Houston, Texas 77051 Main 713-821-9600 Fax 713-821-9601 EFFECTS OF ENVIROFUELS DFC ON A LAND DRILLING RIG Oil and Gas Land Drilling Rig PUBLIC VERSION Revision Date February 18, 2008

More information

Introduction to Particulate Emissions 1. Gasoline Engine Particulate Emissions Introduction 3. References 7 About the Authors 8

Introduction to Particulate Emissions 1. Gasoline Engine Particulate Emissions Introduction 3. References 7 About the Authors 8 contents SECTION 1 Introduction to Particulate Emissions 1 CHAPTER 1 Gasoline Engine Particulate Emissions Introduction 3 References 7 About the Authors 8 CHAPTER 2 Health Impact of Particulates from Gasoline

More information

RICE NESHAP Frequently Asked Questions (FAQ)

RICE NESHAP Frequently Asked Questions (FAQ) RICE NESHAP Frequently Asked Questions (FAQ) What does RICE NESHAP mean? RICE NESHAP is an acronym for Reciprocating Internal Combustion Engines National Emission Standards for Hazardous Air Pollutants.

More information

Biodiesel. Basics, Technical Aspects, and Issues for Mining Operations - Biodiesel and diesel particulate matter reductions

Biodiesel. Basics, Technical Aspects, and Issues for Mining Operations - Biodiesel and diesel particulate matter reductions Biodiesel Basics, Technical Aspects, and Issues for Mining Operations - Biodiesel and diesel particulate matter reductions Mining Diesel Emissions Council (MDEC) Conference Toronto, Canada October 2006

More information

Diesel Particulate Filter: Exhaust aftertreatment for the reduction of soot emissions

Diesel Particulate Filter: Exhaust aftertreatment for the reduction of soot emissions Engine technology Diesel Particulate Filter: Exhaust aftertreatment for the reduction of soot emissions Authors: Guido Schäffner Design Exhaust Aftertreatment Klaus Rusch Design Exhaust Aftertreatment

More information

Minimum Power 287 bkw 385 bhp Maximum Power 388 bkw 520 bhp

Minimum Power 287 bkw 385 bhp Maximum Power 388 bkw 520 bhp Specifications Power Rating The Cat C13 ACERT Diesel Engine is offered in ratings ranging from 287-388 bkw (385-520 bhp) @ 1800-2100 rpm. Industries and applications powered by C13 ACERT engines include:

More information

Influence of fuel properties and aftertreatment techn. on particles in tailpipe and ambient air

Influence of fuel properties and aftertreatment techn. on particles in tailpipe and ambient air M. Gruber 43 TU Wien Austria Influence of fuel properties and aftertreatment techn. on particles in tailpipe and ambient air - 1-4. ETH Conference on Nanoparticle Measurement, Zurich, 2000-08-08 Comparative

More information

GLOBAL REGISTRY. Addendum. Global technical regulation No. 10 OFF-CYCLE EMISSIONS (OCE) Appendix

GLOBAL REGISTRY. Addendum. Global technical regulation No. 10 OFF-CYCLE EMISSIONS (OCE) Appendix 9 September 2009 GLOBAL REGISTRY Created on 18 November 2004, pursuant to Article 6 of the AGREEMENT CONCERNING THE ESTABLISHING OF GLOBAL TECHNICAL REGULATIONS FOR WHEELED VEHICLES, EQUIPMENT AND PARTS

More information

Internal Combustion Engines

Internal Combustion Engines Emissions & Air Pollution Lecture 3 1 Outline In this lecture we will discuss emission control strategies: Fuel modifications Engine technology Exhaust gas aftertreatment We will become particularly familiar

More information

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References...

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References... Contents Part I Foundations of Thermodynamics and Chemistry 1 Introduction... 3 1.1 Preface.... 3 1.2 Model-Building... 3 1.3 Simulation... 5 References..... 8 2 Reciprocating Engines... 9 2.1 Energy Conversion...

More information

Fuel Effects Issues for In-Use Diesel Applications

Fuel Effects Issues for In-Use Diesel Applications Fuel Effects Issues for In-Use Diesel Applications Matthew Thornton National Renewable Energy Laboratory Center for Transportation Technologies and Systems NAMVECC Conference November 4, 2003 Chattanooga,

More information

ALLEGHENY COUNTY HEALTH DEPARTMENT AIR QUALITY PROGRAM

ALLEGHENY COUNTY HEALTH DEPARTMENT AIR QUALITY PROGRAM ALLEGHENY COUNTY HEALTH DEPARTMENT AIR QUALITY PROGRAM April 18, 2014 SUBJECT: Cellco Partnership, dba Verizon Wireless 18 Abele Road Bridgeville, PA 15017 Allegheny County Operating Permit No. 0867 TO:

More information

PRODUCT INFORMATION SHEET

PRODUCT INFORMATION SHEET Page 1 of 18 31592 WYNN S DPF Cleaner & Regenerator WYNN S Diesel Particulate Filter Cleaner & Regenerator Product Number: 31592 12 x 325ml New technologies to reduce emissions with diesel engines The

More information

EPA TIER 4 AND THE ELECTRIC POWER INDUSTRY. Tim Cresswell Tier 4 Product Definition Manager Electric Power Division

EPA TIER 4 AND THE ELECTRIC POWER INDUSTRY. Tim Cresswell Tier 4 Product Definition Manager Electric Power Division EPA TIER 4 AND THE ELECTRIC POWER INDUSTRY Tim Cresswell Tier 4 Product Definition Manager Electric Power Division March 2014 INTRODUCTION The initiative to lower diesel engine emissions started with on-highway

More information

Particle Number and Ash Emissions from a Heavy Duty Natural Gas and Diesel w/dpf Engine

Particle Number and Ash Emissions from a Heavy Duty Natural Gas and Diesel w/dpf Engine Particle Number and Ash Emissions from a Heavy Duty Natural Gas and Diesel w/dpf Engine Imad A. Khalek, Huzeifa Badshah, Vinay Premnath & Daniel Preece Southwest Research Institute (SwRI) Ikhalek@swri.org

More information

Permit Holder. Permitted Equipment

Permit Holder. Permitted Equipment Air Quality Registration Stationary Spark Ignition Internal Combustion Engine (Less than 400 Brake Horsepower) Permit No. Project No. Description Date Testing No Plant Number: Under the Direction of the

More information

Advanced Solutions for Meeting EPA Tier 4 Engine Emission Regulations On H HD and Reachstackers

Advanced Solutions for Meeting EPA Tier 4 Engine Emission Regulations On H HD and Reachstackers Advanced Solutions for Meeting EPA Tier 4 Engine Emission Regulations On H400-1150HD and Reachstackers market leading ECO-Technology To address the 2011 U.S. Environmental Protection Agency (EPA) emission

More information

State of the Art (SOTA) Manual for Internal Combustion Engines

State of the Art (SOTA) Manual for Internal Combustion Engines State of the Art (SOTA) Manual for Internal Combustion Engines July 1997 State of New Jersey Department of Environmental Protection Air Quality Permitting Program State of the Art (SOTA) Manual for Internal

More information

Reducing diesel particle emissions by particle oxidation catalyst

Reducing diesel particle emissions by particle oxidation catalyst Reducing diesel particle emissions by particle oxidation catalyst Lehtoranta Kati, Matilainen Pekka, Åsenbrygg Juha-Matti, Lievonen Ari & Kinnunen Toni Ecocat Oy, Vihtavuori, Finland Contents Introduction

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 GENERAL Diesel engines are the primary power source of vehicles used in heavy duty applications. The heavy duty engine includes buses, large trucks, and off-highway construction

More information

THE EFFECTS OF OXYGENATED ADDITIVE AND EGR IN A DIESEL ENGINE

THE EFFECTS OF OXYGENATED ADDITIVE AND EGR IN A DIESEL ENGINE THE EFFECTS OF OXYGENATED ADDITIVE AND EGR IN A DIESEL ENGINE Seung-Hun, Choi Department of Automatic Mechanical Engineering, VISION University of Jeonju,Cheonjam-ro, Wansan-gu, Jeonju-si, Republic of

More information

Effects of Diesel Particle Filters on Performance of In-Use Buses

Effects of Diesel Particle Filters on Performance of In-Use Buses Effects of Diesel Particle Filters on Performance of In-Use Buses Leonid Tartakovsky, Rafael Fleischman, Ran Amiel Technion Israel Institute of Technology Jan Czerwinski Labs for IC-Engines & Exhaust Emission

More information