R&D on New, Low-Temperature, Light Naphtha Isomerization Catalyst and Process

Size: px
Start display at page:

Download "R&D on New, Low-Temperature, Light Naphtha Isomerization Catalyst and Process"

Transcription

1 2000M1.1.2 R&D on New, Low-Temperature, Light Naphtha Isomerization Catalyst and Process (Low-temperature isomerization catalyst technology group) Takao Kimura, Masahiko Dota, Kazuhiko Hagiwara, Nobuyasu Oshio, Koji Baba 1. Contents of Empirical Research As environmental regulations on motor gasoline become stricter throughout the world, isomerate consisting mainly of isoparaffin can be regarded especially as promising candidate substitutes for conventional gasoline blendstock through Reid vapor pressure, aromatics and olefin regulations. In the current naphtha isomerization process, however, pretreatment by hydrodesulfurization of light naphtha is required. What is more, in part of the process, dehydration of feedstock and of gas is imperative, so that huge capital investments in new equipment are required. The target of the present R/D is to develop a catalyst of higher poisoning resistance against moisture and sulfur content than the conventional light naphtha isomerization industry catalyst, and to develop processing for the same. More specifically, the purpose is to develop a new isomerization catalyst having low-temperature activity and higher poisoning resistance for feedstock in which the moisture content is saturated and for feedstock containing roughly the amount of sulfur in pretreated MEROX process. Using this developed catalyst, the purpose is also to develop a new isomerization process by such means as combining simplified pretreatment systems in which the pretreatment conditions of light naphtha are eased. Specific target values of development are presented below. Intermediate targets Final targets (1) Feedstock sulfur content 150 massppm or below 150 to 700 massppm (2) Feedstock moisture content Saturation levels (room temperature) Saturation levels (room temperature) (3) Reaction temperature 200 C or below 140 to 180 C (4) Product oil octane number 78 or above 79 or above (RON) In line with the overall plan given in Table 1-1, research has continued to advance in 1999, mainly on catalyst development and process development. As a result of R&D in the previous year, a highly activity, new catalyst system drastically superior to the conventional catalyst in sulfur resistance was discovered. Yet the search continues for catalyst of even higher activity, and an economical process that includes catalyst regeneration must be developed, so the original four-year research plan was extended by one year to a five-year plan. 1

2 Table 1-1 Overall Plan Year Item Catalyst development Process development Industrialization research 2. Empirical Research Results and Analysis Thereof 2.1 Catalyst development (1) Low-temperature isomerization activity of MEROX naphtha by CAT-A catalyst Using the catalyst (CAT-A catalyst) of high poisoning resistance against organic sulfur, discovered last year in feedstock, the low-temperature isomerization activity of light naphtha treated MEROX process (MEROX naptha) was evaluated. The sulfur content of the MEROX naphtha used in the reaction was 220 massppm, and the moisture content was at saturation level. When the reaction temperature is lowered from 200 C to 180 C, the i-c5/total-c5 ratio drops 10 to 15%, but the ratio of catalyst deactivation over time are roughly equivalent (Figure 2-1). Given this fact, at the reaction temperature of 180 C or below, the final target, optimization of LHSV and other reaction conditions is required along with search for catalyst of higher low-temperature activity. Reaction time (h) Reaction conditions: Pressure 3MPa, LHSV 2.9/h, H 2/Oil 2 mol/mol Feedstock: MEROX naphtha (sulfur content: 220 massppm) Figure 2-1 Low-temperature activity of MEROX naphtha by CAT-A catalyst 2

3 (2) Search for catalyst of high low-temperature activity With CAT-A catalyst as a base, an investigation was made effect of active metal species and of the amount of active metal loaded. In isomerization reaction the feedstoks used n-pentane containing 300 massppm of sulfur (addition an organic sulfur compound ((n-c 3 ) 2 S 2 )) (Figure 2-2). A number of bimetallic catalysts were found which exhibit higher isomerization activity than that of CAT-A catalyst at 180 C. From an investigation of the effects of amount of active metal loaded, it was noted that there is an effect with Pt/SO 4 /ZrO 2 catalyst, but that the isomerization activity was roughly equivalent to that of CAT-A catalyst (Figure 2-3). In the Pt/SO 4 /ZrO 2 catalyst, a deactivation was admitted catalytic poising by sulfur in feedstock, especially organic sulfur, but by increasing the amount of active metal loaded, resistance against sulfur poisoning improved dramatically. In the CAT-A catalyst, on the other hand, no special effects were noted under the current reaction conditions since the resistance of sulfur poisoning is high originally, but respecting catalyst life, it is believed that higher active metal content is preferable. As a result of further screening of these catalysts, using MEROX naphtha (sulfur content: 260 massppm), it was found that bimetallic C catalyst based on CAT-A catalyst indicated higher low-temperature activity. Temperature: 200 C Temperature: 180 C i-c5/total-c5 ratio (%) Reaction conditions: Temperature 180 C or 200 C, LHSV 5/h, Pressure 1.47 MPa, H 2/Oil ratio 2 mol/mol Feedstock: n - C5 + (n - C 3) 2S 2 (S = 300 massppm) i-c5/total-c5 ratio: Average value from 4-hour to 8-hour reaction time Figure 2-2 Effect of Active Metal Species on CAT-A Catalyst 3

4 Temperature: 200 C Temperature: 180 C i-c5/total-c5 ratio (%) BASE Double BASE Double metal quantity metal quantity metal quantity metal quantity CAT-A Pt/SZ Reaction conditions: Temperature 180 C, LHSV 5/h, Pressure 1.47 MPa, H 2/Oil ratio 2 mol/mol Feedstock: n - C5 + (n - C 3) 2S 2 (S = 300 massppm) i-c5/total-c5 ratio: Average value from 4-hour to 8-hour reaction time Figure 2-3 Effect of Amount of Active Metal Loaded on Catalyst 2.2 Investigation of process development (1) Effect of sulfur content in feedstock with CAT-A catalyst Shown in Figure 2-4 and Figure 2-5 are the results of an investigation of the effect of sulfur content in feedstock on isomerization activity by CAT-A catalyst. Although the poisoning resistance against sulfur in feedstock is high with this catalyst, catalytic activity drops with increases in sulfur content and catalyst deactivation over time progresses sharply. From these results, it is conjectured that the sulfur content in feedstock for long-term continuous operation at present should be 100 massppm or less. i-c5/total-c5 ratio (%) Figure 2-4 Sulfur content (ppm) Reaction conditions: Temperature 190 C, Pressure 3MPa, LHSV 2.9/h, H 2/Oil 2 mol/mol Feedstock: Mixtures of MEROX napththa and desulfurized naphtha Correlation between sulfur content and isomerization activity of light naphtha with CAT-A catalyst 4

5 Deactivation (%/h) Figure 2-5 Sulfur content (ppm) Reaction conditions: Temperature 190 C, Pressure 3MPa, LHSV 2.9/h, H 2/Oil 2 mol/mol Feedstock: Mixtures of MEROX naphtha and desulfurized naphtha Effect of sulfur content in light naphtha on deactivation of CAT-A catalyst (2) Results of long-term continuous operation by bench plant using CAT-A catalyst Using 40ml of CAT-A catalyst, experiments were done on long-term continuous operation by bench plant with two types of MEROX naphtha, one containing 72 massppm sulfur and another containing 241 massppm. Table 2-1 presents the results of analysis of these MEROX naphtha used in the experiments. The reaction temperature was varied to compensate for the drop in reaction activity that comes with deactivation of the catalyst so that the octane number (RON) of C5 + fraction in the products oil is kept at 78 or above in the experiments, Table 2-1 Properties of feedstock for long-term continuous operation by bench plant MEROX naphtha CR-M/X MEROX naphtha YR-M/X GC-RON Sulfur content (massppm) Moisture content (massppm) Saturation 32 (Saturation) Density (g/cm 3 ) C1-C C Bz content (mass %) C7+ content (mass %) The trends in reaction temperature and in i-c5/total-c5 ratio are indicated in Figure 2-6. Yet over the 4089 hours during which the reaction temperature rose from its initial 185 C to 215 C, operation took place in feedstock of 72 massppm sulfur. Then the feedstock was switched to that with 241 massppm sulfur and operation was continued for 5600 hours until the final reaction temperature reached 270 C. 5

6 The trends in the C5+yields and C1-C4 gas yields obtained long-term continuous operation are shown in Figure 2-7 and estimations of catalyst life are presented in Figure 2-8. In estimations of catalyst life, reaction test data in which feedstock of 72 massppm sulfur was taken as the base, and corrections were made after removing data on drops in catalytic activity following sudden stops and start-ups during long-term continuous operation, and data on drops in activity after switching to feedstock of high-concentration sulfur content. As a result, from an initial reaction temperature of 185 C up to 240 C, the trend in product yield selectivity remained roughly constant and the catalytic life up to the final reaction temperature of 240 C could be estimated at approximately 330 days. From these results, it is conjectured that with a light naphtha (sulfur content: 72 massppm) obtained by MEROX pretreatment, using the developed CAT-A catalyst, industrialization of a new isomerization process is possible. i-c5/total-c5 ratio (%), Octane number (RON) Octane number i-c5/total-c5 ratio Reaction temperature Sudden shut down, restart up Feedstock change (CR-M/X YR-M/X) Reaction temperature ( C) Reaction time (h) Feedstock: MEROX naphtha (Sulfur content CR-Mx: 72 ppm,yr-mx: 241 ppm) Reaction conditions: Pressure 3.1MPa, LHSV 2.9/h, H 2/Oil 360NL/L Figure 2-6 Results of long-term continuous operation by CAT-A catalyst Octane number (RON), C5+ yield (%) (C5+ yield) (Octane number) Feedstock (C1-C4 gas) Feedstock change (CR-M/X YR-M/X) Feedstock C1-C4 gas (%) Figure 2-7 Reaction time (h) Trend in reaction yield by CAT-A catalyst 6

7 Reaction temperature ( C) Deactivation: 0.14 C/day Figure 2-8 Reaction time (days) Assumption: It is assumed that CR-M/X (sulfur content: 72 massppm) is the feedstock, that the initial reaction temperature is 185 C and that the final reaction temperature reaches 240 C (Octane number of product oil is held at 78.) Estimated service life of CAT-A catalyst (3) New process concept design A design concept for the new process was formulated based on data from long-term continuous operation using the CAT-A catalyst. Here balance sheets on material balance and on heat balance for each piece of equipment in the flow of processing were compiled based on material balance data of SOR (193 hours after starting) and MOR (after 3180 hours) obtained in reaction tests. The utility consumption of each equipment piece, equipment piece specifications and equipment costs were then calculated. The design concept for the process was formulated based on the following assumptions. Operation days: Isomerate product: 8,000 hours (333 days) 5,000 BPSD Product specifications: As suitable gasoline base material property, Hydrogen sulfide content 1 massppm, RVP 110 kpa Each case of hydrogen gas once through and recycle Process flow and calculations are presented in Figure 2-8. These results indicate that in terms of process construction costs, recycle is lower than hydrogen gas once through, and when hydrogen gas and other costs are also factored in, the later option is even more advantageous. What is more, with the newly developed process, the cost of hydrogen desulfurization equipment for feedstock pretreatment, which is imperative in the conventional process, can be reduced. For this reason, it is believed that the new process will be much more economical than the conventional light naphtha isomerization process. 7

8 Figure 2-9 Concept Design Process Flow Diagram 2.3 Analysis of spent catalyst An investigation was made of the factors behind catalytic deactivation due to sulfur, notably organic sulfur, in feedstock through an analysis of CAT-A catalyst and Pt/SO 4 /ZrO 2 catalyst after the catalysts have been used for a long-term continuous operation. Each sample for 989h of operation with MEROX naphtha containing 220 massppm of sulfur and for 2843h of operation of each with desulfurized naphtha containing 2 massppm of sulfur was analyzed. Deactivation was much more conspicuous in the former catalyst than in the later. Test samples washed with acetone solvent and dried were used for analysis of each catalyst. Results of analysis (Table 2-2) of upper, middle and lower of spent catalyst indicated that carbon content of about 1.5 mass% can be observed in the upper of each catalyst, but there was slightly less carbon content in the Pt/SO 4 /ZrO 2 catalyst, where it was 1 mass% or less from the middle to the lower (Figure 2-10). The 13 C-CP/MAS-NMR spectra of the carbon component produced on these catalysts are shown in Figure In the upper s of both catalyst samples, the peak of aromatic carbon was observed, but the lower s was not observed it. In view of the fact that catalyst deactivation progresses gradually from the catalytic bed upper to lower, this can be regarded as a major contributor to the catalyst deactivation. Furthermore, the sulfur content in all the s of both catalysts was held at approximately 80 to 90% of the sulfur content in the new catalyst, so the factors behind the differences in catalytic activity of the two catalysts are unclear. 8

9 Table 2-2 Results of Analysis of Spent Catalyst Catalyst Pt/SZ CAT-A Feedstock Desulfurized naptha MEROX naptha Sulfur content /massppm Reaction time /h i-c5/total-c5 ratio /% Analysis of spent catalyst Catalyst bed position Upper Middle Lower Upper Middle Lower Carbon content / mass% Sulfur content / versus Fresh Surface area / versus Fresh Pore volume / versus Fresh Reaction temperature 185 to 210 C, LHSV 2.9/h, Pressure 3.1 MPa, H 2 /Oil 2 mol/mol Carbon content (mass %) Upper Middle Lower Reaction conditions: Temperature 185 to 210 C, LHSV 2.9/h, Pressure 3.1 MPa, H 2/Oil ratio 2 mol/mol Figure 2-10 Distribution of carbon content on spent catalyst (a) Pt/SZ spent catalyst Upper (b) CAT-A spent catalyst Upper Lower Lower Measurement conditions: MAS speed, 3.5 khz; TOSS pulse method used Figure C-CP/MAS-NMR spectra of spent catalyst 9

10 2.4 Evaluation of product oil Tests were performed to assess the gasoline properties of product oil obtained in long-term continuous operation by bench plant. Used as test samples were product oil recovered from 2,100 h to 2,300 h (mean 2,200 h), and the results of analysis are presented in Table 2-3. These results indicate that octane number and other targeted properties can serve adequately as the properties of gasoline blendstock. Table 2-3 Results of Analysis of Properties of Product Oil MEROX naphtha (M/X-A) Product oil (isomerate) (2200 h) RON (JIS K 2280) MON(JIS K 2280) RON (GC calculation) MON (GC calculation) Density (g/cm 3 ) RVP (kpa) DIST ( C) IBP % % EP Composition (PONA) (vol %) Aroma Olefin Naphtene Paraffin ic nc ic Sulfur content (coulometric titration method) 72 ppm 1 ppm or below 3. Results of Empirical Research The following results were obtained from R&D conducted in (1) A catalytic candidate composition of high low-temperature activity was discovered which is superior to the promising catalyst of high resistance to sulfur poisoning discovered in the previous year. (2) Continuous reaction operation for 5600 hours was achieved through bench plant isomerization reaction experiments in which practical equipment naphtha feedstock (MEROX naphtha of 72 massppm sulfur content) was used. (3) From the results of evaluation on product oil obtained in long-term continuous operation, it was found that the targeted octane number of 78 or above could be attained and that other properties were also adequately suitable for gasoline blendstock. (4) A process design concept was formulated based on data on long-term continuous operation and the economy of the process in question was investigated. 10

11 (5) From analysis of spent catalyst used in reaction, findings were obtained on the factors behind catalyst deactivation. 4. Summary From the results of experiments in long-term continuous operation, using catalyst discovered in the present R&D, it was confirmed that octane number of 78 or above, set as the intermediate target for catalytic performance, could be roughly achieved using light naphtha with 150 massppm sulfur content or less and with the saturation levels of moisture at room temperature. In the future, plans call for more work on the development of catalyst and processing, aimed at final targets, and on research into industrialization. Copyright 2000 Petroleum Energy Center all rights reserved. 11

CONTENTS 1 INTRODUCTION SUMMARY 2-1 TECHNICAL ASPECTS 2-1 ECONOMIC ASPECTS 2-2

CONTENTS 1 INTRODUCTION SUMMARY 2-1 TECHNICAL ASPECTS 2-1 ECONOMIC ASPECTS 2-2 CONTENTS GLOSSARY xxiii 1 INTRODUCTION 1-1 2 SUMMARY 2-1 TECHNICAL ASPECTS 2-1 ECONOMIC ASPECTS 2-2 3 INDUSTRY STATUS 3-1 TRENDS IN TRANSPORTATION FUEL DEMAND 3-3 TRENDS IN ENVIRONMENTAL REGULATION 3-3

More information

THE OIL & GAS SUPPLY CHAIN: FROM THE GROUND TO THE PUMP ON REFINING

THE OIL & GAS SUPPLY CHAIN: FROM THE GROUND TO THE PUMP ON REFINING THE OIL & GAS SUPPLY CHAIN: FROM THE GROUND TO THE PUMP ON REFINING J. Mike Brown, Ph.D. Senior Vice President Technology BASICS OF REFINERY OPERATIONS Supply and Demand Where Does The Crude Oil Come From?

More information

Refining/Petrochemical Integration-A New Paradigm Joseph C. Gentry, Director - Global Licensing Engineered to Innovate

Refining/Petrochemical Integration-A New Paradigm Joseph C. Gentry, Director - Global Licensing Engineered to Innovate Refining/Petrochemical Integration-A New Paradigm Introduction The global trend in motor fuel consumption favors diesel over gasoline. There is a simultaneous increase in demand for various petrochemicals

More information

AlkyClean Solid Acid Alkylation

AlkyClean Solid Acid Alkylation Development of a Solid Acid Catalyst Alkylation Process AlkyClean Solid Acid Alkylation October 6, 2006-1 - AlkyClean solid acid alkylation Presentation Outline Introduction Process Development Demonstration

More information

FCC Gasoline Treating Using Catalytic Distillation. Texas Technology Showcase March 2003, Houston, Texas. Dr. Mitchell E. Loescher

FCC Gasoline Treating Using Catalytic Distillation. Texas Technology Showcase March 2003, Houston, Texas. Dr. Mitchell E. Loescher F Gasoline Treating Using atalytic Distillation Texas Technology Showcase March 2003, Houston, Texas Dr. Mitchell E. Loescher Gasoline of the Future Lead is out Olefins reduced Aromatics reduced Benzene

More information

Refining/Petrochemical Integration-A New Paradigm

Refining/Petrochemical Integration-A New Paradigm Refining/Petrochemical Integration-A New Paradigm Introduction The global trend in motor fuel consumption favors diesel over gasoline. There is a simultaneous increase in demand for various petrochemicals

More information

EXPERIMENTAL STUDY ON THE INFLUENCE OF ETHANOL AND AUTOMOTIVE GASOLINE BLENDS By

EXPERIMENTAL STUDY ON THE INFLUENCE OF ETHANOL AND AUTOMOTIVE GASOLINE BLENDS By EXPERIMENTAL STUDY ON THE INFLUENCE OF ETHANOL AND AUTOMOTIVE GASOLINE BLENDS By 1. Department of Mining and Petroleum Engineering, Al-Azhar University, Egypt. tarekfetouh@yahoo.com 2. Department of Chemical

More information

R&D on New Polyphenylene Sulfide Manufacturing Methods Using Hydrogen Sulfide as Feedstock

R&D on New Polyphenylene Sulfide Manufacturing Methods Using Hydrogen Sulfide as Feedstock 1999D.3.1.5 R&D on New Polyphenylene Sulfide Manufacturing Methods Using Hydrogen Sulfide as Feedstock 1. Contents of R&D In petroleum refining, the byproduct hydrogen sulfide (H2S) is recovered as sulfur

More information

GTC TECHNOLOGY WHITE PAPER

GTC TECHNOLOGY WHITE PAPER GTC TECHNOLOGY WHITE PAPER Refining/Petrochemical Integration FCC Gasoline to Petrochemicals Refining/Petrochemical Integration - FCC Gasoline to Petrochemicals Introduction The global trend in motor fuel

More information

A Practical Approach to 10 ppm Sulfur Diesel Production

A Practical Approach to 10 ppm Sulfur Diesel Production A Practical Approach to ppm Sulfur Diesel Production Yuichi Tanaka, Hideshi Iki, Kazuaki Hayasaka, and Shigeto Hatanaka Central Technical Research Laboratory Nippon Oil Corporation 8, Chidoricho, Naka-ku,

More information

LCO Processing Solutions. Antoine Fournier

LCO Processing Solutions. Antoine Fournier LCO Processing Solutions Antoine Fournier 1 Outline Market trends and driving factors The light cycle oil Feedstock characteristics Hydroprocessing challenges Main option for LCO upgrading Catalyst update

More information

GTC TECHNOLOGY. GT-BTX PluS Reduce Sulfur Preserve Octane Value - Produce Petrochemicals. Engineered to Innovate WHITE PAPER

GTC TECHNOLOGY. GT-BTX PluS Reduce Sulfur Preserve Octane Value - Produce Petrochemicals. Engineered to Innovate WHITE PAPER GTC TECHNOLOGY GT-BTX PluS Reduce Sulfur Preserve Octane Value - WHITE PAPER Engineered to Innovate FCC Naphtha Sulfur, Octane, and Petrochemicals Introduction Sulfur reduction in fluid catalytic cracking

More information

CoMo/NiMo Catalyst Relay System for Clean Diesel Production

CoMo/NiMo Catalyst Relay System for Clean Diesel Production CoMo/NiMo Catalyst Relay System for Clean Diesel Production Yasuhito Goto and Katsuaki Ishida Petroleum Refining Research & Technology Center, Japan Energy Corporation 3-17-35 Niizo-Minami, Toda, Saitama

More information

On Purpose Alkylation for Meeting Gasoline Demand

On Purpose Alkylation for Meeting Gasoline Demand On Purpose Alkylation for Meeting Gasoline Demand Matthew Clingerman MERTC Annual Meeting, Bahrain 23 rd 24 th January 2017 DuPont Clean Technologies www.cleantechnologies.dupont.com Copyright 2017 E.

More information

Chapter 11 Gasoline Production

Chapter 11 Gasoline Production Petroleum Refining Chapter 11: Gasoline Production Chapter 11 Gasoline Production INTRODUCTION Convert SR naphtha to motor gasoline stocks through 1. Reforming 2. Isomerization Production of motor gasoline

More information

Characterization and Refinery Processing of Partially-upgraded Bitumen

Characterization and Refinery Processing of Partially-upgraded Bitumen CCQTA-COQA Joint Meeting in Edmonton, 2016 Characterization and Refinery Processing of Partially-upgraded Bitumen Tomoki Kayukawa JGC Corporation 1 Outline Background Properties of Partially Upgraded Product

More information

Unit 2. Light Naphtha Isomerization. Assistant lecturers Belinskaya Nataliya Sergeevna Kirgina Maria Vladimirovna

Unit 2. Light Naphtha Isomerization. Assistant lecturers Belinskaya Nataliya Sergeevna Kirgina Maria Vladimirovna Unit 2. Light Naphtha Isomerization Assistant lecturers Belinskaya Nataliya Sergeevna Kirgina Maria Vladimirovna Isomerization of Light Naphtha Isomerization is the process in which light straight chain

More information

How. clean is your. fuel?

How. clean is your. fuel? How clean is your fuel? Maurice Korpelshoek and Kerry Rock, CDTECH, USA, explain how to produce and improve clean fuels with the latest technologies. Since the early 1990s, refiners worldwide have made

More information

Petroleum Refining Fourth Year Dr.Aysar T. Jarullah

Petroleum Refining Fourth Year Dr.Aysar T. Jarullah Catalytic Reforming Catalytic reforming is the process of transforming C 7 C 10 hydrocarbons with low octane numbers to aromatics and iso-paraffins which have high octane numbers. It is a highly endothermic

More information

Catalytic Reforming for Aromatics Production. Topsoe Catalysis Forum Munkerupgaard, Denmark August 27 28, 2015 Greg Marshall GAM Engineering LLC 1

Catalytic Reforming for Aromatics Production. Topsoe Catalysis Forum Munkerupgaard, Denmark August 27 28, 2015 Greg Marshall GAM Engineering LLC 1 Catalytic Reforming for Aromatics Production Topsoe Catalysis Forum Munkerupgaard, Denmark August 27 28, 2015 Greg Marshall GAM Engineering LLC GAM Engineering LLC 1 REFINERY CONFIURATION LPG NAPHTHA HYDROTREATING

More information

clean Efforts to minimise air pollution have already led to significant reduction of sulfur in motor fuels in the US, Canada, Keeping it

clean Efforts to minimise air pollution have already led to significant reduction of sulfur in motor fuels in the US, Canada, Keeping it Maurice Korpelshoek, CDTECH, The Netherlands, and Kerry Rock and Rajesh Samarth, CDTECH, USA, discuss sulfur reduction in FCC gasoline without octane loss. Keeping it clean without affecting quality Efforts

More information

Quenching Our Thirst for Clean Fuels

Quenching Our Thirst for Clean Fuels Jim Rekoske VP & Chief Technology Officer Honeywell UOP Quenching Our Thirst for Clean Fuels 22 April 2016 Petrofed Smart Refineries New Delhi, India UOP 7200-0 2016 UOP LLC. A Honeywell Company All rights

More information

Challenges and Solutions for Shale Oil Upgrading

Challenges and Solutions for Shale Oil Upgrading Challenges and Solutions for Shale Oil Upgrading Don Ackelson UOP LLC, A Honeywell Company 32 nd Oil Shale Symposium Colorado School of Mines October 15-17, 2012 2012 UOP LLC. All rights reserved. UOP

More information

FCC UNIT FEEDSTOCK FLEXIBILITY IN MOL S DANUBE REFINERY

FCC UNIT FEEDSTOCK FLEXIBILITY IN MOL S DANUBE REFINERY FCC UNIT FEEDSTOCK FLEXIBILITY IN MOL S DANUBE REFINERY Tamás Kasza PhD Head of Technology Development Tamás Németh Process Technology MOL 04.10.2017 Budapest - RefComm AGENDA 1 INTRUDUCING DANUBE REFINERY

More information

Reactivity of several olefins in the HDS of full boiling range FCC gasoline over sulphided CoMo/Al 2 O 3

Reactivity of several olefins in the HDS of full boiling range FCC gasoline over sulphided CoMo/Al 2 O 3 Reactivity of several olefins in the HDS of full boiling range FCC gasoline over sulphided CoMo/Al 2 O 3 Szabolcs Magyar 1, Jenő Hancsók 1 and Dénes Kalló 2 1 Department of Hydrocarbon and Coal Processing,

More information

R&D on Hydrogen Production by Steam Reforming Method

R&D on Hydrogen Production by Steam Reforming Method 2002-07-sin 2.2 R&D on Hydrogen Production by Steam Reforming Method Shinnen Sodegaura No. 1 Laboratory (Osamu Takahashi, Yoshio Akai, Hisashi Katsuno, Tetsuya Fukunaga, Hiroto Matsumoto, Satoshi Nakai,

More information

Exelus. ExSact A Step-Out iso-paraffin Alkylation Technology. By Mitrajit Mukherjee & Sankaran Sundaresan, Exelus Inc. Part 1. Catalyst Development

Exelus. ExSact A Step-Out iso-paraffin Alkylation Technology. By Mitrajit Mukherjee & Sankaran Sundaresan, Exelus Inc. Part 1. Catalyst Development ExSact A Step-Out iso-paraffin Alkylation Technology By Mitrajit Mukherjee & Sankaran Sundaresan, Inc. Part 1. Catalyst Development Introduction Steep reductions in sulfur levels allowed in gasoline and

More information

Reducing octane loss - solutions for FCC gasoline post-treatment services

Reducing octane loss - solutions for FCC gasoline post-treatment services Reducing octane loss - solutions for FCC gasoline post-treatment services Claus Brostrøm Nielsen clbn@topsoe.com Haldor Topsoe Agenda Why post-treatment of FCC gasoline? Molecular understanding of FCC

More information

The Role of a New FCC Gasoline Three-Cut Splitter in Transformation of Crude Oil Hydrocarbons in CRC

The Role of a New FCC Gasoline Three-Cut Splitter in Transformation of Crude Oil Hydrocarbons in CRC 8 The Role of a New FCC Gasoline Three-Cut Splitter in Transformation of Crude Oil Hydrocarbons in CRC Hugo Kittel, Ph.D., Strategy and Long Term Technical Development Manager tel. +0 7 80, e-mail hugo.kittel@crc.cz

More information

Petroleum Refining Fourth Year Dr.Aysar T. Jarullah

Petroleum Refining Fourth Year Dr.Aysar T. Jarullah Catalytic Operations Fluidized Catalytic Cracking The fluidized catalytic cracking (FCC) unit is the heart of the refinery and is where heavy low-value petroleum stream such as vacuum gas oil (VGO) is

More information

Characterization of crude:

Characterization of crude: Crude Oil Properties Characterization of crude: Crude of petroleum is very complex except for the lowboiling components, no attempt is made by the refiner to analyze for the pure components that contained

More information

RefComm Galveston May 2017 FCC naphtha posttreatment

RefComm Galveston May 2017 FCC naphtha posttreatment RefComm Galveston May 2017 FCC naphtha posttreatment Henrik Rasmussen Haldor Topsoe Inc. Houston TX Agenda Why post-treatment of FCC naphtha? The new sulfur challenge Molecular understanding of FCC naphtha

More information

GTC Technology Day. 16 April Hotel Le Meridien New Delhi. Isomalk Technologies for Light Naphtha Isomerization

GTC Technology Day. 16 April Hotel Le Meridien New Delhi. Isomalk Technologies for Light Naphtha Isomerization 16 April Hotel Le Meridien New Delhi Isomalk Technologies for Light Naphtha Isomerization Naphtha Processing Technology by GTC n-c4 Isomalk-3 i-c4 Light Naphtha Isomalk-2 C5/C6 Isomerate C7 Paraffins Isomalk-4

More information

On-Line Process Analyzers: Potential Uses and Applications

On-Line Process Analyzers: Potential Uses and Applications On-Line Process Analyzers: Potential Uses and Applications INTRODUCTION The purpose of this report is to provide ideas for application of Precision Scientific process analyzers in petroleum refineries.

More information

Abstract Process Economics Program Report 211A HYDROCRACKING FOR MIDDLE DISTILLATES (July 2003)

Abstract Process Economics Program Report 211A HYDROCRACKING FOR MIDDLE DISTILLATES (July 2003) Abstract Process Economics Program Report 211A HYDROCRACKING FOR MIDDLE DISTILLATES (July 2003) Middle distillate is the collective petroleum distillation fractions boiling above naphtha (about 300 F,

More information

SCANFINING TECHNOLOGY: A PROVEN OPTION FOR PRODUCING ULTRA-LOW SULFUR CLEAN GASOLINE

SCANFINING TECHNOLOGY: A PROVEN OPTION FOR PRODUCING ULTRA-LOW SULFUR CLEAN GASOLINE SCANFINING TECHNOLOGY: A PROVEN OPTION FOR PRODUCING ULTRA-LOW SULFUR CLEAN GASOLINE Mohan Kalyanaraman Sean Smyth John Greeley Monica Pena LARTC 3rd Annual Meeting 9-10 April 2014 Cancun, Mexico Agenda

More information

Unit 1. Naphtha Catalytic Reforming. Assistant lecturers Belinskaya Nataliya Sergeevna Kirgina Maria Vladimirovna

Unit 1. Naphtha Catalytic Reforming. Assistant lecturers Belinskaya Nataliya Sergeevna Kirgina Maria Vladimirovna Unit 1. Naphtha Catalytic Reforming Assistant lecturers Belinskaya Nataliya Sergeevna Kirgina Maria Vladimirovna Introduction Catalytic reforming of heavy naphtha and isomerization of light naphtha constitute

More information

Results Certified by Core Labs for Conoco Canada Ltd. Executive summary. Introduction

Results Certified by Core Labs for Conoco Canada Ltd. Executive summary. Introduction THE REPORT BELOW WAS GENERATED WITH FEEDSTOCK AND PRODUCT SAMPLES TAKEN BY CONOCO CANADA LTD, WHO USED CORE LABORATORIES, ONE OF THE LARGEST SERVICE PROVIDERS OF CORE AND FLUID ANALYSIS IN THE PETROLEUM

More information

IHS CHEMICAL PEP Report 29J. Steam Cracking of Crude Oil. Steam Cracking of Crude Oil. PEP Report 29J. Gajendra Khare Principal Analyst

IHS CHEMICAL PEP Report 29J. Steam Cracking of Crude Oil. Steam Cracking of Crude Oil. PEP Report 29J. Gajendra Khare Principal Analyst ` IHS CHEMICAL PEP Report 29J Steam Cracking of Crude Oil December 2015 ihs.com PEP Report 29J Steam Cracking of Crude Oil Gajendra Khare Principal Analyst Michael Arné Sr. Principal Analyst PEP Report

More information

Lummus Technology and GTC. FCC Gasoline Desulfurization with CDHDS+ /GT-BTX PluS. A World of Solutions

Lummus Technology and GTC. FCC Gasoline Desulfurization with CDHDS+ /GT-BTX PluS. A World of Solutions Lummus Technology and GTC FCC Gasoline Desulfurization with CDHDS+ /GT-BTX PluS A World of Solutions FCC Gasoline Desulfurization Technologies Lummus Technology is a leading licensor of Gasoline Desulfurization

More information

Preface... xii. 1. Refinery Distillation... 1

Preface... xii. 1. Refinery Distillation... 1 Preface... xii Chapter Breakdown... xiii 1. Refinery Distillation... 1 Process Variables... 2 Process Design of a Crude Distillation Tower... 5 Characterization of Unit Fractionation... 11 General Properties

More information

FCC pretreatment catalysts

FCC pretreatment catalysts FCC pretreatment catalysts Improve your FCC pretreatment using BRIM technology Topsøe has developed new FCC pretreatment catalysts using improved BRIM technology. The catalysts ensure outstanding performance

More information

FCC pre-treatment catalysts TK-558 BRIM and TK-559 BRIM for ULS gasoline using BRIM technology

FCC pre-treatment catalysts TK-558 BRIM and TK-559 BRIM for ULS gasoline using BRIM technology FCC pre-treatment catalysts TK-558 BRIM and TK-559 BRIM for ULS gasoline using BRIM technology Utilising new BRIM technology, Topsøe has developed a series of catalysts that allow the FCC refiner to make

More information

Definition of White Spirits Under RAC Evaluation Based on New Identification Developed for REACH

Definition of White Spirits Under RAC Evaluation Based on New Identification Developed for REACH HYDROCARBON SOLVENTS PRODUCERS ASSOCIATION Definition of White Spirits Under RAC Evaluation Based on New Identification Developed for REACH 1. Introduction Document Purpose 1.1 To facilitate substances

More information

The Role of the Merox Process in the Era of Ultra Low Sulfur Transportation Fuels. 5 th EMEA Catalyst Technology Conference 3 & 4 March 2004

The Role of the Merox Process in the Era of Ultra Low Sulfur Transportation Fuels. 5 th EMEA Catalyst Technology Conference 3 & 4 March 2004 The Role of the Merox Process in the Era of Ultra Low Sulfur Transportation Fuels 5 th EMEA Catalyst Technology Conference 3 & 4 March 2004 Dennis Sullivan UOP LLC The specifications for transportation

More information

Reactivity of several olefins in the HDS of full boiling range FCC gasoline over PtPd/USY

Reactivity of several olefins in the HDS of full boiling range FCC gasoline over PtPd/USY Book of Abstracts European Congress of Chemical Engineering (ECCE-6) Copenhagen, 16- September 7 Reactivity of several olefins in the HDS of full boiling range FCC gasoline over PtPd/USY Szabolcs Magyar,

More information

-focusing on effects of sulfur on latest aftertreatment devices-

-focusing on effects of sulfur on latest aftertreatment devices- Further Challenge in Automobile and Fuel Technologies for better air quality 4th JCAP Conference Diesel WG Report -focusing on effects of sulfur on latest aftertreatment devices- June 1, 2005 Research

More information

Product Blending & Optimization Considerations. Chapters 12 & 14

Product Blending & Optimization Considerations. Chapters 12 & 14 Product Blending & Optimization Considerations Chapters 12 & 14 Gases Polymerization Sulfur Plant Sulfur Gas Sat Gas Plant LPG Butanes Fuel Gas Gas Separation & Stabilizer Light Naphtha Isomerization Alkyl

More information

R&D on a Medium-speed, Four-cycle Diesel Engine Using Heavy fuel oil

R&D on a Medium-speed, Four-cycle Diesel Engine Using Heavy fuel oil 1999C.4.1.11 R&D on a Medium-speed, Four-cycle Diesel Engine Using Heavy fuel oil 1. R&D contents 1.1 Background and R&D objectives In order to meet increasing demand for light oil and intermediate fraction,

More information

Recycle and Catalytic Strategies for Maximum FCC Light Cycle Oil Operations

Recycle and Catalytic Strategies for Maximum FCC Light Cycle Oil Operations Recycle and Catalytic Strategies for Maximum FCC Light Cycle Oil Operations Ruizhong Hu, Manager of Research and Technical Support Hongbo Ma, Research Engineer Larry Langan, Research Engineer Wu-Cheng

More information

Study on Relative CO2 Savings Comparing Ethanol and TAEE as a Gasoline Component

Study on Relative CO2 Savings Comparing Ethanol and TAEE as a Gasoline Component Study on Relative CO2 Savings Comparing Ethanol and TAEE as a Gasoline Component Submitted by: Hart Energy Consulting Hart Energy Consulting 1616 S. Voss, Suite 1000 Houston, Texas 77057, USA Terrence

More information

Acomprehensive analysis was necessary to

Acomprehensive analysis was necessary to 10 ppm Sulfur Gasoline Opportunity Analysis Delphine Largeteau Senior Technologist - Mktg. Associate Jay Ross Senior Technology and Mktg. Manager Larry Wisdom Marketing Executive Acomprehensive analysis

More information

ISOMERIZATION OF PARAFFINS FOR GASOLINE

ISOMERIZATION OF PARAFFINS FOR GASOLINE Report No. 91 ISOMERIZATION OF PARAFFINS FOR GASOLINE by EARL D. OLIVER and RYOSUKE HASHIMOTO OCTOBER 1974 A private report by the PROCESS ECONOMICS PROGRAM STANFORD RESEARCH INSTITUTE I MENLO PARK, CALIFORNIA

More information

Technology for Producing Clean Diesel Utilizing Moderate Pressure Hydrocracking With Hydroisomerization

Technology for Producing Clean Diesel Utilizing Moderate Pressure Hydrocracking With Hydroisomerization Technology for Producing Clean Diesel Utilizing Moderate Pressure Hydrocracking With Hydroisomerization XIII Refining Technology Forum IMP-Pemex Pemex Refinacion Mexico City, Mexico November 14, 2007 J.

More information

Abstract Process Economics Program Report No. 158A OCTANE IMPROVERS FOR GASOLINE (February 1992)

Abstract Process Economics Program Report No. 158A OCTANE IMPROVERS FOR GASOLINE (February 1992) Abstract Process Economics Program Report No. 158A OCTANE IMPROVERS FOR GASOLINE (February 1992) Lead phaseout in the United States has brought about a strong interest in oxygenated octane improvers for

More information

A new simple and robust process FT-NIR Spectrometer with small footprint and extended maintenance interval

A new simple and robust process FT-NIR Spectrometer with small footprint and extended maintenance interval Thomas Buijs, Michael B. Simpson, ABB Quebec, BU MA Analytical Measurements Oil & Gas Industry A new simple and robust process FT-NIR Spectrometer with small footprint and extended maintenance interval

More information

Development of HS-FCC (High Severity FCC) Process

Development of HS-FCC (High Severity FCC) Process 2 International 5 Development of HS-FCC (High Severity FCC) Process Masaki Yatsuzuka (Petroleum Energy Center) Yuichiro Fujiyama (Central Technical Research Laboratory, Nippon Mitsubishi Oil Corporation)

More information

Refining/Petrochemical Integration A New Paradigm. Anil Khatri, GTC Technology Coking and CatCracking Conference New Delhi - October 2013

Refining/Petrochemical Integration A New Paradigm. Anil Khatri, GTC Technology Coking and CatCracking Conference New Delhi - October 2013 Refining/Petrochemical Integration A New Paradigm Anil Khatri, GTC Technology Coking and CatCracking Conference New Delhi - October 2013 Presentation Themes Present integration schemes focus on propylene,

More information

OIL REFINERY PROCESSES

OIL REFINERY PROCESSES OIL REFINERY PROCESSES 1 Types of hydrocarbons Types of hydrocarbons (parafffins, naphthenes, and aromatics). This rating is important to the refinery since the value of the crude oil decreases from classification

More information

opportunities and costs to upgrade the quality of automotive diesel fuel

opportunities and costs to upgrade the quality of automotive diesel fuel GOGiIGaWG report no. 88/52 opportunities and costs to upgrade the quality of automotive diesel fuel Prepared by CONCAWE Automotive Emissions Management Group's Special Task Force on Refinery Processes

More information

Testing Catalyst Additives for Sulfur Reduction in Cat-Naphtha

Testing Catalyst Additives for Sulfur Reduction in Cat-Naphtha Testing Catalyst Additives for Sulfur Reduction in Cat-Naphtha María Paz Chiavarino Axion Energy FCC Process Engineer Collaboration: Uriel Navarro Uribe PhD in W. R. Grace & Co Tech Service Kick Off Maximum

More information

ANALYSIS OF ENERGY USE AND CO 2 EMISSIONS IN THE U.S. REFINING SECTOR, WITH PROJECTIONS OF HEAVIER CRUDES FOR 2025 SUPPORTING INFORMATION

ANALYSIS OF ENERGY USE AND CO 2 EMISSIONS IN THE U.S. REFINING SECTOR, WITH PROJECTIONS OF HEAVIER CRUDES FOR 2025 SUPPORTING INFORMATION ANALYSIS OF ENERGY USE AND CO 2 EMISSIONS IN THE U.S. REFINING SECTOR, WITH PROJECTIONS OF HEAVIER CRUDES FOR 2025 SUPPORTING INFORMATION MathPro Inc. P.O. Box 34404 West Bethesda, Maryland 20827-0404

More information

IHS CHEMICAL Light Hydrocarbon and Light Naphtha Utilization. Process Economics Program Report 297. Light Hydrocarbon and Light Naphtha Utilization

IHS CHEMICAL Light Hydrocarbon and Light Naphtha Utilization. Process Economics Program Report 297. Light Hydrocarbon and Light Naphtha Utilization ` IHS CHEMICAL Light Hydrocarbon and Light Naphtha Utilization Process Economics Program Report 297 September 2016 ihs.com PEP Report 297 Light Hydrocarbon and Light Naphtha Utilization Girish Ballal Principal

More information

ON-PURPOSE PROPYLENE FROM OLEFINIC STREAMS

ON-PURPOSE PROPYLENE FROM OLEFINIC STREAMS 1 ON-PURPOSE PROPYLENE FROM OLEFINIC STREAMS Michael W. Bedell ExxonMobil Process Research Laboratories Baton Rouge, La Philip A. Ruziska ExxonMobil Chemical Company Baytown, TX Todd R. Steffens ExxonMobil

More information

A Balanced Approach to Octane Replacement

A Balanced Approach to Octane Replacement A Balanced Approach to Octane Replacement Policy Development Meeting on Clean Fuels and Vehicles for the Middle East and North Africa 24 May 2006 Cairo, Egypt Lee Chook Khean Communications Director http://www.acfa.org.sg

More information

Make High Octane Gasoline from Naphtha Feeds at 1/3 of CapEx, OpEx and Emission Levels. Process and Economics. Now a commercial reality

Make High Octane Gasoline from Naphtha Feeds at 1/3 of CapEx, OpEx and Emission Levels. Process and Economics. Now a commercial reality Make High Octane Gasoline from Naphtha Feeds at 1/3 of CapEx, OpEx and Emission Levels Process and Economics 2017 Now a commercial reality Synthesis Contents Summary...1 Process Description...2 Scalability

More information

A Look at Gasoline Sulfur Reduction Additives in FCC Operations

A Look at Gasoline Sulfur Reduction Additives in FCC Operations A Look at Gasoline Sulfur Reduction Additives in FCC Operations Melissa Clough Technology Specialist, BASF Refcomm Galveston 2016 Drivers for Low Sulfur Additive Worldwide legislative drive for air quality

More information

DIESEL. Custom Catalyst Systems for Higher Yields of Diesel. Brian Watkins Manager, Hydrotreating Pilot Plant and Technical Service Engineer

DIESEL. Custom Catalyst Systems for Higher Yields of Diesel. Brian Watkins Manager, Hydrotreating Pilot Plant and Technical Service Engineer DIESEL Custom Catalyst Systems for Higher Yields of Diesel Brian Watkins Manager, Hydrotreating Pilot Plant and Technical Service Engineer Charles Olsen Director, Distillate R&D and Technical Service Advanced

More information

1- REFINERY OF POINTE - NOIRE CATALYTIC REFORMING UNIT

1- REFINERY OF POINTE - NOIRE CATALYTIC REFORMING UNIT 1- REFINERY OF POINTE - NOIRE CATALYTIC REFORMING UNIT 2 - AFRICA 3 CARACTERISTICS OF THE REFINERY GEOGRAPHICAL LOCATION : Pointe Noire AREA : 32 ha that is 800 m x 400 m CAPACITY : 115 t/h of mixed Djeno

More information

Abstract Process Economics Program Report No. 203 ALKANE DEHYDROGENATION AND AROMATIZATION (September 1992)

Abstract Process Economics Program Report No. 203 ALKANE DEHYDROGENATION AND AROMATIZATION (September 1992) Abstract Process Economics Program Report No. 203 ALKANE DEHYDROGENATION AND AROMATIZATION (September 1992) Propylene, isobutene, and BTX (benzene, toluene, and xylenes) have traditionally been recovered

More information

Fig:1.1[15] Fig.1.2 Distribution of world energy resources. (From World Energy Outlook 2005, International Energy Agency.)[16,17]

Fig:1.1[15] Fig.1.2 Distribution of world energy resources. (From World Energy Outlook 2005, International Energy Agency.)[16,17] Introduction :Composition of petroleum,laboratory tests,refinery feedstocks and products Fig:1.1[15] Fig.1.2 Distribution of world energy resources. (From World Energy Outlook 2005, International Energy

More information

Diesel hydroprocessing

Diesel hydroprocessing WWW.TOPSOE.COM Diesel hydroprocessing Optimizing your diesel production 32 Optimizing your diesel production As an increasing number of countries move towards requirements for low and ultra-low sulfur

More information

Abstract Process Economics Program Report 195A ADVANCES IN FLUID CATALYTIC CRACKING (November 2005)

Abstract Process Economics Program Report 195A ADVANCES IN FLUID CATALYTIC CRACKING (November 2005) Abstract Process Economics Program Report 195A ADVANCES IN FLUID CATALYTIC CRACKING (November 2005) Recent emphasis in fluid catalytic cracking is on maximum light olefins production, gasoline sulfur reduction

More information

Solvent Deasphalting Conversion Enabler

Solvent Deasphalting Conversion Enabler Kevin Whitehead Solvent Deasphalting Conversion Enabler 5 th December 2017 Bottom of the Barrel Workshop NIORDC, Tehran 2017 UOP Limited Solvent Deasphalting (SDA) 1 Natural Gas Refinery Fuel Gas Hydrogen

More information

Strategies for Maximizing FCC Light Cycle Oil

Strategies for Maximizing FCC Light Cycle Oil Paste Logo Here Strategies for Maximizing FCC Light Cycle Oil Ann Benoit, Technical Service Representative Refcomm, March 4-8, 2015 LCO and Bottoms Selectivity 90 Bottoms wt% 24 LCO wt% Hi Z/M Low Z/M

More information

GASOLINE PROCESSES Q&A

GASOLINE PROCESSES Q&A GASOLINE PROCESSES Q&A October 9-12, 2011 JW Marriott San Antonio Hill Country San Antonio, TX 2011 NPRA Q&A and Technology Forum Gasoline Processes - 1 GASOLINE PROCESSES Q&A SESSION Isomerization Question

More information

R&D on Environment-Friendly, Electronically Controlled Diesel Engine

R&D on Environment-Friendly, Electronically Controlled Diesel Engine 20000 M4.2.2 R&D on Environment-Friendly, Electronically Controlled Diesel Engine (Electronically Controlled Diesel Engine Group) Nobuyasu Matsudaira, Koji Imoto, Hiroshi Morimoto, Akira Numata, Toshimitsu

More information

DEVELOPMENT AND COMMERCIALIZATION OF ATIS-2L, A HIGH ACTIVITY, LOW COST PARAFFIN ISOMERIZATION CATALYST

DEVELOPMENT AND COMMERCIALIZATION OF ATIS-2L, A HIGH ACTIVITY, LOW COST PARAFFIN ISOMERIZATION CATALYST DEVELOPMENT AND COMMERCIALIZATION OF, A HIGH ACTIVITY, LOW COST PARAFFIN ISOMERIZATION CATALYST W.S. Graeme, M.N.T. van der Laan Akzo Nobel Catalysts ABSTRACT Akzo Nobel s high activity paraffin isomerization

More information

CONVERSION OF GLYCEROL TO GREEN METHANOL IN SUPERCRITICAL WATER

CONVERSION OF GLYCEROL TO GREEN METHANOL IN SUPERCRITICAL WATER CONVERSION OF GLYCEROL TO GREEN METHANOL IN SUPERCRITICAL WATER Maša Knez Hrnčič, Mojca Škerget, Ljiljana Ilić, Ţeljko Knez*, University of Maribor, Faculty of Chemistry and Chemical Engineering, Laboratory

More information

Fuels of the Future for Cars and Trucks

Fuels of the Future for Cars and Trucks Fuels of the Future for Cars and Trucks Dr. James J. Eberhardt Energy Efficiency and Renewable Energy U.S. Department of Energy 2002 Diesel Engine Emissions Reduction (DEER) Workshop San Diego, California

More information

Alkylation & Polymerization Chapter 11

Alkylation & Polymerization Chapter 11 Alkylation & Polymerization Chapter 11 Petroleum Refinery Schematic Gasses Polymerization Sulfur Plant Sulfur Gas Sat Gas Plant Alkyl Feed Butanes LPG Fuel Gas Alkylation LPG Gas Separation & Stabilizer

More information

AN ECONOMIC ASSESSMENT OF THE INTERNATIONAL MARITIME ORGANIZATION SULPHUR REGULATIONS

AN ECONOMIC ASSESSMENT OF THE INTERNATIONAL MARITIME ORGANIZATION SULPHUR REGULATIONS Study No. 175 CANADIAN ENERGY RESEARCH INSTITUTE AN ECONOMIC ASSESSMENT OF THE INTERNATIONAL MARITIME ORGANIZATION SULPHUR REGULATIONS ON MARKETS FOR CANADIAN CRUDE OIL Canadian Energy Research Institute

More information

UOP UNITY Hydrotreating Products

UOP UNITY Hydrotreating Products Satyam Mishra UOP UNITY Hydrotreating Products 19 February 2018 Honeywell UOP ME-TECH Seminar Dubai, UAE UOP 8080A-0 2018 UOP LLC. A Honeywell Company All rights reserved. Outline 1 Unity UNITY UOP Unity

More information

Development of Bi-Fuel Systems for Satisfying CNG Fuel Properties

Development of Bi-Fuel Systems for Satisfying CNG Fuel Properties Keihin Technical Review Vol.6 (2017) Technical Paper Development of Bi-Fuel Systems for Satisfying Fuel Properties Takayuki SHIMATSU *1 Key Words:, NGV, Bi-fuel add-on system, Fuel properties 1. Introduction

More information

MORPHOLOGY AND VOLATILITY OF PARTICULATE MATTER EMITTED FROM TWO DIRECT-INJECTION ENGINES

MORPHOLOGY AND VOLATILITY OF PARTICULATE MATTER EMITTED FROM TWO DIRECT-INJECTION ENGINES MORPHOLOGY AND VOLATILITY OF PARTICULATE MATTER EMITTED FROM TWO DIRECT-INJECTION ENGINES Brian Graves, Jason Olfert, Bob Koch, Bronson Patychuk, Ramin Dastanpour, Steven Rogak University of Alberta, Westport

More information

PILOT PLANT DESIGN, INSTALLATION & OPERATION Training Duration 5 days

PILOT PLANT DESIGN, INSTALLATION & OPERATION Training Duration 5 days Training Title PILOT PLANT DESIGN, INSTALLATION & OPERATION Training Duration 5 days Training Date Pilot Plant Design, Installation & Operation 5 21 25 Sep $3,750 Dubai, UAE In any of the 5 star hotels.

More information

Exceed Your Hydrocracker Potential Using The Latest Generation Flexible Naphtha/Middle Distillate Catalysts

Exceed Your Hydrocracker Potential Using The Latest Generation Flexible Naphtha/Middle Distillate Catalysts Exceed Your Hydrocracker Potential Using The Latest Generation Flexible Naphtha/Middle Distillate Catalysts Criterion Catalysts & Technologies/Zeolyst International Prepared by: Ward Koester on March 2001

More information

Forensic Identification of Gasoline Samples D.A. Birkholz 1, Michael Langdeau 1, Preston Kulmatycki, 1 and Tammy Henderson. Abstract.

Forensic Identification of Gasoline Samples D.A. Birkholz 1, Michael Langdeau 1, Preston Kulmatycki, 1 and Tammy Henderson. Abstract. Forensic Identification of Gasoline Samples D.A. Birkholz 1, Michael Langdeau 1, Preston Kulmatycki, 1 and Tammy Henderson 1. Enviro-Test Laboratories, Edmonton, AB. Abstract Gasoline samples (premium

More information

Relative volume activity. Type II CoMoS Type I CoMoS. Trial-and-error era

Relative volume activity. Type II CoMoS Type I CoMoS. Trial-and-error era Developments in hydrotreating catalyst How a second generation hydrotreating catalyst was developed for high pressure ultra-low sulphur diesel units and hydrocracker pretreaters MICHAEL T SCHMIDT Haldor

More information

Renewable Liquids as Steam Cracker Feedstocks

Renewable Liquids as Steam Cracker Feedstocks PERP/PERP ABSTRACTS 2010 Renewable Liquids as Steam Cracker Feedstocks PERP 09/10S12 Report Abstract October 2010 Report Abstract Renewable Liquids as Steam Cracker Feedstocks PERP 09/10S12 October 2010

More information

Oil & Gas. From exploration to distribution. Week 3 V19 Refining Processes (Part 1) Jean-Luc Monsavoir. W3V19 - Refining Processes1 p.

Oil & Gas. From exploration to distribution. Week 3 V19 Refining Processes (Part 1) Jean-Luc Monsavoir. W3V19 - Refining Processes1 p. Oil & Gas From exploration to distribution Week 3 V19 Refining Processes (Part 1) Jean-Luc Monsavoir W3V19 - Refining Processes1 p. 1 Crude Oil Origins and Composition The objective of refining, petrochemical

More information

Prediction of Physical Properties and Cetane Number of Diesel Fuels and the Effect of Aromatic Hydrocarbons on These Entities

Prediction of Physical Properties and Cetane Number of Diesel Fuels and the Effect of Aromatic Hydrocarbons on These Entities [Regular Paper] Prediction of Physical Properties and Cetane Number of Diesel Fuels and the Effect of Aromatic Hydrocarbons on These Entities (Received March 13, 1995) The gross heat of combustion and

More information

MODERN REFINING CONCEPTS No Oil Refining without Hydroprocessing

MODERN REFINING CONCEPTS No Oil Refining without Hydroprocessing MODERN REFINING CONCEPTS No Oil Refining without Hydroprocessing Dr. Hartmut Weyda, Dr. Ernst Köhler - SÜD-CHEMIE AG Keywords: Aromatics Removal, Catalyst, Dewaxing, Diesel, Gas Oil, Gasoline, HDS, Hydrogen,

More information

CHAPTER ELEVEN. Product Blending GASOLINE OCTANE BLENDING

CHAPTER ELEVEN. Product Blending GASOLINE OCTANE BLENDING CHAPTER ELEVEN Product Blending GASOLINE OCTANE BLENDING The research (RON) and motor (MON) octane numbers of a gasoline blend can be estimated using the following equations: 1 where and R = R 1 + C x

More information

ANALYSIS OF OPTIMAL PROCESS FLOW DIAGRAMS OF LIGHT NAPHTHA ISOMERIZATION PROCESS BY MATHEMATIC MODELLING METHOD

ANALYSIS OF OPTIMAL PROCESS FLOW DIAGRAMS OF LIGHT NAPHTHA ISOMERIZATION PROCESS BY MATHEMATIC MODELLING METHOD ANALYSIS OF OPTIMAL PROCESS FLOW DIAGRAMS OF LIGHT NAPHTHA ISOMERIZATION PROCESS BY MATHEMATIC MODELLING METHOD Vjacheslav Chuzlov 1,*, Konstantin Molotov 2 1 Tomsk Polytechnic University, Lenin av. 30,

More information

Maximize Yields of High Quality Diesel

Maximize Yields of High Quality Diesel Maximize Yields of High Quality Diesel Greg Rosinski Technical Service Engineer Brian Watkins Manager Hydrotreating Pilot Plant, Technical Service Engineer Charles Olsen Director, Distillate R&D and Technical

More information

Evaluation of New Fuel Oil for Internal Combustion Engine

Evaluation of New Fuel Oil for Internal Combustion Engine 2002-09- sin 2.4 Evaluation of New Fuel Oil for Internal Combustion Engine (Showa Shell Sekiyu K.K) Chief researcher Shunichi Koide Masahiko Shibuya, Tsuyoshi Kashio, Junichi Hosoya, Yuji Akimoto, Kensaku

More information

AT734G: A Combined Silicon and Arsenic Guard Catalyst

AT734G: A Combined Silicon and Arsenic Guard Catalyst AT734G: A Combined Silicon and Arsenic Guard Catalyst Charles Olsen Worldwide Technical Services Manager Advanced Refining Technologies Chicago, IL USA Refiners are often looking for opportunities to purchase

More information

Unity TM Hydroprocessing Catalysts

Unity TM Hydroprocessing Catalysts Aravindan Kandasamy UOP Limited, Guildford, UK May 15, 2017 May 17, 2017 Unity TM Hydroprocessing Catalysts A unified approach to enhance your refinery performance 2017 Honeywell Oil & Gas Technologies

More information

HYDRODESULFURIZATION AND HYDRODENITROGENATION OF DIESEL DISTILLATE FROM FUSHUN SHALE OIL

HYDRODESULFURIZATION AND HYDRODENITROGENATION OF DIESEL DISTILLATE FROM FUSHUN SHALE OIL Oil Shale, 2010, Vol. 27, No. 2, pp. 126 134 ISSN 0208-189X doi: 10.3176/oil.2010.2.03 2010 Estonian Academy Publishers HYDRODESULFURIZATION AND HYDRODENITROGENATION OF DIESEL DISTILLATE FROM FUSHUN SHALE

More information