KEY WORDS: SI engines, Inert Gas, Ignition timing, Argon gas. 1. INTRODUCTION

Size: px
Start display at page:

Download "KEY WORDS: SI engines, Inert Gas, Ignition timing, Argon gas. 1. INTRODUCTION"

Transcription

1 Proceedings of 3 rd International Conference on Recent Trends in Engineering & Technology (ICRTET 2014) Organized By: SNJB's Late Sau. K. B. Jain College Of Engineering, Chandwad ISBN No.: , Date :28-30 March, 2014 Influence of ignition timing on performance, emission and combustion characteristics of a SI engine having added argon to intake mixture. T. Karthikeya Sharma * Research Scholar, Department of Mechanical Engineering, NIT Warangal, A.P, India. ABSTARCT- Environmental interests and limited resource of petroleum fuels have caused disquiet in the development of combustion and emission control research on (IC) engines. For a gasoline engine, spark ignition timing is a major parameter that affects the combustion and exhaust emissions. Dilution of the intake air of the Spark ignition engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water ignition in to combustion chamber and cyclic variability, varying ignition time without scarifying power output and/or thermal efficiency. This paper investigates the effects of ignition timing of a SI engine having added argon inert gas to dilute the intake air and to improve the performance and reduce the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration and ignition timing. Output parameters like thermal efficiency, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NO x, CO 2 and CO were studied in a SI engine, under variable argon concentrations. Results of this study showed that the addition of Argon gas to the intake air of the SI engine has significantly improved the emission characteristics and engine s performance within the range studied. KEY WORDS: SI engines, Inert Gas, Ignition timing, Argon gas. 1. INTRODUCTION International regulations ratified in recent years have imposed more stringent limits on pollutant emissions and fuel consumption in internal combustion engines. To comply with these regulations and reduce spark ignition NO x and soot emissions, several new combustion concepts have been developed. To comply with the emission regulations and to reduce NO x, CO and CO 2 emissions, and to improve engine performance several new combustion concepts have been developed. Some of the techniques deal with the recirculation of the exhaust gasses to improve the combustion process, usage of fuel blends, varying stroke length and compression ratio, after treatment devices like catalytic converters to convert NO X and CO in to non toxic gasses before they released in to atmosphere, injecting water in to the combustion chamber of the engine and varying ignition timing [1]. The performance of a SI engine is strongly affected by ignition timing. Ignition time also affects the thermal efficiency and emissions especially NO X emissions of SI engine. Proper ignition timing reduces the exhaust gas temperature which in turn reduces the NO X emissions. Early Combustion process, increased peak pressures and temperatures moved close to the TDC are the results of advanced ignition timing. Combustion at ideal crank angles can be achieved to some extent by advanced ignition timing. Hence advancing the ignition timing leads to improved the engine thermal efficiency. Proper time will be available for the oxidation of the charge during compression stroke. On the other hand, retarding the ignition timing decreases the pressure and temperature peaks during the combustion process because there is not enough time between the ignition timing and top dead * Corresponding author. address: karthikeya.sharma3@gmail.com Elsevier Publication

2 T. Karthikeya Sharma center to complete the chemical reaction. Thus, large amounts of fuel burn after top dead center in the expansion stroke [2]. There are a number of NO x control technologies that have been developed for spark ignition Engines such as modified combustion to suppress NO x formation Low excess air operation Off-stoichiometric combustion Exhaust gas recirculation Reduce NO x to molecular nitrogen through controls (also known as exhaust gas treatment) Selective Non-Catalytic Reduction (SNCR) Selective Catalytic Reduction (SCR) Dry Sorption The power output and/or thermal efficiency have to be sacrificed with these methods. The promising approach to reduce NO X emissions form a spark ignition engine is to replace a small percentage of N2 in the intake air with an inert gas. It was found that the CO 2 of the emissions in the EGR technique has only a small effect on the emissions as it s having low specific heat value [3]. In this study Argon gas having a specific ratio of at room temperature is used to compensate the low specific heat ratio of the CO 2. It was ensured that the added gas mixture had a specific heat capacity equal to that of the N 2 being replaced, why because as the specific heat ratio of the mixture increases the cylinder peak pressure increases and it occurs at earlier crank angles [4]. Therefore, it is the main destine of the present work to probe in details the effects varying ignition timing on the test engine having argon gas as a diluting gas on its performance and emissions. The present study was carried out on a single cylinder four stroke spark ignition engine The tendency of the present work included the investigation of the thermodynamics properties of the intake gas mixture when argon is added, the effects of adding argon on the performance of the engine and the exhaust emissions, and finally the heat release rate analyses under varying ignition timings. 2. EXPERIMENTAL SET-UP A four stroke engine with modified intake to admit the preset concentrations of argon and air (O 2 + N 2 ) was used. This section will present the experimental apparatus and the experimental procedure Engine experimental apparatus: A single cylinder, four stroke, and water cooled constant speed port fuel injection Spark ignition engine was used for experiments. Engine performance and emissions at various ignition timings was detected by a new Electronic Ignition Control Unit (EICU). Newly developed electronic ignition control unit was used to control the ignition timing. Various signal values obtained from the literature are fed to the ignition control unit for our test engine according to vacuum values at test points. Tests were conducted by altering the ignition timings on both sides of the original value i.e CA BTDC. Five different sets of ignition advance values were used in he performance tests. A step of 2 0 CA was considered on both sides. Set of ignition timings considered for tests are 18 0, 20 0, 22 0, 24 0, The ignition timings 18 0, 20 0 represents the delayed ignition timings and 24 0, 26 0 represents the advanced ignition timings. Tests were conducted using these Ignition timings. proper care was taken to record the data correctly while the test are being conducted. Argon up to 15% of the intake air admission capable test rig has been designed and built. The test rig built has the capability to vary the argon concentration by keeping the oxygen concentration in the intake air as constant (i.e. 21% by volume), this was achieved by adding one oxygen cylinder to the system. The added argon will replace the nitrogen gas concentration in the intake air. SmartTrak 100 digital flow meter has been used to measure to the volume flow rate of the argon gas acquiesced to the engine. XFM Stainless steel Multi- dro capability RS-232/RS-485, profibus DP digital thermal mass flow meter has been used to measure the air flow rate. WITT MM-2K pressure fluctuation free gas mixture has been used to mix the argon and oxygen in required concentrations. Silicon chip fuel mixture display system has been used to control the air fuel ratio, it consists of exhaust gas oxygen (EGO) sensor mounted in the exhaust system to continuously monitor air-fuel ratios and generate corresponding output voltages. This information is then fed to the engine management computer (EMC) which continuously adjusts the mixture to provide optimum power and economy, consistent with low exhaust emissions. Brief technical data are shown in Table 1.Fig. 1 shows the schematic diagram of the experimental system. Elsevier Publication

3 Table 1. Engine Specifications Number of cylinders 1 Bore mm Stroke 71.5 mm Displacement volume 1297 cc Maximum speed 3500 rpm Max. Cylinder pressure 130 bars Compression ratio 8:1 Constant Ignition timing, deg. BTDC 22 Cooling system Water cooled Valve arrangement Two vertical over head valves Max power rpm Max torque 18.7 N 2600 rpm Fig.1. Schematic of the experimental set-up. Ignition timing constant at 22 0 BTDC, carburetor position at full throttle opening, fuel used is gasoline with octane number 95. A Kistler model 6005 Quartz high pressure engine combustion sensor has been used to measure the combustion pressure inside the engine cylinder. A dual mode charge amplifier was used to amplify the signal from the engine combustion sensor. The degree marker shaper amplifier measured and displayed angular crank shaft location. A PicoScope 4423 oscilloscope, 2000A current clamp, 60A current clamp four channels high-speed digital oscilloscope has been used to measure and store various signals such as those from the crankshaft position sensor or the camshaft Hall sensor and pressure. The amplified signals from the pressure sensor and degree marker were fed to the oscilloscope. PicoScope is fast enough and accurate enough to look at the electrical signals on CAN bus, LIN bus and the new FlexRay interface to allow the fast measurement, storing and analysis of high-speed phenomena. The input signal could be stored at the rate of up to 1500 MHz. Up to five sets of the stored waveform could be saved. The saved waveform was retained then transferred to a PC for further computation. Ecom EN2 Electro Chemical gas analyzers having 4 Electrochemical Sensors, sensor Options: O2, CO, NO & NO2, 1ft Inconel Probe (up to 1832F/1000C), CO purge pump to prevent oversaturation, Peltier cooler sample conditioner, peristaltic pump for automatic moisture removal, flue gas, ambient, & sensor temperature sensors, CO2, Efficiency, Losses, Excess Air, & O2 Correction Calculations were used for measuring NO x, CO 2, and CO and for the exhaust gas analyses. Murphy TDX6 Temperature Scanner/Pyrometer Swichgage with 6 channels, Type J or K Thermocouples Grounded or Ungrounded acceptability, and having a J-type accuracy from F (10-66 C) +3 F(+2 C), from F ( C) ±1.0% of reading has been used to measure the temperatures of inlet cooling water, air inlet, outlet cooling water, exhaust and oil sump using Type J thermocouples Experimental procedure: The present work endeavors at studying the consequences of ignition time and diluting inlet air with argon gas in the test spark ignition engine. The experimental procedure was planned and may be divided into four catagerious. (a)experiments on Spark ignition engine by varying ignition timing from 18 0 CA BTDC to 26 0 CA BTDA and running on dilute intake air with argon at a constant and running on diluted intake air with argon at a constant and engine speed of 2100 rpm. (b) ) Experiments on Spark ignition engine varying load from 5Nm to 20Nm with a 5Nm step, and running on diluted intake air with argon at an ignition time of 22 0 CA BTDC. During the first set of tests, the engine has been running on mixture of oxygen, argon and nitrogen on preset concentrations. Keeping the oxygen always at 21% the ratios of argon to be from 0% to 15% have been selected in the mixture. For the time of first test with an ignition time of 18 0 CA BTDC the engine speed has been kept constant at 2100 rpm and the load at 20Nm. The argon amount is then increased at 5% step. Various output parameters like thermal efficiency, brake mean effective pressure, volumetric efficiency; specific fuel consumption, heat release rates, brake power, exhaust gas temperature and emissions of NO x, CO 2 and CO have been measured and recorded. The tests were repeated taking 20 0 CA BTDC to 26 0 CA BTDC as the ignition timings following the same procedure as previous. During the second set of tests, the engine has been running on mixture of oxygen, argon and nitrogen on preset concentrations. Keeping the oxygen always at 21% the ratios of argon to be from 0% to 15% have been selected in the mixture. For the time of first test with a load of 5Nm the engine speed has been kept constant at 2100rpm and the ignition time as 22 0 CA BTDC. The argon amount is then increased at 5% step. Various output Elsevier Publication

4 T. Karthikeya Sharma parameters like thermal efficiency, brake mean effective pressure, volumetric efficiency; specific fuel consumption, heat release rates, brake power, exhaust gas temperature and emissions of NO x, CO 2 and CO have been measured and recorded. The tests were repeated at 2100rpm, 2300rpm and 2500rpm by following the same procedure as previous Experimental error analysis Table 2 Specification Maximum error value Relative error Engine speed 0.01 rev/s 0.28% Engine torque 0.08 Nm Brake power 3.26% Brake specific fuel consumption 2.42% Exhaust gas temperature C 0.1% Exhaust gas concentration(no X ) 0.01ppm Exhaust gas concentration(co, CO 2, O 2 ) 0.1ppm Flow rate of air 1.02 x10-4 m 3 /s 1% Flow rate of argon 4.3% Fuel flow rate 1 cm 3 Timer ( Time Measurement) 10ms 0.7% 3. RESULTS AND DISCUSSIONS A long term experimental study has been conducted on a single cylinder, four stroke, water cooled spark ignition engine with argon inert gas in intake mixture. Thermodynamic effects of adding the argon to the intake air of the engine at varying ignition timing and loads have been studied. The amount of oxygen gas has been kept constant at 21% by volume. The engine parameters have been kept at the values mentioned above. The results of the both the case were compared. 3.1 Exhaust Gas Temperature: A long term experimental study has been conducted on a single cylinder, four stroke, water cooled spark ignition engine with argon inert gas in intake mixture. Thermodynamic effects of adding the argon to the intake air of the engine at varying ignition timing and loads have been studied. The amount of oxygen gas has been kept constant at 21% by volume. The engine parameters have been kept at the values mentioned above. The results of the both the case were compared. 3.1 Exhaust Gas Temperature: The exhaust gas temperature variation under different ignition timing and loads with the argon addition ratio may be seen in Figs. 2 and 3 respectively. Exhaust gas temperature is an indication of combustion occurring in the cylinder. Fig 2. Exhaust gas temperature variation at different Ignition timings and argon concentrations at constant engine load of 20Nm. Fig 3.Exhaust gas temperature at different Engine loads and argon concentrations at constant ignition timing of 22 0 CA BTDC Elsevier Publication

5 The decrease in exhaust gas temperature with increase in argon concentration may be seen from the Figs 2 and 3. The decrease in exhaust gas temperature with increase in argon concentration in both the constant load and constant ignition timing is because of the fast diminishing of the combustion temperature during the expansion stroke. With increase in argon percentage the drop rate of combustion temperature during expansion stroke will be more. Fig. 2 manifests a decrease in exhaust temperatures with increase in ignition timing (i.e. advancing ignition timing). Post reaction phenomena increases the exhaust gas temperature under retarded ignition timings, where as advancing the ignition timing shows a decrease in the exhaust temperature. Advancing ignition timing increases the peak pressures and temperatures occur at TDC as the combustion takes place at TDC this result in increasing in NO X emissions [5]. Fig 3. Shows the increase in exhaust gas temperature with increase in load on the engine. This is because as the load increases more fuel needs to be burnt to maintain the constant speed this results in increase in the exhaust gas temperature. 3.2 Brake specific fuel consumption (Bsfc): Figs.4 and 5 gives the variation of the Bsfc with increase in argon percentage for both the constant load and constant ignition timings tests. The decrease in Bsfc can be observed from the figures with the increase in argon concentration. The increase in the brake mean effective pressure (bmep) with adding more argon increases the brake power output of the engine resulting in reduction of bsfc of the engine. A maximum drop of 15g/kWh at 26 0 CA BTDC and 33g/kWh of Bsfc at 20Nm load are observed with an increase of argon concentration from 0% to 15%. Fig 4. Brake specific fuel consumption variation at different Ignition timings and argon concentrations at constant load of 20Nm When the ignition timing was retarded by 4 0 CA BTDC compared to original ignition timing (22 0 CA BTDC), Bsfc increased by 6.3% for 0% Ar and 7.36% for 15% Ar. Combustion at ideal crank angles can be achieved to some extent by advanced ignition timing. Hence advancing the ignition timing leads to improved the engine thermal efficiency. Proper time will be available for the oxidation of the charge during compression stroke. So fuel consumption per unit power output will decrease i.e Bsfc decreases. the other hand, retarding the ignition timing decreases the pressure and temperature peaks during the combustion process because there is not enough time between the ignition timing and top dead center to complete the chemical reaction. Thus, large amounts of fuel burn after top dead center in the expansion stroke. So Bsfc increases with retarded ignition timings. Fig 5.Brake specific fuel consumption at different Engine loads and argon concentrations at constant ignition timing of 22 0 CA BTDC Bsfc decreased about 6.45% for 0% Ar and 7.7% for 15% Ar, as the engine load increased from 5 Nm to 20 Nm constant loads respectively. This decrease in Bsfc could be explained by the fact that; as the engine load increases, of the rate of increasing brake power is much more than that of the fuel consumption. Elsevier Publication

6 T. Karthikeya Sharma 3.3 Brake thermal efficiency (BTE): The Brake thermal efficiency variation with ignition timing and load with the argon addition ratio may be seen in Figs. 6 and 7 respectively. Fig 6. Brake thermal efficiency variation at different Ignition timings and argon concentrations at constant load of 20Nm. Increase in Brake thermal efficiency can be observed from the figures in both the constant load and constant ignition timing as the argon concentration increases. The increase in argon concentration decreases the brake specific fuel consumption delivering constant power output this is the reason for increase in brake thermal efficiency. BTE indicates the how efficiently the chemical energy of the fuel is converted in to mechanical work by the engine. BTE results are presented in Figs. 6 and 7 for different engine loads and ignition timings, respectively. The 15% Ar at 20 Nm with original ignition timing produced the highest BTE as 49.2%. Fig. 6 shows the variations of the BTE with different argon concentrations for different ignition timings at 20 Nm constant loads. The best results in terms of BTE were obtained at original ignition timing. Retarded or advanced ignition timing diminished BTE values Fig 7.Brake thermal efficiency at different Engine loads and argon concentrations at constant ignition timing of 22 0 CA BTDC For example, when the ignition timing was retarded and advanced 4 0 CA compared to original ignition timing, BTE decreased by 20.4% and 6.3% for 18 0 CA BTDC and 26 0 CA BTDC at 20 Nm load, respectively. Increase in brake thermal efficiency can be observed form fig 7. as the load increases this is because of reduced Bsfc at increased loads. 3.4 CO Emission: Figs. 8 and 9 depict the carbon monoxide levels in the exhaust gas for both constant load and ignition time tests at various argon concentrations. It can be seen from the figures that introducing argon gas in the intake has resulted in increase of CO from 0.31 to 0.38 g/kwh when argon is increased from 0% to 15% at 22 0 CA BTDC. This increase may be because of the unavailability of the oxygen during combustion with the addition of argon. One more reason may be because of the faster drop in combustion temperature during exhaust stroke make the formation of CO 2 from CO. Increase in argon gas concentration reduces the exhaust gas temperature, at lower exhaust temperatures Elsevier Publication

7 CO cant not react with O 2 to form CO 2. From fig 8.at original ignition timing, while CO emission was measured as 0.46 g/kwh with 15% Ar at 20 Nm load, it was 0.72 g/kwh at 5 Nm. When the ignition timing advanced, the level of CO emission increased. Advancing the ignition timing 4 0 CA (from 22 0 to 26 0 CA BTDC) caused the CO emission increased by 9.5% for 15% Ar at 20 Nm load. The increase in fuel consumption may be the reason for increase in CO emissions. However, retarding the ignition timing 4 0 CA (from 22 0 to 18 0 CA BTDC) caused 18.3% decrease in the CO emission under the same test condition mentioned above. Fig 8. CO emissions at different Ignition timings and argon concentrations at constant engine speed of 2100rpm From fig.9.co emission reduced steadily when the engine load increased in the engine. When the engine load increased, combustion temperature increased as shown in Fig.3. Therefore, CO emissions started to decrease [6]. The results obtained in this study confirmed this statement. Fig 9. CO emissions at different Engine loads and argon concentrations at constant ignition timing of 22 0 CA BTDC 3.5. Carbon dioxide (CO 2 ) emissions: The variation in the emission of Carbon Dioxide against the argon added percentage at constant load and constant ignition timing is shown in Figs 10 and 11 respectively. With the addition of argon the CO 2 emissions increases first during the argon concentration between 3-6% and then in decreases. The increase in CO 2 emissions in the early concentrations of argon may be because of the increase in air fuel ratio and availability of more oxygen, but as the argon concentration increases further exhaust oxygen reduces so the CO 2 emissions decreases.co 2 is a normal product of combustion. Ideally, combustion of a hydrocarbon fuel should produce only CO 2 and water (H 2 O).The CO 2 concentrations behaved differently when compared with the CO concentrations because of improving combustion sufficient temperatures attained for the conversion of CO to CO 2 by reacting with O 2 [7]. Fig. 10 CO 2 emissions at different Ignition timings and argon concentrations at constant engine load of 20Nm. Elsevier Publication

8 T. Karthikeya Sharma Fig 11. CO2 emissions at different Engine loads and argon concentrations at constant ignition timing of 22 0 CA BTDC Maximum CO 2 was observed to be 27.1 g/kwh at 5% Ar and at 22 0 CA BTDC for the 20 Nm engine load. CO2 emissions decreased with the advancing ignition timing, as shown in Fig. 10, for the all fuel mixtures. When the ignition timing was changed from 18 0 to 26 0 CA BTDC, the level of CO 2 emission was decreased by 9.5% at 26 0 CA BTDC and at 20 Nm constant loads. This increase may be associated with the increase in the fuel consumption. From Fig 8. it can be seen the decrease in CO 2 emissions with increase in load on the engine. The reason behind it may be because of low temperature combustion which doesn t facilitate the conversion of CO to CO 2 by reacting with O 2 under high temperatures NO X emissions: One of the most critical emissions from SI engines is NOx emissions. The oxides of nitrogen in the exhaust emissions contain nitric oxide (NO) and nitrogen dioxide (NO2). The formation of NO X is highly dependent on the in-cylinder temperature, oxygen concentration and residence time for the reaction to take place [8]. Figs.12 and 13 indicates that the NO X levels under constant ignition timing and at constant load, point to remember that in both the case argon gas was introduced in to intake air mixture at different concentrations. The reason for decreased NO X emissions with the addition of argon in both the cases are because of the addition of argon reduced the concentration of nitrogen in the intake air. The addition of argon replaced the N 2 gas by a mole fraction of about 19% while the O2 has been kept constant. Reducing the N 2 mole fraction by 19% reduced the emission of NO in the exhaust gases by 55% means there are other factors that play an important role in the process. The other reason for the reduction of NO in the exhaust gases is increasing the air/fuel ratio as it plays important role in this reduction as has been shown before [9]. Fig. 12 indicates the variations of NO X emissions for different Ar concentrations under different ignition timing at the 20 Nm constant load. ig 12. NOX emissions at different Ignition timings and argon concentrations at constant engine load of 20Nm. When the ignition timing was retarded, some decrease was observed in the NO X emissions. When the ignition timing was retarded 4 0 CA BTDC compared to original ignition timing, NO X emissions decreased by 25.6% at 10% Ar. Retarding the ignition timing decreases the peak cylinder pressure because more fuel burns after TDC. Lower peak Elsevier Publication

9 cylinder pressures result in lower peak temperatures. As a consequence, the NO X concentration starts to diminish [10]. The obtained exhaust gas temperatures, shown in Figs. 2 and 3, confirmed this statement. The changes on the NOx emissions at different engine load are shown in Fig. 13. NO X concentration generally increased with increasing engine load. The experimental results indicated that NO X values for 15% Ar were lower than the others. Minimum NO X was observed to be 0.5 g/kwh for 15% Ar under 5Nm load. Fig 13. NO X emissions at different Engine loads and argon concentrations at constant ignition timing of 22 0 CA BTDC 4. CONCLUSION In this study, the performance and exhaust emissions of a single cylinder, Spark ignition engine were measured, argon inert gas in different proportions as a diluting gas was used at the different engine loads and ignition timings. The results showed that the ignition timing play an important role in the combustion process. From the current study, the following conclusions can be drawn. In terms of ignition timing, the test results demonstrated that; with advancing the ignition timing, CO and NO X emissions increased while and CO 2 emissions decreased. Increase in CO emissions has been observed because of advanced ignition timing, because of the increase in fuel consumption. The decrease in CO 2 is observed at increased loads reason behind it may be because of low temperature combustion which doesn t facilitate the conversion of CO to CO 2 by reacting with O 2 under high temperatures. Increases the NO X emissions (at high temperatures N 2 in air reacts with O 2 to form NO X ). The increase in NO X emissions with advanced ignition is because of the increased peak temperatures before TDC facilitating the reaction between O 2 in air with N 2 at high temperatures. The original ignition timing gave the best results for Bsfc and BTE compared to the other ignition timings [11]. As the argon concentration increases the Bsfc decreases. Decrease in volumetric has been observed with increase in argon percentage. Increasing the argon concentration resulted in the decrease of the emission index of nitrogen oxide (NO), and carbon dioxide (CO2). Increase in CO emissions has been observed with increase in argon addition to intake air. Exhaust gas temperature decreases with increase in argon concentration this improves the exergy of the system. References: [1]. Karthikeya Sharma T, Amba Prasad Rao G, Combustion Analysis of Ethanol in An HCCI Engine. Trend in Mecha Eng & Tech 2013;3;1-9. [2]. Nox emission from a spark ignition engine Using 30% iso-butanol±gasoline blend: part 2 Ignition timing F. N. Alasfour [3]. Cheng WK, Wong VM, Gao F. Heat Transfer measurement comparisons in insulated and non- insulated diesel engines. SAE Transactions 1989; [4]. Hany A. Moneib. NOx emission control in SI engine by adding argon inert gas to intake mixture. Energ Conserv Manage 2009; [5] Türköz, Necati, et al. "Experimental investigation of the effect of E85 on engine performance and emissions under various ignition timings." Fuel (2013). [6] Abdel-Rahman AA. On the emissions from internal-combustion engines. International Journal of Energy Research 2002;22(6): [7] Williams PT, Williams EA. Interaction of plastics in mixed plastics pyrolysis. Journal of Energy and Fuels 1990;13: [8]. Heywood JB. Internal combustion engines. USA: Mc-Graw Hill; [9]. Borat O, Balci M, Surmen A. Internal combustion engines. Turkey: Gazi University Publishing; 2000 [in Turkish]. [10]. Chan SH. Performance and emissions characteristics of a partially insulated gasoline engine. Int J Therm Sci 2001;40: [11] Sayin C, Ertunc HM, Hosoz M, Kilicaslan I, Canakci M. Performance and exhaust emissions of a gasoline engine using artificial neural network. Applied Thermal Engineering 2007;27: Elsevier Publication

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine M. F. Hushim a,*, A. J. Alimin a, L. A. Rashid a and M. F. Chamari a a Automotive Research

More information

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF HYDROGEN BLENDING ON THE CONCENTRATION OF POLLUTANTS EMITTED FROM A FOUR STROKE DIESEL ENGINE

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF HYDROGEN BLENDING ON THE CONCENTRATION OF POLLUTANTS EMITTED FROM A FOUR STROKE DIESEL ENGINE EXPERIMENTAL INVESTIGATION OF THE EFFECT OF HYDROGEN BLENDING ON THE CONCENTRATION OF POLLUTANTS EMITTED FROM A FOUR STROKE DIESEL ENGINE Haroun A. K. Shahad hakshahad@yahoo.com Department of mechanical

More information

The influence of thermal regime on gasoline direct injection engine performance and emissions

The influence of thermal regime on gasoline direct injection engine performance and emissions IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS The influence of thermal regime on gasoline direct injection engine performance and emissions To cite this article: C I Leahu

More information

PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF

PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF PROJECT REFERENCE NO. : 37S1036 COLLEGE BRANCH GUIDES : KS INSTITUTE OF TECHNOLOGY, BANGALORE

More information

EFFECT OF H 2 + O 2 GAS MIXTURE ADDITION ON EMISSONS AND PERFORMANCE OF AN SI ENGINE

EFFECT OF H 2 + O 2 GAS MIXTURE ADDITION ON EMISSONS AND PERFORMANCE OF AN SI ENGINE EFFECT OF H 2 + O 2 GAS MIXTURE ADDITION ON EMISSONS AND PERFORMANCE OF AN SI ENGINE M.Sc. Karagoz Y. 1, M.Sc. Orak E. 1, Assist. Prof. Dr. Sandalci T. 1, B.Sc. Uluturk M. 1 Department of Mechanical Engineering,

More information

Comparative performance and emissions study of a lean mixed DTS-i spark ignition engine operated on single spark and dual spark

Comparative performance and emissions study of a lean mixed DTS-i spark ignition engine operated on single spark and dual spark 26 IJEDR Volume 4, Issue 2 ISSN: 232-9939 Comparative performance and emissions study of a lean mixed DTS-i spark ignition engine operated on single spark and dual spark Hardik Bambhania, 2 Vijay Pithiya,

More information

INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE

INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 23.-24.5.213. INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE Kastytis Laurinaitis, Stasys Slavinskas Aleksandras

More information

Effect of Tangential Grooves on Piston Crown Of D.I. Diesel Engine with Retarded Injection Timing

Effect of Tangential Grooves on Piston Crown Of D.I. Diesel Engine with Retarded Injection Timing International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn : 2278-800X, www.ijerd.com Volume 5, Issue 10 (January 2013), PP. 01-06 Effect of Tangential Grooves on Piston Crown

More information

INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL

INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 2.-27..216. INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL Kastytis Laurinaitis, Stasys Slavinskas

More information

CHAPTER 8 EFFECTS OF COMBUSTION CHAMBER GEOMETRIES

CHAPTER 8 EFFECTS OF COMBUSTION CHAMBER GEOMETRIES 112 CHAPTER 8 EFFECTS OF COMBUSTION CHAMBER GEOMETRIES 8.1 INTRODUCTION Energy conservation and emissions have become of increasing concern over the past few decades. More stringent emission laws along

More information

Effects of ethanol unleaded gasoline blends on cyclic variability and emissions in an SI engine

Effects of ethanol unleaded gasoline blends on cyclic variability and emissions in an SI engine Applied Thermal Engineering 25 (2005) 917 925 www.elsevier.com/locate/apthermeng Effects of ethanol unleaded gasoline blends on cyclic variability and emissions in an SI engine M.A. Ceviz *,F.Yüksel Department

More information

Research Article. Effect of exhaust gas recirculation on NOx emission of a annona methyl ester operated diesel engine

Research Article. Effect of exhaust gas recirculation on NOx emission of a annona methyl ester operated diesel engine Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2015, 7(5):723-728 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Effect of exhaust gas recirculation on NOx emission

More information

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions Module 3: Influence of Engine Design and Operating Parameters on Emissions Effect of SI Engine Design and Operating Variables on Emissions The Lecture Contains: SI Engine Variables and Emissions Compression

More information

Study of Performance and Emission Characteristics of a Two Stroke Si Engine Operated with Gasoline Manifold Injectionand Carburetion

Study of Performance and Emission Characteristics of a Two Stroke Si Engine Operated with Gasoline Manifold Injectionand Carburetion Indian Journal of Science and Technology, Vol 9(37), DOI: 10.17485/ijst/2016/v9i37/101984, October 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Study of Performance and Emission Characteristics

More information

Experimental Investigation of Performance and Emissions of a Stratified Charge CNG Direct Injection Engine with Turbocharger

Experimental Investigation of Performance and Emissions of a Stratified Charge CNG Direct Injection Engine with Turbocharger MATEC Web of Conferences 1, 7 (17 ) DOI:1.11/matecconf/1717 ICTTE 17 Experimental Investigation of Performance and Emissions of a Stratified Charge CNG Direct Injection Engine with charger Hilmi Amiruddin

More information

Chapter 4 ANALYTICAL WORK: COMBUSTION MODELING

Chapter 4 ANALYTICAL WORK: COMBUSTION MODELING a 4.3.4 Effect of various parameters on combustion in IC engines: Compression ratio: A higher compression ratio increases the pressure and temperature of the working mixture which reduce the initial preparation

More information

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends International Journal of Current Engineering and Technology E-ISSN 77 416, P-ISSN 47 5161 16 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Study of the

More information

Homogeneous Charge Compression Ignition combustion and fuel composition

Homogeneous Charge Compression Ignition combustion and fuel composition Loughborough University Institutional Repository Homogeneous Charge Compression Ignition combustion and fuel composition This item was submitted to Loughborough University's Institutional Repository by

More information

CHAPTER 3 EXPERIMENTAL SET-UP AND TECHNIQUES

CHAPTER 3 EXPERIMENTAL SET-UP AND TECHNIQUES 37 CHAPTER 3 EXPERIMENTAL SET-UP AND TECHNIQUES 3.1 EXPERIMENTAL SET-UP The schematic view of the experimental test set-up used in the present investigation is shown in Figure 3.1. A photographic view

More information

ANALYSIS OF EXHAUST GAS RECIRCULATION (EGR) SYSTEM

ANALYSIS OF EXHAUST GAS RECIRCULATION (EGR) SYSTEM ANALYSIS OF EXHAUST GAS RECIRCULATION (EGR) SYSTEM,, ABSTRACT Exhaust gas recirculation (EGR) is a way to control in-cylinder NOx and carbon production and is used on most modern high-speed direct injection

More information

Simultaneous reduction of NOx and smoke emission of CI engine fuelled with biodiesel

Simultaneous reduction of NOx and smoke emission of CI engine fuelled with biodiesel International Journal of Renewable Energy, Vol. 8, No. 2, July - December 2013 Simultaneous reduction of NOx and smoke emission of CI engine fuelled with biodiesel ABSTRACT S.Saravanan Professor, Department

More information

Impact of Cold and Hot Exhaust Gas Recirculation on Diesel Engine

Impact of Cold and Hot Exhaust Gas Recirculation on Diesel Engine RESEARCH ARTICLE OPEN ACCESS Impact of Cold and Hot Exhaust Gas Recirculation on Diesel Engine P. Saichaitanya 1, K. Simhadri 2, G.Vamsidurgamohan 3 1, 2, 3 G M R Institute of Engineering and Technology,

More information

AN EXPERIMENT STUDY OF HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSION IN A GASOLINE ENGINE

AN EXPERIMENT STUDY OF HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSION IN A GASOLINE ENGINE THERMAL SCIENCE: Year 2014, Vol. 18, No. 1, pp. 295-306 295 AN EXPERIMENT STUDY OF HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSION IN A GASOLINE ENGINE by Jianyong ZHANG *, Zhongzhao LI,

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016 ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016 ISSN ISSN 2229-5518 2417 Experimental Investigation of a Two Stroke SI Engine Operated with LPG Induction, Gasoline Manifold Injection and Carburetion V. Gopalakrishnan and M.Loganathan Abstract In this experimental

More information

Received 13 October 2010; revised 23 January 2011; accepted 28 January 2011

Received 13 October 2010; revised 23 January 2011; accepted 28 January 2011 2 Journal of Scientific & Industrial Research J SCI IND RES VOL 7 MARCH 11 Vol. 7, March 11, pp. 2-224 Effects of advanced injection timing on performance and emission of a supercharged dual-fuel diesel

More information

Simulation of Performance Parameters of Spark Ignition Engine for Various Ignition Timings

Simulation of Performance Parameters of Spark Ignition Engine for Various Ignition Timings Research Article International Journal of Current Engineering and Technology ISSN 2277-4106 2013 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Simulation of Performance

More information

Effect of hydrogen and oxygen addition as a lean mixture on emissions and performance characteristics of a two wheeler gasoline engine

Effect of hydrogen and oxygen addition as a lean mixture on emissions and performance characteristics of a two wheeler gasoline engine 216 IJEDR Volume 4, Issue 2 ISSN: 2321-9939 Effect of hydrogen and oxygen addition as a lean mixture on emissions and performance characteristics of a two wheeler gasoline engine 1 Hardik Bambhania, 2

More information

STATE OF THE ART OF PLASMATRON FUEL REFORMERS FOR HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINES

STATE OF THE ART OF PLASMATRON FUEL REFORMERS FOR HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINES Bulletin of the Transilvania University of Braşov Vol. 3 (52) - 2010 Series I: Engineering Sciences STATE OF THE ART OF PLASMATRON FUEL REFORMERS FOR HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINES R.

More information

Numerically Analysing the Effect of EGR on Emissions of DI Diesel Engine Having Toroidal Combustion Chamber Geometry

Numerically Analysing the Effect of EGR on Emissions of DI Diesel Engine Having Toroidal Combustion Chamber Geometry Numerically Analysing the Effect of EGR on Emissions of DI Diesel Engine Having Toroidal Combustion Chamber Geometry Jibin Alex 1, Biju Cherian Abraham 2 1 Student, Dept. of Mechanical Engineering, M A

More information

TECHNICAL PAPER FOR STUDENTS AND YOUNG ENGINEERS - FISITA WORLD AUTOMOTIVE CONGRESS, BARCELONA

TECHNICAL PAPER FOR STUDENTS AND YOUNG ENGINEERS - FISITA WORLD AUTOMOTIVE CONGRESS, BARCELONA TECHNICAL PAPER FOR STUDENTS AND YOUNG ENGINEERS - FISITA WORLD AUTOMOTIVE CONGRESS, BARCELONA 2 - TITLE: Topic: INVESTIGATION OF THE EFFECTS OF HYDROGEN ADDITION ON PERFORMANCE AND EXHAUST EMISSIONS OF

More information

Investigations on performance and emissions of a two-stroke SI engine fitted with a manifold injection system

Investigations on performance and emissions of a two-stroke SI engine fitted with a manifold injection system Indian Journal of Engineering & Materials Sciences Vol. 13, April 2006, pp. 95-102 Investigations on performance and emissions of a two-stroke SI engine fitted with a manifold injection system M Loganathan,

More information

Potential of Large Output Power, High Thermal Efficiency, Near-zero NOx Emission, Supercharged, Lean-burn, Hydrogen-fuelled, Direct Injection Engines

Potential of Large Output Power, High Thermal Efficiency, Near-zero NOx Emission, Supercharged, Lean-burn, Hydrogen-fuelled, Direct Injection Engines Available online at www.sciencedirect.com Energy Procedia 29 (2012 ) 455 462 World Hydrogen Energy Conference 2012 Potential of Large Output Power, High Thermal Efficiency, Near-zero NOx Emission, Supercharged,

More information

Saud Bin Juwair, Taib Iskandar Mohamad, Ahmed Almaleki, Abdullah Alkudsi, Ibrahim Alshunaifi

Saud Bin Juwair, Taib Iskandar Mohamad, Ahmed Almaleki, Abdullah Alkudsi, Ibrahim Alshunaifi The effects of research octane number and fuel systems on the performance and emissions of a spark ignition engine: A study on Saudi Arabian RON91 and RON95 with port injection and direct injection systems

More information

The influence of fuel injection pump malfunctions of a marine 4-stroke Diesel engine on composition of exhaust gases

The influence of fuel injection pump malfunctions of a marine 4-stroke Diesel engine on composition of exhaust gases Article citation info: LEWIŃSKA, J. The influence of fuel injection pump malfunctions of a marine 4-stroke Diesel engine on composition of exhaust gases. Combustion Engines. 2016, 167(4), 53-57. doi:10.19206/ce-2016-405

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 4, Issue 7, January 2015

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 4, Issue 7, January 2015 Effect of Auxiliary Injection Ratio on the Characteristic of Lean Limit in Early Direct Injection Natural Gas Engine Tran Dang Quoc Department of Internal Combustion Engine School of Transportation Engineering,

More information

Internal Combustion Engines

Internal Combustion Engines Emissions & Air Pollution Lecture 3 1 Outline In this lecture we will discuss emission control strategies: Fuel modifications Engine technology Exhaust gas aftertreatment We will become particularly familiar

More information

Influence of ANSYS FLUENT on Gas Engine Modeling

Influence of ANSYS FLUENT on Gas Engine Modeling Influence of ANSYS FLUENT on Gas Engine Modeling George Martinas, Ovidiu Sorin Cupsa 1, Nicolae Buzbuchi, Andreea Arsenie 2 1 CERONAV 2 Constanta Maritime University Romania georgemartinas@ceronav.ro,

More information

EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION

EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION *P. Manoj Kumar 1, V. Pandurangadu 2, V.V. Pratibha Bharathi 3 and V.V. Naga Deepthi 4 1 Department of

More information

Material Science Research India Vol. 7(1), (2010)

Material Science Research India Vol. 7(1), (2010) Material Science Research India Vol. 7(1), 201-207 (2010) Influence of injection timing on the performance, emissions, combustion analysis and sound characteristics of Nerium biodiesel operated single

More information

Control of PCCI Combustion using Physical and Chemical Characteristics of Mixed Fuel

Control of PCCI Combustion using Physical and Chemical Characteristics of Mixed Fuel Doshisha Univ. - Energy Conversion Research Center International Seminar on Recent Trend of Fuel Research for Next-Generation Clean Engines December 5th, 27 Control of PCCI Combustion using Physical and

More information

Experimental investigation on influence of EGR on combustion performance in SI Engine

Experimental investigation on influence of EGR on combustion performance in SI Engine - 1821 - Experimental investigation on influence of EGR on combustion performance in SI Engine Abstract M. Božić 1*, A. Vučetić 1, D. Kozarac 1, Z. Lulić 1 1 University of Zagreb, Faculty of Mechanical

More information

Effect of Thermal Barrier Coating on Piston Head of 4-Stroke Spark Ignition Engine

Effect of Thermal Barrier Coating on Piston Head of 4-Stroke Spark Ignition Engine International Journal of Advances in Scientific Research and Engineering (ijasre) E-ISSN : 2-8006 Vol.3, Special Issue Aug - 207 Effect of Thermal Barrier Coating on Piston Head of -Stroke Spark Ignition

More information

REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD

REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD Dr.S.L.V. Prasad 1, Prof.V.Pandurangadu 2, Dr.P.Manoj Kumar 3, Dr G. Naga Malleshwara Rao 4 Dept.of Mechanical

More information

Modifications on a Small Two Wheeler Two Stroke SI Engine for Reducing Fuel Consumption and Exhaust Emissions

Modifications on a Small Two Wheeler Two Stroke SI Engine for Reducing Fuel Consumption and Exhaust Emissions RIO 5 - World Climate & Energy Event, 15-17 February 5, Rio de Janeiro, Brazil Modifications on a Small Two Wheeler Two Stroke SI Engine for Reducing Fuel Consumption and Exhaust Emissions Kunam Anji Reddy,

More information

Which are the four important control loops of an spark ignition (SI) engine?

Which are the four important control loops of an spark ignition (SI) engine? 151-0567-00 Engine Systems (HS 2017) Exercise 1 Topic: Lecture 1 Johannes Ritzmann (jritzman@ethz.ch), Raffi Hedinger (hraffael@ethz.ch); October 13, 2017 Problem 1 (Control Systems) Why do we use control

More information

FUELS AND COMBUSTION IN ENGINEERING JOURNAL

FUELS AND COMBUSTION IN ENGINEERING JOURNAL ENGINE PERFORMANCE AND ANALYSIS OF H 2 /NH 3 (70/30), H 2 AND GASOLINE FUELS IN AN SI ENGINE İ. İ. YURTTAŞ a, B. ALBAYRAK ÇEPER a,*, N. KAHRAMAN a, and S. O. AKANSU a a Department of Mechanical Engineering,

More information

A Study of EGR Stratification in an Engine Cylinder

A Study of EGR Stratification in an Engine Cylinder A Study of EGR Stratification in an Engine Cylinder Bassem Ramadan Kettering University ABSTRACT One strategy to decrease the amount of oxides of nitrogen formed and emitted from certain combustion devices,

More information

Variations of Exhaust Gas Temperature and Combustion Stability due to Changes in Spark and Exhaust Valve Timings

Variations of Exhaust Gas Temperature and Combustion Stability due to Changes in Spark and Exhaust Valve Timings Variations of Exhaust Gas Temperature and Combustion Stability due to Changes in Spark and Exhaust Valve Timings Yong-Seok Cho Graduate School of Automotive Engineering, Kookmin University, Seoul, Korea

More information

Effects of Ethanol-Gasoline blends on Performance and Emissions of Gasoline Engines

Effects of Ethanol-Gasoline blends on Performance and Emissions of Gasoline Engines Effects of Ethanol-Gasoline blends on Performance and Emissions of Gasoline Engines Er. Kapil Karadia 1, Er. Ashish Nayyar 2 1 Swami Keshvanand Institute of Technology, Management &Gramothan, Jaipur,Rajasthan

More information

CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES

CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES Nicolae Ispas *, Mircea Năstăsoiu, Mihai Dogariu Transilvania University of Brasov KEYWORDS HCCI, Diesel Engine, controlling, air-fuel mixing combustion ABSTRACT

More information

Experimental Study on the Use of EGR in a Hydrogen-Fueled SI Engine. P. Tamilarasan, M. Loganathan

Experimental Study on the Use of EGR in a Hydrogen-Fueled SI Engine. P. Tamilarasan, M. Loganathan International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August - 2016 Experimental Study on the Use of EGR in a Hydrogen-Fueled SI Engine P. Tamilarasan, M. Loganathan 336 Abstract

More information

Vivek Pandey 1, V.K. Gupta 2 1,2 Department of Mechanical Engineering, College of Technology, GBPUA&T, Pantnagar, India

Vivek Pandey 1, V.K. Gupta 2 1,2 Department of Mechanical Engineering, College of Technology, GBPUA&T, Pantnagar, India Study of Ethanol Gasoline Blends for Powering Medium Duty Transportation SI Engine Vivek Pandey 1, V.K. Gupta 2 1,2 Department of Mechanical Engineering, College of Technology, GBPUA&T, Pantnagar, India

More information

The Effect of Volume Ratio of Ethanol Directly Injected in a Gasoline Port Injection Spark Ignition Engine

The Effect of Volume Ratio of Ethanol Directly Injected in a Gasoline Port Injection Spark Ignition Engine 10 th ASPACC July 19 22, 2015 Beijing, China The Effect of Volume Ratio of Ethanol Directly Injected in a Gasoline Port Injection Spark Ignition Engine Yuhan Huang a,b, Guang Hong a, Ronghua Huang b. a

More information

INFLUENCE OF THE NUMBER OF NOZZLE HOLES ON THE UNBURNED FUEL IN DIESEL ENGINE

INFLUENCE OF THE NUMBER OF NOZZLE HOLES ON THE UNBURNED FUEL IN DIESEL ENGINE INFLUENCE OF THE NUMBER OF NOZZLE HOLES ON THE UNBURNED FUEL IN DIESEL ENGINE 1. UNIVERSITY OF RUSE, 8, STUDENTSKA STR., 7017 RUSE, BULGARIA 1. Simeon ILIEV ABSTRACT: The objective of this paper is to

More information

Effect of Varying Load on Performance and Emission of C.I. Engine Using WPO Diesel Blend

Effect of Varying Load on Performance and Emission of C.I. Engine Using WPO Diesel Blend IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 12, Issue 2 Ver. V (Mar - Apr. 2015), PP 37-44 www.iosrjournals.org Effect of Varying Load on Performance

More information

RESEARCH ON INFLUENCE OF SELECTED FAILURES ON THE EXHAUST GAS CONTENT OF SHIP DIESEL ENGINE WORKING ON HEAVY FUEL OIL

RESEARCH ON INFLUENCE OF SELECTED FAILURES ON THE EXHAUST GAS CONTENT OF SHIP DIESEL ENGINE WORKING ON HEAVY FUEL OIL Journal of KONES Powertrain and Transport, Vol. 16, No. 4 2009 RESEARCH ON INFLUENCE OF SELECTED FAILURES ON THE EXHAUST GAS CONTENT OF SHIP DIESEL ENGINE WORKING ON HEAVY FUEL OIL Kazimierz Witkowski

More information

Experimental Investigation of Acceleration Test in Spark Ignition Engine

Experimental Investigation of Acceleration Test in Spark Ignition Engine Experimental Investigation of Acceleration Test in Spark Ignition Engine M. F. Tantawy Basic and Applied Science Department. College of Engineering and Technology, Arab Academy for Science, Technology

More information

State of the Art (SOTA) Manual for Internal Combustion Engines

State of the Art (SOTA) Manual for Internal Combustion Engines State of the Art (SOTA) Manual for Internal Combustion Engines July 1997 State of New Jersey Department of Environmental Protection Air Quality Permitting Program State of the Art (SOTA) Manual for Internal

More information

Experimental Analysis of Utilization of Heat Using Methanol - Diesel Blended Fuel in Four Stroke Single Cylinder Water Cooled Diesel Engine

Experimental Analysis of Utilization of Heat Using Methanol - Diesel Blended Fuel in Four Stroke Single Cylinder Water Cooled Diesel Engine Experimental Analysis of Utilization of Heat Using Methanol - Diesel Blended Fuel in Four Stroke Single Cylinder Water Cooled Diesel Engine T. Singha 1, S. Sakhari 1, T. Sarkar 1, P. Das 1, A. Dutta 1,

More information

C. DHANASEKARAN AND 2 G. MOHANKUMAR

C. DHANASEKARAN AND 2 G. MOHANKUMAR 1 C. DHANASEKARAN AND 2 G. MOHANKUMAR 1 Research Scholar, Anna University of Technology, Coimbatore 2 Park College of Engineering & Technology, Anna University of Technology, Coimbatore ABSTRACT Hydrogen

More information

EFFECT OF EGR AND CYCLONIC SEPARATOR ON EMISSIONS IN DI DIESEL ENGINES

EFFECT OF EGR AND CYCLONIC SEPARATOR ON EMISSIONS IN DI DIESEL ENGINES Proceedings of the International Conference on Mechanical Engineering 27 (ICME27) 29-31 December 27, Dhaka, Bangladesh ICME7-TH-9 EFFECT OF EGR AND CYCLONIC SEPARATOR ON EMISSIONS IN DI DIESEL ENGINES

More information

Review Paper Waste plastic Pyrolysis oil Alternative Fuel for CI Engine A Review

Review Paper Waste plastic Pyrolysis oil Alternative Fuel for CI Engine A Review Research Journal of Engineering Sciences ISSN 2278 9472 Review Paper Waste plastic Pyrolysis oil Alternative Fuel for CI Engine A Review Abstract Pawar Harshal R. and Lawankar Shailendra M. Department

More information

4. With a neat sketch explain in detail about the different types of fuel injection system used in SI engines. (May 2016)

4. With a neat sketch explain in detail about the different types of fuel injection system used in SI engines. (May 2016) SYED AMMAL ENGINEERING COLLEGE (Approved by the AICTE, New Delhi, Govt. of Tamilnadu and Affiliated to Anna University, Chennai) Established in 1998 - An ISO 9001:2000 Certified Institution Dr. E.M.Abdullah

More information

Module 5: Emission Control for SI Engines Lecture20:ADD-ON SYSTEMS FOR CONTROL OF ENGINE-OUT EMISSIONS

Module 5: Emission Control for SI Engines Lecture20:ADD-ON SYSTEMS FOR CONTROL OF ENGINE-OUT EMISSIONS ADD-ON SYSTEMS FOR CONTROL OF ENGINE-OUT EMISSIONS The Lecture Contains: Crankcase Emission Control (PCV System) Evaporative Emission Control Exhaust Gas Recirculation Water Injection file:///c /...%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/engine_combustion/lecture20/20_1.htm[6/15/2012

More information

Experimental Investigation on Diesel Engines by Swirl Induction with Different Manifolds

Experimental Investigation on Diesel Engines by Swirl Induction with Different Manifolds Research Article International Journal of Current Engineering and Technology E-ISSN 2277 416, P-ISSN 2347-5161 214 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Experimental

More information

Prediction on Increasing the Efficiency of Single Cylinder DI Diesel Engine Using EGR System

Prediction on Increasing the Efficiency of Single Cylinder DI Diesel Engine Using EGR System International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Prediction on Increasing the Efficiency of Single Cylinder DI Diesel Engine Using EGR System P.Muni Raja Chandra 1, Ayaz Ahmed 2,

More information

EXPERIMENTAL INVESTIGATION ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH TYRE OIL

EXPERIMENTAL INVESTIGATION ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH TYRE OIL EXPERIMENTAL INVESTIGATION ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH TYRE OIL D.Sravani 1, R.Jyothu Naik 2, P. Srinivasa Rao 3 1 M.Tech Student, Mechanical Engineering, Narasaraopet Engineering

More information

INVESTIGATIONS OF EFFECTS OF PILOT INJECTION WITH CHANGE IN LEVEL OF COMPRESSION RATIO IN A COMMON RAIL DIESEL ENGINE

INVESTIGATIONS OF EFFECTS OF PILOT INJECTION WITH CHANGE IN LEVEL OF COMPRESSION RATIO IN A COMMON RAIL DIESEL ENGINE THERMAL SCIENCE: Year 2012, Vol. 17, No. 1, pp. 71-80 71 INVESTIGATIONS OF EFFECTS OF PILOT INJECTION WITH CHANGE IN LEVEL OF COMPRESSION RATIO IN A COMMON RAIL DIESEL ENGINE by Nilesh GAJARLAWAR a, Ajaykumar

More information

Experimental investigation of ethanol-gasoline dual-fuel on particle emissions at the exhaust of a small displacement engine

Experimental investigation of ethanol-gasoline dual-fuel on particle emissions at the exhaust of a small displacement engine Experimental investigation of ethanol-gasoline dual-fuel on particle emissions at the exhaust of a small displacement engine F. Catapano, S. Di Iorio, P. Sementa, B. M. Vaglieco Istituto Motori CNR, Naples

More information

The influence of non-cooled exhaust gas recirculation on the indicator diagrams and heat release parameters in diesel engine cylinder

The influence of non-cooled exhaust gas recirculation on the indicator diagrams and heat release parameters in diesel engine cylinder Article citation info: CISEK, J. The influence of non-cooled exhaust gas recirculation on the indicator diagrams and heat release parameters in diesel engine cylinder. Combustion Engines. 2017, 171(4),

More information

Effects of Pre-injection on Combustion Characteristics of a Single-cylinder Diesel Engine

Effects of Pre-injection on Combustion Characteristics of a Single-cylinder Diesel Engine Proceedings of the ASME 2009 International Mechanical Engineering Congress & Exposition IMECE2009 November 13-19, Lake Buena Vista, Florida, USA IMECE2009-10493 IMECE2009-10493 Effects of Pre-injection

More information

EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF PETROL ENGINE USING FUEL CATALYST

EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF PETROL ENGINE USING FUEL CATALYST EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF PETROL ENGINE USING FUEL CATALYST Sagar.A.Patil 1, Priyanka.V.Kadam 2, Mangesh.S.Yeolekar 3, Sandip.B.Sonawane 4 1 Student (Final Year), Department

More information

is the crank angle between the initial spark and the time when about 10% of the charge is burned. θ θ

is the crank angle between the initial spark and the time when about 10% of the charge is burned. θ θ ME 410 Day 30 Phases of Combustion 1. Ignition 2. Early flame development θd θ 3. Flame propagation b 4. Flame termination The flame development angle θd is the crank angle between the initial spark and

More information

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 11 Nov p-issn:

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 11 Nov p-issn: International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Performance and emission characteristics of a constant speed diesel engine fueled with Rubber seed oil and Jatropha

More information

EXPERIMENTAL ANALYSIS OF A DIESEL CYCLE ENGINE USING GASOLINE AS FUEL: HCCI TECHNOLOGY

EXPERIMENTAL ANALYSIS OF A DIESEL CYCLE ENGINE USING GASOLINE AS FUEL: HCCI TECHNOLOGY 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics HEFAT2011 8 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 26 June 1 July 2011 Pointe

More information

NUMERICAL INVESTIGATION OF EFFECT OF EXHAUST GAS RECIRCULATION ON COMPRESSIONIGNITION ENGINE EMISSIONS

NUMERICAL INVESTIGATION OF EFFECT OF EXHAUST GAS RECIRCULATION ON COMPRESSIONIGNITION ENGINE EMISSIONS ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

Effect of hydrogen and gasoline fuel blend on the performance of SI engine

Effect of hydrogen and gasoline fuel blend on the performance of SI engine Vol. 4(7), pp. 125-130, November 2013 DOI: 10.5897/JPTAF2013.0095 2013 Academic Journals http://www.academicjournals.org/jptaf Journal of Petroleum Technology and Alternative Fuels Full Length Research

More information

CHAPTER 4 VARIABLE COMPRESSION RATIO ENGINE WITH DATA ACQUISITION SYSTEM

CHAPTER 4 VARIABLE COMPRESSION RATIO ENGINE WITH DATA ACQUISITION SYSTEM 57 CHAPTER 4 VARIABLE COMPRESSION RATIO ENGINE WITH DATA ACQUISITION SYSTEM 4.1 GENERAL The variable compression ratio engine was developed by Legion brothers, Bangalore, India. This chapter briefly discusses

More information

Conversion of Naturally Aspirated Genset Engine to Meet III A Norms for Tractor Application by Using Turbocharger

Conversion of Naturally Aspirated Genset Engine to Meet III A Norms for Tractor Application by Using Turbocharger Conversion of Naturally Aspirated Genset Engine to Meet III A Norms for Tractor Application by Using Turbocharger M. Karthik Ganesh, B. Arun kumar Simpson co ltd., Chennai, India ABSTRACT: The small power

More information

Case Study of Exhaust Gas Recirculation on Engine Performance

Case Study of Exhaust Gas Recirculation on Engine Performance IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727 PP 13-17 www.iosrjournals.org Case Study of Exhaust Gas Recirculation on Engine Performance Jagadish M. Sirase 1, Roshan

More information

Emission and Combustion Characteristics of Si Engine Working Under Gasoline Blended with Ethanol Oxygenated Organic Compounds

Emission and Combustion Characteristics of Si Engine Working Under Gasoline Blended with Ethanol Oxygenated Organic Compounds American Journal of Environmental Sciences 6 (6): 495-499, 2010 ISSN 1553-345X 2010 Science Publications Emission and Combustion Characteristics of Si Engine Working Under Gasoline Blended with Ethanol

More information

GASOLINE DIRECT INJECTION IN SI ENGINES B. PAVAN VISWANADH P. ASHOK KUMAR. Mobile No : Mobile No:

GASOLINE DIRECT INJECTION IN SI ENGINES B. PAVAN VISWANADH P. ASHOK KUMAR. Mobile No : Mobile No: GASOLINE DIRECT INJECTION IN SI ENGINES SUBMIT TED BY B. PAVAN VISWANADH P. ASHOK KUMAR Y06ME011, III/IV B. Tech Y06ME003, III/IV B. Tech Pavan.visu@gmail.com ashok.me003@gmail.com Mobile No :9291323516

More information

Gasoline HCCI engine with DME (Di-methyl Ether) as an Ignition Promoter

Gasoline HCCI engine with DME (Di-methyl Ether) as an Ignition Promoter Gasoline HCCI engine with DME (Di-methyl Ether) as an Ignition Promoter Kitae Yeom, Jinyoung Jang, Choongsik Bae Abstract Homogeneous charge compression ignition (HCCI) combustion is an attractive way

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 GENERAL Diesel engines are the primary power source of vehicles used in heavy duty applications. The heavy duty engine includes buses, large trucks, and off-highway construction

More information

Figure 1: The Turbocharger cross-section with turbine and compressor connected with shaft [2]

Figure 1: The Turbocharger cross-section with turbine and compressor connected with shaft [2] International Journal of Applied Engineering Research ISSN 973-456 Volume 13, Number 1 (18) pp. 691-696 Effects of Pressure Boost on the Performance Characteristics of the Direct Injection Spark Ignition

More information

Influence of Injection Timing on the Performance of Dual Fuel Compression Ignition Engine with Exhaust Gas Recirculation

Influence of Injection Timing on the Performance of Dual Fuel Compression Ignition Engine with Exhaust Gas Recirculation International Journal of Engineering Research and Development ISSN: 2278-067X, Volume 1, Issue 11 (July 2012), PP. 36-42 www.ijerd.com Influence of Injection Timing on the Performance of Dual Fuel Compression

More information

Principles of Engine Operation. Information

Principles of Engine Operation. Information Internal Combustion Engines MAK 4070E Principles of Engine Operation Prof.Dr. Cem Soruşbay Istanbul Technical University Information Prof.Dr. Cem Soruşbay İ.T.Ü. Makina Fakültesi Motorlar ve Taşıtlar Laboratuvarı

More information

Effect of Fuel, Compression ratios on Energetic and Exergetic efficiency of Spark Ignition (SI) Engine

Effect of Fuel, Compression ratios on Energetic and Exergetic efficiency of Spark Ignition (SI) Engine , July 4-6, 12, London, U.K. Effect of Fuel, s on Energetic and Exergetic efficiency of Spark Ignition (SI) Engine Munawar Nawab Karimi *, Sandeep Kumar Kamboj Abstract - In this study, the effect of the

More information

R&D on Environment-Friendly, Electronically Controlled Diesel Engine

R&D on Environment-Friendly, Electronically Controlled Diesel Engine 20000 M4.2.2 R&D on Environment-Friendly, Electronically Controlled Diesel Engine (Electronically Controlled Diesel Engine Group) Nobuyasu Matsudaira, Koji Imoto, Hiroshi Morimoto, Akira Numata, Toshimitsu

More information

The influence of non-cooled exhaust gas recirculation on the diesel engine parameters

The influence of non-cooled exhaust gas recirculation on the diesel engine parameters Article citation info: CISEK, J. The influence of non-cooled exhaust gas recirculation on the diesel engine parameters. Combustion Engines. 2017, 171(4), 269-273. DOI: 10.19206/CE-2017-446 Jerzy CISEK

More information

EFFECTS OF INTAKE AIR TEMPERATURE ON HOMOGENOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSIONS WITH GASOLINE AND n-heptane

EFFECTS OF INTAKE AIR TEMPERATURE ON HOMOGENOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSIONS WITH GASOLINE AND n-heptane THERMAL SCIENCE: Year 2015, Vol. 19, No. 6, pp. 1897-1906 1897 EFFECTS OF INTAKE AIR TEMPERATURE ON HOMOGENOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSIONS WITH GASOLINE AND n-heptane by Jianyong

More information

ACTUAL CYCLE. Actual engine cycle

ACTUAL CYCLE. Actual engine cycle 1 ACTUAL CYCLE Actual engine cycle Introduction 2 Ideal Gas Cycle (Air Standard Cycle) Idealized processes Idealize working Fluid Fuel-Air Cycle Idealized Processes Accurate Working Fluid Model Actual

More information

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL Deepu T 1, Pradeesh A.R. 2, Vishnu Viswanath K 3 1, 2, Asst. Professors, Dept. of Mechanical Engineering, Ammini College of

More information

Emissions of Diesel Engine Using Exhaust Gas Recirculation by Molecular Diffusion

Emissions of Diesel Engine Using Exhaust Gas Recirculation by Molecular Diffusion Emissions of Diesel Engine Using Exhaust Gas Recirculation by Molecular Diffusion ADEL A. ABDEL-RAHMAN Mechanical Engineering Department Alexandria University, Alexandria 21544, Egypt E-mail: adel.abdel-rahman@alexu.edu.eg

More information

8 th International Symposium TCDE Choongsik Bae and Sangwook Han. 9 May 2011 KAIST Engine Laboratory

8 th International Symposium TCDE Choongsik Bae and Sangwook Han. 9 May 2011 KAIST Engine Laboratory 8 th International Symposium TCDE 2011 Choongsik Bae and Sangwook Han 9 May 2011 KAIST Engine Laboratory Contents 1. Background and Objective 2. Experimental Setup and Conditions 3. Results and Discussion

More information

Effect of Preheating Air in Petrol Engine by Using Exhaust Gas Heat Energy

Effect of Preheating Air in Petrol Engine by Using Exhaust Gas Heat Energy ISSN 2395-1621 Effect of Preheating Air in Petrol Engine by Using Exhaust Gas Heat Energy #1 Ghorpade Sangram D., #2 Lokhande Akshay R., #3 Lagad Pradeep B. #4 Jangam Raviraj S. 1 sangramghorpade1996@gmail.com

More information

Analysis of Emission characteristics on Compression Ignition Engine using Dual Fuel Mode for Variable Speed

Analysis of Emission characteristics on Compression Ignition Engine using Dual Fuel Mode for Variable Speed International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 4, Issue 3 (October 2012), PP. 23-27 Analysis of Emission characteristics on Compression

More information

THE INFLUENCE OF THE EGR RATE ON A HCCI ENGINE MODEL CALCULATED WITH THE SINGLE ZONE HCCI METHOD

THE INFLUENCE OF THE EGR RATE ON A HCCI ENGINE MODEL CALCULATED WITH THE SINGLE ZONE HCCI METHOD CONAT243 THE INFLUENCE OF THE EGR RATE ON A HCCI ENGINE MODEL CALCULATED WITH THE SINGLE ZONE HCCI METHOD KEYWORDS HCCI, EGR, heat release rate Radu Cosgarea *, Corneliu Cofaru, Mihai Aleonte Transilvania

More information

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines ADVANCED COMBUSTION SYSTEMS AND ALTERNATIVE POWERPLANTS The Lecture Contains: DIRECT INJECTION STRATIFIED CHARGE (DISC) ENGINES Historical Overview Potential Advantages of DISC Engines DISC Engine Combustion

More information

Effects of intake air temperature on HCCI combustion and emissions with gasoline and n-heptane

Effects of intake air temperature on HCCI combustion and emissions with gasoline and n-heptane Effects of intake air temperature on HCCI combustion and emissions with gasoline and n-heptane 1 by Jianyong ZHANG, Zhongzhao LI, Kaiqiang ZHANG, Xingcai LV, Zhen HUANG Key Laboratory of Power Machinery

More information