SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2013/2014 ME110. Aircraft and Automotive Systems

Size: px
Start display at page:

Download "SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2013/2014 ME110. Aircraft and Automotive Systems"

Transcription

1 s SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2013/2014 ME110 Aircraft and Automotive Systems Time allowed: TWO hours Answer TWO questions from THREE in Section A and TWO questions from THREE in Section B Items permitted: Any approved calculator Items supplied: Graph paper Marks for whole and part questions are indicated in brackets [ ] ME110/2013/2014 Page 1 of 10 Printing date: 20/10/2014

2 Section A Attempt TWO questions in this section Question 1 The Equal Transit Time Theory is often associated with wings and the development of lift forces. Provide a description of the theory, using a sketch to aid your explanation. Describe whether or not the theory is valid, stating your reasons. [6 marks] (b) (i) Describe how lift forces acting on a wing might be defined according to Newtonian force relationships. Provide a sketch to aid your explanation. [4 marks] (ii) Describe how lift forces acting on a wing might be defined according to Bernoulli s Principle. Provide a sketch to aid your explanation. [4 marks] (c) With the aid of a sketch, describe how wingtip vortices are developed. [6 marks] (d) Describe the two principal categories of drag force that aircraft are subjected to during flight, sketch their typical characteristics with respect to flight velocity. [5 marks] ME110/2013/2014 Page 2 of 10 Printing date: 20/10/2014

3 Question 2 Calculate the Reynolds number at a location x = 0.3 m along the chord length of an aircraft wing at each of the following velocities; u = 20, 40, 60, 80 and 100 knots. Assume International Standard Atmosphere (ISA) conditions for pressure and temperature. Take: R = 287 J/kg K; μ = 18 x 10-6 kg/m s; 1 knot = mph; 1 mph = 1.61 km/h. Re x = ρux μ [9 marks] (b) Calculate the thickness of the boundary layer, δ, at a location x = 0.3 m along the chord length of an aircraft wing at each of the following velocities; u = 20, 40, 60, 80 and 100 knots. You may consider the flow over the wing as a flat plate case. Present your answers in mm. Re Transition = δ Laminar = x 4.91 Re x 0.5 δ Turbulent = x Re x 0.2 [10 marks] (c) Sketch an aerofoil section and label five important geometric features. [3 marks] (c) Sketch and label five types of control surfaces found on a typical aircraft. [3 marks] ME110/2013/2014 Page 3 of 10 Printing date: 20/10/2014

4 Question 3 (b) (c) (d) Define the plotted lines and axis as numbered (1) to (7) in the graph shown in Figure Q3. [6 marks] An aerodynamic load of 1956 N is required from a front wing on a racing car in order to allow it to drive around a corner at 180 mph. Referring to the graph below, determine the wing area required if the lift to drag ratio is to be optimised. Assume International Standard Atmosphere (ISA) conditions for pressure and temperature. Take: R = 287 J/kgK; 1 mph = 1.61 km/h. C L = F Lift 1 2 ρu2 A [8 marks] If the wing design for part (b) is limited to a width of 1.8 m and a chord length of 0.4 m by regulation, sketch and describe a wing design that would satisfy this case. Sketch and label a typical plot for tyre slip angle with respect to friction coefficient for a road car tyre and also for a racing car tyre. Describe the reasons for any differences between the tyre characteristics. [5 marks] [6 marks] (4) (2) (3) C D (7) (1) (5) (6) Figure Q3 ME110/2013/2014 Page 4 of 10 Printing date: 20/10/2014

5 Section B Attempt TWO questions in this section Question 4 A pressure-volume diagram for a reciprocating internal combustion engine is shown in Figure Q4 (at the end of the paper). Using Figure Q4.1 mark where the following events start and end: (i) Induction of air into the engine (ii) Compression of the air (iii) Combustion of the air-fuel mixture (iv) Work is produced by the engine (v) The products of combustion are removed from the engine. (b) At the start of the compression stroke: V = 0.54 litre, p = 100 kpa, T = 300 K At the end of the compression stroke: V = 0.04 litre (i) Find the compression ratio of the engine (ii) Calculate the pressure and temperature of the air at the end of the compression stoke, assuming that the air behaves as an ideal gas. [4 Marks] Question 4 continues over the page. ME110/2013/2014 Page 5 of 10 Printing date: 20/10/2014

6 (iii) When Figure Q4 was recorded the engine was running at a speed of 1500 rev/min and consumed fuel at the rate of 0.75 kg/h. What was the air to fuel ratio? [4 Marks] (iv) Assuming that there is no change in volume during the combustion process, compute the temperature at the end of the combustion process. Useful equations For an ideal gas During compression Conservation of energy Constants R = kj/kg K c v = kj/kg K n = 1.35 pv mrt n pv constant Q pdv mcv T Take the calorific value of Diesel fuel to be 42.5 MJ/kg [5 Marks] ME110/2013/2014 Page 6 of 10 Printing date: 20/10/2014

7 Question 5 Describe how ignition is caused in a petrol engine and name the operating cycle used. [5 marks] (b) Describe how ignition is caused in a Diesel engine and name the operating cycle used. [5 marks] (c) Describe the motion of a piston in a reciprocating engine running at a constant crankshaft speed; when does the piston reach its maximum and minimum linear velocity? [3 marks] (d) Describe how a petrol fuel injector works in a traditional petrol engine [5 marks] (e) Explain the purpose of a throttle in a traditional petrol engine. [4 marks] (f) Describe three types of reciprocating engine piston-cylinder configurations. [3 marks] ME110/2013/2014 Page 7 of 10 Printing date: 20/10/2014

8 Question 6 The Mercedes C-class sportcoupe, shown in Figure Q6.1 was sold in two versions: 1. The C180 K with a 1.8 litre supercharged spark ignition gasoline engine. Maximum power output = 104 kw Based upon the standard fuel efficiency test a vehicle with this engine would consume 6.1 litres of gasoline over a 100 km journey. 2. The C220 CDI with a 2.0 litre turbocharged Diesel engine. Maximum power output = 109 kw Based upon the standard fuel efficiency test a vehicle with this engine would consume 5.7 litres of Diesel over a 100 km journey. Figure Q6.1 Calculate average fuel energy consumed per kilometre in the standard fuel efficiency test for each vehicle and hence determine which version of the vehicle had the most fuel efficient engine. [11 marks] Fuel Density [kg/m 3 ] Calorific Value [MJ/kg] Gasoline Diesel Table Q6 Fuel properties Question 6 continues over the page. ME110/2013/2014 Page 8 of 10 Printing date: 20/10/2014

9 (b) The Tesla Roadster, Figure Q6.2a is an electric vehicle based upon the chassis of a Lotus Elise, Figure Q6.2b. Mass of vehicle = 1238 kg Mass of battery pack = 450 kg Capacity of battery pack = 53 kwh (b) Mass of vehicle = 903 kg Volume of fuel tank = 43.5 litre Density of fuel = 775 kg/m 3 Calorific value of fuel = 42.7 MJ/kg Figure Q6.2 (i) Calculate the energy stored in the battery pack of the Tesla and the energy density of the pack. (ii) Calculate the energy stored in the fuel tank of the Lotus and the energy density of the tank. (iii) When the Lotus is driven at an average speed of 20 m/s the drag force on the vehicle is 400 N. If the average fuel conversion efficiency is 13% then calculate the distance travelled by the vehicle. [5 Marks] (iv) When the Tesla is driven at an average speed of 20 m/s the drag force on the vehicle is 420 N. If the electric motor has an efficiency of 90% then determine whether the Tesla will have a greater range than the Lotus. [5 Marks] ME110/2013/2014 Page 9 of 10 Printing date: 20/10/2014

10 Pressure [bar] Student Number Volume [m 3 ] Figure Q4 ME110/2013/2014 Page 10 of 10 Printing date: 20/10/2014

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2014/2015 ME110. Aircraft and Automotive Systems

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2014/2015 ME110. Aircraft and Automotive Systems s SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER EXAMINATIONS 014/015 ME110 Aircraft and Automotive Systems Time allowed: ONE hour THIRTY minutes Answer TWO questions from THREE Items permitted:

More information

AIRCRAFT AND AUTOMOTIVE SYSTEMS (ME110)

AIRCRAFT AND AUTOMOTIVE SYSTEMS (ME110) s School of Environment and Technology Aircraft & Automotive Systems (ME110) Division of Engineering and Product Design Semester Two Examination, June, 2010 B.ENG. HONOURS DEGREE COURSE AIRCRAFT AND AUTOMOTIVE

More information

2013 THERMAL ENGINEERING-I

2013 THERMAL ENGINEERING-I SET - 1 II B. Tech II Semester, Regular Examinations, April/May 2013 THERMAL ENGINEERING-I (Com. to ME, AME) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~

More information

Assignment-1 Introduction

Assignment-1 Introduction Assignment-1 Introduction 1. Compare S.I. engines with C.I engines. 2. Explain with the help of neat sketch, the working of a 2-stroke petrol engine. 3. Derive an equation of efficiency, work output and

More information

Assignment-1 Air Standard Cycles

Assignment-1 Air Standard Cycles Assignment-1 Air Standard Cycles 1. What do u mean by air standard cycle? List assumptions for air standard cycle & give reasons why air standard cycle differs from actual cycle. 2. Derive an equation

More information

2.61 Internal Combustion Engines

2.61 Internal Combustion Engines Due: Thursday, February 19, 2004 2.61 Internal Combustion Engines Problem Set 2 Tuesday, February 10, 2004 1. Several velocities, time, and length scales are useful in understanding what goes on inside

More information

AT 2303 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering Question Bank

AT 2303 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering Question Bank AT 2303 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering Question Bank UNIT I INTRODUCTION 1. What are the design considerations of a vehicle?(jun 2013) 2..Classify the various types of vehicles.

More information

SET - 1 II B. Tech II Semester Regular/Supplementary Examinations, April/May-2017 THERMAL ENGINEERING-I (Mechanical Engineering) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts

More information

VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE

VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE Page 1 of 13 EFFECT OF VALVE TIMING DIAGRAM ON VOLUMETRIC EFFICIENCY: Qu. 1:Why Inlet valve is closed after the Bottom Dead Centre

More information

B.Tech. - VIEP - MECHANICAL ENGINEERING (BTMEVI) Term-End Examination June 2016

B.Tech. - VIEP - MECHANICAL ENGINEERING (BTMEVI) Term-End Examination June 2016 No. of Printed Pages : 5 I BIME-010 I B.Tech. - VIEP - MECHANICAL ENGINEERING (BTMEVI) 00 1 Ems, Term-End Examination June 2016 BIME-010 : THERMAL ENGINEERING Time : 3 hours Maximum Marks : 70 Note : Attempt

More information

INDUSTRIAL TECHNOLOGY

INDUSTRIAL TECHNOLOGY STUDENT NUMBER CENTRE NUMBER HIGHER SCHOOL CERTIFICATE EXAMINATION 2000 INDUSTRIAL TECHNOLOGY 2 UNIT SECTION II AUTOMOTIVE INDUSTRIES OPTION BODY Total time allowed for Sections I and II One hour and a

More information

Page 2. (a) (i) Show that during the change AB the gas undergoes an isothermal change.

Page 2. (a) (i) Show that during the change AB the gas undergoes an isothermal change. Q1.The Carnot cycle is the most efficient theoretical cycle of changes for a fixed mass of gas in a heat engine. The graph below shows the pressure volume (p V) diagram for a gas undergoing a Carnot cycle

More information

2. Discuss the effects of the following operating variables on detonation

2. Discuss the effects of the following operating variables on detonation Code No: RR220303 Set No. 1 II B.Tech II Semester Regular Examinations, Apr/May 2006 THERMAL ENGINEERING-I ( Common to Mechanical Engineering and Automobile Engineering) Time: 3 hours Max Marks: 80 Answer

More information

The Mechanics of Tractor Implement Performance

The Mechanics of Tractor Implement Performance The Mechanics of Tractor Implement Performance Theory and Worked Examples R.H. Macmillan CHAPTER 2 TRACTOR MECHANICS Printed from: http://www.eprints.unimelb.edu.au CONTENTS 2.1 INTRODUCTION 2.1 2.2 IDEAL

More information

AT AUTOMOTIVE ENGINES QUESTION BANK

AT AUTOMOTIVE ENGINES QUESTION BANK AT6301 - AUTOMOTIVE ENGINES QUESTION BANK UNIT I: CONSTRUCTION & WORKING PRINCIPLE OF IC ENGINES 1. State the application of CI engines? 2. What is Cubic capacity of an engine? 3. What is the purpose of

More information

Scheme - G. Sample Test Paper-I. Course Name : Diploma in Mechanical Engineering Course Code : ME Semester : Fifth Subject Title : Power Engineering

Scheme - G. Sample Test Paper-I. Course Name : Diploma in Mechanical Engineering Course Code : ME Semester : Fifth Subject Title : Power Engineering Sample Test Paper-I Marks : 25 Time:1 hour Q1. Attempt any Three 3X3=9 a) Define i) Mean Effective Pressure ii) Piston Speed iii) Swept Volume b) Draw Carnot cycle on P-V and T-S Diagram c) State the need

More information

Chapter 4 Engine characteristics (Lectures 13 to 16)

Chapter 4 Engine characteristics (Lectures 13 to 16) Chapter 4 Engine characteristics (Lectures 13 to 16) Keywords: Engines for airplane applications; piston engine; propeller characteristics; turbo-prop, turbofan and turbojet engines; choice of engine for

More information

Operating Characteristics

Operating Characteristics Chapter 2 Operating Characteristics 2-1 Engine Parameters 2-22 Work 2-3 Mean Effective Pressure 2-4 Torque and Power 2-5 Dynamometers 2-6 Air-Fuel Ratio and Fuel-Air Ratio 2-7 Specific Fuel Consumption

More information

Page 2. The go-kart always had the same mass and used the same motor.

Page 2. The go-kart always had the same mass and used the same motor. Q1.(a) Some students have designed and built an electric-powered go-kart. After testing, the students decided to make changes to the design of their go-kart. The go-kart always had the same mass and used

More information

(a) then mean effective pressure and the indicated power for each end ; (b) the total indicated power : [16]

(a) then mean effective pressure and the indicated power for each end ; (b) the total indicated power : [16] Code No: R05220304 Set No. 1 II B.Tech II Semester Regular Examinations, Apr/May 2007 THERMAL ENGINEERING-I ( Common to Mechanical Engineering and Automobile Engineering) Time: 3 hours Max Marks: 80 Answer

More information

Hovercraft

Hovercraft 1 Hovercraft 2017-2018 Names: Score: / 44 Show all equations and work. Point values are shown in parentheses at the end of the question. Assume g=9.8 m/s/s for all calculations. Include units in your answer.

More information

Industrial Technology

Industrial Technology 2011 HIGHER SCHOOL CERTIFICATE EXAMINATION Industrial Technology Automotive Technologies Total marks 40 General Instructions Reading time 5 minutes Working time 1 1 hours 2 Write using black or blue pen

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING B.ENG (HONS) ELECTRICAL & ELECTRONIC ENGINEERING EXAMINATION SEMESTER /2017 RENEWABLE ENERGIES

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING B.ENG (HONS) ELECTRICAL & ELECTRONIC ENGINEERING EXAMINATION SEMESTER /2017 RENEWABLE ENERGIES UNIVERSITY OF BOLTON TW20 SCHOOL OF ENGINEERING B.ENG (HONS) ELECTRICAL & ELECTRONIC ENGINEERING EXAMINATION SEMESTER 2-2016/2017 RENEWABLE ENERGIES MODULE NO: EEE6006 Date: Monday 15 May 2017 Time: 2.00

More information

Noble Group of Institutions, Junagadh. Faculty of Engineering Department of Mechanical Engineering

Noble Group of Institutions, Junagadh. Faculty of Engineering Department of Mechanical Engineering Semester:1 st Subject: Elements of Mechanical Engineering (2110006) Faculty: Mr. Ishan Bhatt Year: 2017-18 Class: Comp. & IT Ele TUTORIAL 1 INTRODUCTION Q.1 Define: Force, Work, Pressure, Energy, Heat

More information

TUTORIAL QUESTIONS FOR THE INDUSTRIAL HYDRAULICS COURSE TEP 4205

TUTORIAL QUESTIONS FOR THE INDUSTRIAL HYDRAULICS COURSE TEP 4205 TUTORIAL QUESTIONS FOR THE INDUSTRIAL HYDRAULICS COURSE TEP 4205 The book for the course is Principles of Hydraulic System Design, by Peter J Chapple. Published by Coxmoor Publishing Co., UK. Available

More information

PS2 Solutions. Adiabatic reversible Q L V 3 V 1 = V 4 V

PS2 Solutions. Adiabatic reversible Q L V 3 V 1 = V 4 V S2 Solutions 1: Engine Tuning As shown in class, the ideal Otto cycle is depicted in this diagram: 3 Q H Adiabatic reversible 2 4 0 5 1 Q L V 2 = V 3 V 1 = V 4 V The actual 4-stroke Otto cycle (if you

More information

Performance Enhancement of Multi-Cylinder Common Rail Diesel Engine for Automotive Application

Performance Enhancement of Multi-Cylinder Common Rail Diesel Engine for Automotive Application Performance Enhancement of Multi-Cylinder Common Rail Diesel Engine for Automotive Application SUNDHARAM K, PG student, Department of Mechanical Engineering, Internal Combustion Engineering Divisions,

More information

ME2301 THERMAL ENGINEERING L T P C OBJECTIVE:

ME2301 THERMAL ENGINEERING L T P C OBJECTIVE: ME2301 THERMAL ENGINEERING L T P C 3 1 0 4 OBJECTIVE: To integrate the concepts, laws and methodologies from the first course in thermo dynamics into analysis of cyclic processes To apply the thermodynamic

More information

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR (AUTONOMOUS) QUESTION BANK UNIT I I.C ENGINES

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR (AUTONOMOUS) QUESTION BANK UNIT I I.C ENGINES SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR UNIT I I.C ENGINES 1 (a) Explain any six types of classification of Internal Combustion engines. (6M) (b) With a neat sketch explain any three

More information

What does pressure refer to in relation to hydrostatics and what is it dependent on?

What does pressure refer to in relation to hydrostatics and what is it dependent on? Question 1 [3 Marks] What does pressure refer to in relation to hydrostatics and what is it dependent on? Question 2 [14 Marks] Make a circuit diagram of a regular hydraulic plant that is used to control

More information

2.61 Internal Combustion Engine Final Examination. Open book. Note that Problems 1 &2 carry 20 points each; Problems 3 &4 carry 10 points each.

2.61 Internal Combustion Engine Final Examination. Open book. Note that Problems 1 &2 carry 20 points each; Problems 3 &4 carry 10 points each. 2.61 Internal Combustion Engine Final Examination Open book. Note that Problems 1 &2 carry 20 points each; Problems 3 &4 carry 10 points each. Problem 1 (20 points) Ethanol has been introduced as the bio-fuel

More information

Scheme G Sample Question Paper Course Name : Diploma in Automobile Engineering Course Code : AE

Scheme G Sample Question Paper Course Name : Diploma in Automobile Engineering Course Code : AE Sample Question Paper Semester : Fourth Marks : 100 Time: 03 Hours Q1.A. Attempt any SIX a. State different types of ideal gas processes 12 Marks b. Define dryness fraction and degree of superheat. c.

More information

Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests

Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests Norbert ANGI*,1, Angel HUMINIC 1 *Corresponding author 1 Aerodynamics Laboratory, Transilvania University of Brasov, 29 Bulevardul Eroilor,

More information

Simple Finite Heat Release Model (SI Engine)

Simple Finite Heat Release Model (SI Engine) Simple Finite Heat Release Model (SI Engine) Introduction In the following, a finite burn duration is taken into account, in which combustion occurs at θ soc (Start Of Combustion), and continues until

More information

Unit IV. Marine Diesel Engine Read this article about the engines used in the marine industry

Unit IV. Marine Diesel Engine Read this article about the engines used in the marine industry Universidad Nacional Experimental Marítima del Caribe Vicerrectorado Académico Cátedra de Idiomas English VI. Maritime Engineering Marine facilities Unit IV. Marine Diesel Engine Read this article about

More information

16.682: Technology in Transportation - Pset #2 Issued: Wednesday, February 16th, 2011 Due: Thursday, February 24th, 2011

16.682: Technology in Transportation - Pset #2 Issued: Wednesday, February 16th, 2011 Due: Thursday, February 24th, 2011 16.682: Technology in Transportation - set #2 Issued: Wednesday, February 16th, 2011 Due: Thursday, February 24th, 2011 Topics Covered: Thermodynamics Internal Combustion Engines Road Vehicle Engineering

More information

SAMPLE STUDY MATERIAL

SAMPLE STUDY MATERIAL IC Engine - ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course Internal Combustion Engine GATE, IES & PSUs IC Engine - ME GATE, IES, PSU 2 C O N T E N T 1.

More information

density ratio of 1.5.

density ratio of 1.5. Problem 1: An 8cyl 426 ci Hemi motor makes 426 HP at 5500 rpm on a compression ratio of 10.5:1. It is over square by 10% meaning that it s stroke is 10% less than it s bore. It s volumetric efficiency

More information

(a) A 36 volt battery powers the electric motor. The battery is made using individual 1.2 volt cells.

(a) A 36 volt battery powers the electric motor. The battery is made using individual 1.2 volt cells. Q1.The picture shows an electric bicycle. The bicycle is usually powered using a combination of the rider pedalling and an electric motor. (a) A 36 volt battery powers the electric motor. The battery is

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING. Question Bank. UNIT-I THERMODYNAMIC CYCLES Part-A (2 Marks)

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING. Question Bank. UNIT-I THERMODYNAMIC CYCLES Part-A (2 Marks) KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING Question Bank Sub. Code/Name: ME1351 - THERMAL ENGINEERING Year/Sem: III/VI 1. What is a thermodynamic cycle? UNIT-I THERMODYNAMIC CYCLES

More information

Internal Combustion Engines TUTORIAL

Internal Combustion Engines TUTORIAL Internal Combustion Engines TUTORIAL College of Engineering Mechanical Engineering Department Academic Year 2012-2013 Class 3 rd Year Class Subject Lecturer Internal Combustion Engines Dr. Raoof M. Radhi

More information

When the points on the graph of a relation lie along a straight line, the relation is linear

When the points on the graph of a relation lie along a straight line, the relation is linear KEY CONCEPTS When the points on the graph of a relation lie along a straight line, the relation is linear A linear relationship implies equal changes over equal intervals any linear model can be represented

More information

Thermal Stress Analysis of Diesel Engine Piston

Thermal Stress Analysis of Diesel Engine Piston International Conference on Challenges and Opportunities in Mechanical Engineering, Industrial Engineering and Management Studies 576 Thermal Stress Analysis of Diesel Engine Piston B.R. Ramesh and Kishan

More information

B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY

B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY 1 B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY (Mechanical Engineering) Time: 3 hours Max. Marks: 70 Answer any FIVE questions All questions

More information

AME 436. Energy and Propulsion. Lecture 6 Unsteady-flow (reciprocating) engines 1: Basic operating principles, design & performance parameters

AME 436. Energy and Propulsion. Lecture 6 Unsteady-flow (reciprocating) engines 1: Basic operating principles, design & performance parameters AME 436 Energy and Propulsion Lecture 6 Unsteady-flow (reciprocating) engines 1: Basic operating principles, design & performance parameters Outline Classification of unsteady-flow engines Basic operating

More information

Internal Combustion Engines

Internal Combustion Engines Introduction Lecture 1 1 Outline In this lecture we will learn about: Definition of internal combustion Development of the internal combustion engine Different engine classifications We will also draw

More information

FLUID FLOW. Introduction

FLUID FLOW. Introduction FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you

More information

05 Marks (c) Sketch and explain Lancashire Boiler.

05 Marks (c) Sketch and explain Lancashire Boiler. Model question paper No.1 1. Answer any FIVE full questions choosing at least two questions from part A & two questions from part B 2. Use of steam tables is permitted 1. (a) Discuss briefly the different

More information

DESIGN AND ANALYSIS OF UNDERTRAY DIFFUSER FOR A FORMULA STYLE RACECAR

DESIGN AND ANALYSIS OF UNDERTRAY DIFFUSER FOR A FORMULA STYLE RACECAR DESIGN AND ANALYSIS OF UNDERTRAY DIFFUSER FOR A FORMULA STYLE RACECAR Ali Asgar S. Khokhar 1, Suhas S. Shirolkar 2 1 Graduate in Mechanical Engineering, KJ Somaiya College of Engineering, Mumbai, India.

More information

COMPUTATIONAL ANALYSIS OF TWO DIMENSIONAL FLOWS ON A CONVERTIBLE CAR ROOF ABDULLAH B. MUHAMAD NAWI

COMPUTATIONAL ANALYSIS OF TWO DIMENSIONAL FLOWS ON A CONVERTIBLE CAR ROOF ABDULLAH B. MUHAMAD NAWI COMPUTATIONAL ANALYSIS OF TWO DIMENSIONAL FLOWS ON A CONVERTIBLE CAR ROOF ABDULLAH B. MUHAMAD NAWI Report submitted in partial of the requirements for the award of the degree of Bachelor of Mechanical

More information

Internal Combustion Engine

Internal Combustion Engine Internal Combustion Engine 1. A 9-cylinder, 4-stroke cycle, radial SI engine operates at 900rpm. Calculate: (1) How often ignition occurs, in degrees of engine rev. (2) How many power strokes per rev.

More information

Module 6 Assignment Part A

Module 6 Assignment Part A Module 6 Assignment Part A TOTAL MARKS Part A = 192 TOTAL QUESTIONS Part A = 36 Question 1 [3 Marks] What does pressure refer to in relation to hydrostatics and what is it dependent on? Question 2 [14

More information

Hours / 100 Marks Seat No.

Hours / 100 Marks Seat No. 17412 16117 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Answer each next main Question on a new page. (3) Illustrate your answers with neat sketches wherever necessary. (4)

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) Summer 15 EXAMINATION Subject Code: Model Answer Page No: 1/18

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) Summer 15 EXAMINATION Subject Code: Model Answer Page No: 1/18 Subject Code: 708 Model Answer Page No: /8 Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer

More information

Numerical Simulation of the Aerodynamic Drag of a Dimpled Car

Numerical Simulation of the Aerodynamic Drag of a Dimpled Car Numerical Simulation of the Aerodynamic Drag of a Dimpled Car By: Ross Neal Abstract: The drag coefficient of a dimpled half-car of various dimple radii and densities and a half-car without dimples was

More information

CONTENTS Duct Jet Propulsion / Rocket Propulsion / Applications of Rocket Propulsion / 15 References / 25

CONTENTS Duct Jet Propulsion / Rocket Propulsion / Applications of Rocket Propulsion / 15 References / 25 CONTENTS PREFACE xi 1 Classification 1.1. Duct Jet Propulsion / 2 1.2. Rocket Propulsion / 4 1.3. Applications of Rocket Propulsion / 15 References / 25 2 Definitions and Fundamentals 2.1. Definition /

More information

Natural gas engine E 0836 LE 202 Technical data

Natural gas engine E 0836 LE 202 Technical data Page 1 Principle: No of cylinders : Supercharging: Mixture cooling: Engine cooling : Lubrication : Spark plugs: Starter motor: 4-stroke Otto gas engine 6 in line Exhaust turbocharger with water-cooled

More information

TUTORIAL QUESTIONS FOR COURSE TEP 4195

TUTORIAL QUESTIONS FOR COURSE TEP 4195 TUTORIL QUESTIONS FOR COURSE TEP 4195 Data: Hydraulic Oil Density 870 kg/m 3 bsolute viscosity 0.03 Ns/m 2 Spool valve discharge coefficient 0.62. 1) hydrostatic transmission has a variable displacement

More information

DHANALAKSHMI COLLEGE OF ENGINEERING

DHANALAKSHMI COLLEGE OF ENGINEERING DHANALAKSHMI COLLEGE OF ENGINEERING (Dr.VPR Nagar, Manimangalam, Tambaram) Chennai - 601 301 DEPARTMENT OF MECHANICAL ENGINEERING III YEAR MECHANICAL - VI SEMESTER ME 6601 DESIGN OF TRANSMISSION SYSTEMS

More information

FLUID POWER TUTORIAL HYDRAULIC PUMPS APPLIED PNEUMATICS AND HYDRAULICS H1

FLUID POWER TUTORIAL HYDRAULIC PUMPS APPLIED PNEUMATICS AND HYDRAULICS H1 FLUID POWER TUTORIAL HYDRAULIC PUMPS This work covers outcome 2 of the Edexcel standard module: APPLIED PNEUMATICS AND HYDRAULICS H1 The material needed for outcome 2 is very extensive so the tutorial

More information

1. (a) If a large power generating station is operating with steam at 16,000 kpa and 500 and exhausting to a condenser at, 37.6 mm mercury absolute;

1. (a) If a large power generating station is operating with steam at 16,000 kpa and 500 and exhausting to a condenser at, 37.6 mm mercury absolute; Sample Questions REVISED SECOND CLASS PARTS B1, B2, AND B3 (NOTE: these questions are intended as representations of the style of questions that may appear on examinations, they are not intended as study

More information

Chapter 11: Flow over bodies. Lift and drag

Chapter 11: Flow over bodies. Lift and drag Chapter 11: Flow over bodies. Lift and drag Objectives Have an intuitive understanding of the various physical phenomena such as drag, friction and pressure drag, drag reduction, and lift. Calculate the

More information

Evaluation Of Parameters Affecting The Performance Of Spark-Ignition Engine BY Bello Lawal And Dr. Isa Garba

Evaluation Of Parameters Affecting The Performance Of Spark-Ignition Engine BY Bello Lawal And Dr. Isa Garba Evaluation Of Parameters Affecting The Performance Of Spark-Ignition Engine BY Bello Lawal And Dr. Isa Garba ABSTRACT This paper focused on the performance of a spark-ignition (engine, which is affected

More information

White Paper Waulis Motors Ltd. Tapio Pohjalainen

White Paper Waulis Motors Ltd. Tapio Pohjalainen White Paper 00114 Tapio Pohjalainen +358 40 864 9224 tapio.pohjalainen@waulis.com Abstract Trends in automotive industry for engine performance both in regulatory requirements and customer expectations

More information

ECH 4224L Unit Operations Lab I Fluid Flow FLUID FLOW. Introduction. General Description

ECH 4224L Unit Operations Lab I Fluid Flow FLUID FLOW. Introduction. General Description FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you

More information

Q1. The graph shows the speed of a runner during an indoor 60 metres race.

Q1. The graph shows the speed of a runner during an indoor 60 metres race. Q1. The graph shows the speed of a runner during an indoor 60 metres race. (a) Calculate the acceleration of the runner during the first four seconds. (Show your working.) (b) How far does the runner travel

More information

GYANMANJARI INSTITUTE OF TECHNOLOGY (GMIT) SUBJECT: ELEMENTS OF MECHANICAL ENGINEERING Assignment Ch 1

GYANMANJARI INSTITUTE OF TECHNOLOGY (GMIT) SUBJECT: ELEMENTS OF MECHANICAL ENGINEERING Assignment Ch 1 1. 3. GYANMANJARI INSTITUTE OF TECHNOLOGY (GMIT) Assignment Ch 1 A steel ball having mass of 10 kg and a specific heat of 460 J/kg K is heated from 50 o C to 200 o C. Determine the heat required. In a

More information

Figure 1. What is the difference between distance and displacement?

Figure 1. What is the difference between distance and displacement? Q1.A train travels from town A to town B. Figure 1 shows the route taken by the train. Figure 1 has been drawn to scale. Figure 1 (a) The distance the train travels between A and B is not the same as the

More information

VETRI VINAYAHA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING ME6404 THERMAL ENGINEERING

VETRI VINAYAHA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING ME6404 THERMAL ENGINEERING VETRI VINAYAHA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING ME6404 THERMAL ENGINEERING UNIT I - GAS POWER CYCLES 1. What is a thermodynamic cycle? Thermodynamic cycle is defined

More information

'' ''' '' ''' Code No: R R16 SET - 1

'' ''' '' ''' Code No: R R16 SET - 1 Code No: R161232 R16 SET - 1 1. a) List the Primary requirements of a Steam Boiler. (2M) b) What are the distinguishing features between a Casting and a Pattern? (2M) c) Define (i) Brake Power; (ii) Indicated

More information

A Relationship between Tyre Pressure and Rolling Resistance Force under Different Vehicle Speed

A Relationship between Tyre Pressure and Rolling Resistance Force under Different Vehicle Speed A Relationship between Tyre Pressure and Rolling Resistance Force under Different Vehicle Speed Apiwat Suyabodha Department of Automotive Engineering, Rangsit University, Lak-hok, Pathumthani, Thailand

More information

CDI Revision Notes Term 1 ( ) Grade 12 Advanced Unit 2 Mechanical Systems

CDI Revision Notes Term 1 ( ) Grade 12 Advanced Unit 2 Mechanical Systems CDI Revision Notes Term 1 (2017 2018) Grade 12 Advanced Unit 2 Mechanical Systems STUDENT INSTRUCTIONS Student must attempt all questions. For this examination, you must have: (a) An ink pen blue. (b)

More information

AME 436. Energy and Propulsion. Lecture 6 Unsteady-flow (reciprocating) engines 1: Basic operating principles, design & performance parameters

AME 436. Energy and Propulsion. Lecture 6 Unsteady-flow (reciprocating) engines 1: Basic operating principles, design & performance parameters AME 436 Energy and Propulsion Lecture 6 Unsteady-flow (reciprocating) engines 1: Basic operating principles, design & performance parameters Outline Classification of unsteady-flow engines Basic operating

More information

Hours / 100 Marks Seat No.

Hours / 100 Marks Seat No. 17529 14115 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Answer each next main Question on a new page. (3) Illustrate your answers with neat sketches wherever necessary. (4)

More information

Technology in Transportation Exam 1 SOLUTIONS

Technology in Transportation Exam 1 SOLUTIONS Name: 16.682 Technology in Transportation Exam 1 SOLUTIONS April 5, 2011 Question 1: Internal Combustion Engine Technology (20 points) Use the torque/rpm curve below to answer the following questions:

More information

UNIT IV INTERNAL COMBUSTION ENGINES

UNIT IV INTERNAL COMBUSTION ENGINES UNIT IV INTERNAL COMBUSTION ENGINES Objectives After the completion of this chapter, Students 1. To know the different parts of IC engines and their functions. 2. To understand the working principle of

More information

Thinking distance in metres. Draw a ring around the correct answer to complete each sentence. One of the values of stopping distance is incorrect.

Thinking distance in metres. Draw a ring around the correct answer to complete each sentence. One of the values of stopping distance is incorrect. Q1.An investigation was carried out to show how thinking distance, braking distance and stopping distance are affected by the speed of a car. The results are shown in the table. Speed in metres per second

More information

Single-phase Coolant Flow and Heat Transfer

Single-phase Coolant Flow and Heat Transfer 22.06 ENGINEERING OF NUCLEAR SYSTEMS - Fall 2010 Problem Set 5 Single-phase Coolant Flow and Heat Transfer 1) Hydraulic Analysis of the Emergency Core Spray System in a BWR The emergency spray system of

More information

LABORATORY MANUAL I. C. ENGINES & GAS TURBINES (ME-317-E)

LABORATORY MANUAL I. C. ENGINES & GAS TURBINES (ME-317-E) LABORATORY MANUAL I. C. ENGINES & GAS TURBINES (ME-317-E) LIST OF EXPERIMENTS S.No. Name of the Experiment 1. To study the constructional details & working principles of two-stroke petrol/ four-stroke

More information

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References...

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References... Contents Part I Foundations of Thermodynamics and Chemistry 1 Introduction... 3 1.1 Preface.... 3 1.2 Model-Building... 3 1.3 Simulation... 5 References..... 8 2 Reciprocating Engines... 9 2.1 Energy Conversion...

More information

PART B - UNIT I - VEHICLE STRUCTURE AND ENGINES

PART B - UNIT I - VEHICLE STRUCTURE AND ENGINES BHARATHIDASAN ENGINEERING COLLEGE, NATTRAMPALLI 635854. DEPARTMENT OF MECHANICAL ENGINEERING ME 6602 AUTOMOBILE ENGINEERING FREQUENTLY ASKED QUESTIONS PART A - UNIT I - VEHICLE STRUCTURE AND ENGINES 1.

More information

EML 342 Internal Combustion Engines Lab Spring 2008 Prof. Horizon Gitano Lab Guide Rev 1

EML 342 Internal Combustion Engines Lab Spring 2008 Prof. Horizon Gitano Lab Guide Rev 1 USM Mechanical Engineering EML 342 Internal Combustion Engines Lab Spring 2008 Prof. Horizon Gitano Lab Guide Rev 1 www.skyshorz.com/university/resource.php Internal Combustion Engines: Performance Measurements

More information

Chapter 9 Motion Exam Question Pack

Chapter 9 Motion Exam Question Pack Chapter 9 Motion Exam Question Pack Name: Class: Date: Time: 63 minutes Marks: 63 marks Comments: Page of 49 The graphs in List A show how the velocities of three vehicles change with time. The statements

More information

GCE AS and A Level. Physics A. AS exams 2009 onwards A2 exams 2010 onwards. Unit 5C: Approved specimen question paper. Version 1.1

GCE AS and A Level. Physics A. AS exams 2009 onwards A2 exams 2010 onwards. Unit 5C: Approved specimen question paper. Version 1.1 GCE AS and A Level Physics A AS exams 2009 onwards A2 exams 2010 onwards Unit 5C: Approved specimen question paper Version 1.1 Surname Other Names Leave blank Centre Number Candidate Number Candidate Signature

More information

SECTION A DYNAMICS. Attempt any two questions from this section

SECTION A DYNAMICS. Attempt any two questions from this section SECTION A DYNAMICS Question 1 (a) What is the difference between a forced vibration and a free or natural vibration? [2 marks] (b) Describe an experiment to measure the effects of an out of balance rotating

More information

Friction. Coefficients of friction for rubber on roads are listed in the table. asphalt road) Dry road Wet road 0.53

Friction. Coefficients of friction for rubber on roads are listed in the table. asphalt road) Dry road Wet road 0.53 Conceptual questions Friction 1 Most bikes have normal tires: some have fats. a Suppose the wheels on both a normal bike (not shown) and the bikes above have outside diameters of 67 cm. By using your own

More information

B.Tech. MECHANICAL ENGINEERING (BTMEVI) Term-End Examination December, 2012 BIMEE-007 : ADVANCED DYNAMICS OF MACHINE

B.Tech. MECHANICAL ENGINEERING (BTMEVI) Term-End Examination December, 2012 BIMEE-007 : ADVANCED DYNAMICS OF MACHINE No. of Printed Pages : 5 BIMEE-007 B.Tech. MECHANICAL ENGINEERING (BTMEVI) Term-End Examination 01601 December, 2012 BIMEE-007 : ADVANCED DYNAMICS OF MACHINE Time : 3 hours Maximum Marks : 70 Note : Attempt

More information

WEEK 4 Dynamics of Machinery

WEEK 4 Dynamics of Machinery WEEK 4 Dynamics of Machinery References Theory of Machines and Mechanisms, J.J.Uicker, G.R.Pennock ve J.E. Shigley, 2003 Prof.Dr.Hasan ÖZTÜRK 1 DYNAMICS OF RECIPROCATING ENGINES Prof.Dr.Hasan ÖZTÜRK The

More information

Test Which component has the highest Energy Density? A. Accumulator. B. Battery. C. Capacitor. D. Spring.

Test Which component has the highest Energy Density? A. Accumulator. B. Battery. C. Capacitor. D. Spring. Test 1 1. Which statement is True? A. Pneumatic systems are more suitable than hydraulic systems to drive powerful machines. B. Mechanical systems transfer energy for longer distances than hydraulic systems.

More information

Sample. Module 17A and 17B Licence Category A, B1 and B3. Propeller Fundamentals. Module 17 Propeller. Copyright 2014 Total Training Support Ltd

Sample. Module 17A and 17B Licence Category A, B1 and B3. Propeller Fundamentals. Module 17 Propeller. Copyright 2014 Total Training Support Ltd Module 17A and 17B Licence Category A, B1 and B3 Propeller 17.1 Fundamentals Module 17.1 Fundamentals Page 1 Copyright Notice Copyright. All worldwide rights reserved. No part of this publication may be

More information

Comparative Study Of Four Stroke Diesel And Petrol Engine.

Comparative Study Of Four Stroke Diesel And Petrol Engine. Comparative Study Of Four Stroke Diesel And Petrol Engine. Aim: To study the construction and working of 4- stroke petrol / diesel engine. Theory: A machine or device which derives heat from the combustion

More information

(3) When the brake pedal of the car is pushed, brake pads press against very hard steel discs.

(3) When the brake pedal of the car is pushed, brake pads press against very hard steel discs. Q1. A car travels along a level road at 20 metres per second. (a) Calculate the distance travelled by the car in 4 seconds. (Show your working.) (b) When the brake pedal of the car is pushed, brake pads

More information

Pumping Stations Design For Infrastructure Master Program Engineering Faculty-IUG

Pumping Stations Design For Infrastructure Master Program Engineering Faculty-IUG Pumping Stations Design For Infrastructure Master Program Engineering Faculty-IUG Dr. Fahid Rabah Water and environment Engineering frabah@iugaza.edu Dr. Fahid Rabah, PE frabah@iugaza.edu ١ 7.1 General

More information

Chapter The Automobile

Chapter The Automobile Chapter The Automobile Objectives After studying this chapter, you will be able to: Identify and describe primary parts within major automotive systems. Explain the frequent electronic interaction of major

More information

Department of Mechanical Engineering UBMC701 AUTOMOBILE ENGINEERING QUESTION BANK VEHICLE STRUCTURE AND ENGINES. Part A (Two Marks Questions)

Department of Mechanical Engineering UBMC701 AUTOMOBILE ENGINEERING QUESTION BANK VEHICLE STRUCTURE AND ENGINES. Part A (Two Marks Questions) Department of Mechanical Engineering UBMC701 AUTOMOBILE ENGINEERING QUESTION BANK UNIT- I VEHICLE STRUCTURE AND ENGINES 1. Define Automobile. Give the typical specifications of an automobile 2. Name the

More information

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COURSE: MCE 320 DISCLAIMER The contents of this document are intended for practice and leaning purposes at the

More information

η th W = Q Gas Power Cycles: Working fluid remains in the gaseous state through the cycle.

η th W = Q Gas Power Cycles: Working fluid remains in the gaseous state through the cycle. Gas Power Cycles: Gas Power Cycles: Working fluid remains in the gaseous state through the cycle. Sometimes useful to study an idealised cycle in which internal irreversibilities and complexities are

More information

Engine Cycles. T Alrayyes

Engine Cycles. T Alrayyes Engine Cycles T Alrayyes Introduction The cycle experienced in the cylinder of an internal combustion engine is very complex. The cycle in SI and diesel engine were discussed in detail in the previous

More information

TELFONA, Contribution to Laminar Wing Development for Future Transport Aircraft. K. H. Horstmann Aeronautical Days, Vienna, 19 th -21 st June 2006

TELFONA, Contribution to Laminar Wing Development for Future Transport Aircraft. K. H. Horstmann Aeronautical Days, Vienna, 19 th -21 st June 2006 TELFONA, Contribution to Laminar Wing Development for Future Transport Aircraft K. H. Horstmann Aeronautical Days, Vienna, 19 th -21 st June 2006 Content Motivation Determination of transition Objectives

More information

MEB THERMAL ENGINEERING - I QUESTION BANK UNIT-I PART-A

MEB THERMAL ENGINEERING - I QUESTION BANK UNIT-I PART-A MEB 420 - THERMAL ENGINEERING - I QUESTION BANK UNIT-I Each question carries 1 mark. PART-A 1. Define temperature. 2. Define intensive property 3. Explain the term absolute zero of temperature 4. State

More information