Students for the Exploration and Development of Space. San José State University Chapter Sponsor Information

Size: px
Start display at page:

Download "Students for the Exploration and Development of Space. San José State University Chapter Sponsor Information"

Transcription

1 Students for the Exploration and Development of Space San José State University Chapter Sponsor Information

2 Table of Contents What is SEDS... 1 SEDS at SJSU... 1 Active Projects and Competitions... University Student Rocketry Competition... FAR-Mars Hyperion Rocket FAR-Mars Mission Parameters... 3 FAR-Mars Safety Requirements... 3 Hyperion Preliminary Technical Specifications... Airframe... Combustion Chamber... Tanks and Plumbing... Nozzle Sponsorship... Sponsor benefits... Sponsor packages Testimonials... 8 Contact Us... 9

3 What is SEDS Students for the Exploration and Development of Space (SEDS) is a 501(c)3 non-profit organization that empowers young people to participate and make an impact in space exploration. SEDS was founded as a chapter-based organization in 1980 at MIT by Peter Diamandis, at Princeton by Scott Scharfman, and at Yale by Richard Sorkin. The largest student-run space organization in the world, SEDS consists of an international community of high school, undergraduate, and graduate students from a diverse range of educational backgrounds. SEDS has established chapters throughout the world in over two dozen countries. SEDS at SJSU Building on the success of Leon-1 and other past projects, SEDS at SJSU s primary focus has progressed to the complete development of a liquid bipropellant rocket. Upon its completion, this rocket, named Hyperion, will be launched in the national FAR-Mars competition in Doing so will signify the first time such an endeavor has been attempted in SJSU s history. In addition to academic and technical projects, SEDS at SJSU continues to invest significant time in community outreach, sharing our passion for rocketry at such events as the 2016 Plasma Sciences Expo, the 2017 Silicon Valley Comic Con, and the 2017 An Evening With NASA event hosted by the Alum Rock School District. SEDS at San José State University (SJSU) was founded in 2014 by Simon Sørensen to promote interest in space and rocketry-related projects among students in the university s Charles W. Davidson College of Engineering. Since then, SEDS at SJSU has provided SJSU students with a variety of opportunities and projects with which to expand their academic and technical backgrounds. These opportunities include designing, building, and launching rockets at multiple solid rocket competitions, participating in outreach events, and conducting liquid propulsion research. In 2015, Leon-1, SJSU s first 3D-printed liquid bipropellant regeneratively-cooled rocket engine, was developed. Designed to be propelled by liquid methane and liquid oxygen, Leon-1 s primary objective was to serve as a proof of concept for application in future Mars return missions. A prototype 3D-printed model was created by SEDS at SJSU, with a static hydro test fire being successfully completed in

4 Active Projects and Competitions University Student Rocketry Competition Coordinated by SEDS-USA, the 2017 University Student Rocketry Competition (USRC) calls upon SEDS chapters across the United States to design, build, and fly a multi-stage solid rocket with a maximum impulse of 640 newton-seconds (N*s) to as high of an altitude as possible. Chapters must submit timely updates, reports, and technical drawings in order to qualify. Team scoring is based on the overall design and manufacturing process of the rocket, as well as its flight performance. The winner will be announced at the SpaceVision 2017 conference November 16-18, As of July 2017, the rocket is under construction. We intend to launch in September 2017 at a yet to be determined site in the San Joaquin Valley. Design Specifications Diameter: 2 1/4 inches Height: /8 inches Loaded mass: 3.3 pounds Stages: 3 Recovery: Black powder parachute deployment per stage Estimated apogee: 7,000 feet Estimated maximum speed: Mach 0.70 FAR-Mars Hyperion Rocket Jointly organized and sponsored by Friends of Amateur Rocketry Inc. (FAR) and the Mars Society, the FAR-Mars competition will award up to $100,000 in engineering-based scholarship funds to the university of the team that can design, build, and launch a liquid methalox-powered rocket to a specified altitude of 45,000 feet. The organizers of FAR-Mars see the competition as an opportunity to spark the interest of university students in advancing the development of the technologies necessary for a successful manned mission to Mars. For SEDS at SJSU to successfully design, build, and launch a methalox-powered rocket from the ground up would not only be an extraordinary milestone for SJSU, but would be an extraordinary accomplishment for the advancement of university rocketry as a whole. Upon the project s completion, our members will have gained substantial knowledge of and experience with the construction and operation of each individual system in a liquid-powered rocket, plus a multitude of other aspects associated with rocketry-based projects, including logistics, organization, and testing. This project will lay the groundwork for future SEDS at SJSU members (and for the aerospace department at SJSU as a whole) to advance toward achieving even more ambitious goals in the future. The contest launch window is from May 5, 2018 through May 13, The rocket of each university team will be launched from the FAR Site launch complex, located north of Edwards Air Force Base in southern California. SEDS at SJSU is currently in the design phase of Hyperion and is seeking funding and manufacturing opportunities to advance into the construction phase. 2

5 FAR-Mars Mission Parameters In order to qualify for the FAR-Mars competition, the following design parameters must be met. The rocket must: 1. Have a total-impulse of less than or equal to 9,208 lb-sec. 2. Utilize a bipropellant engine only (no solid rocket motors). 3. Utilize a dual-deployed parachute recovery, with a drogue parachute being deployed at apogee and a main parachute being deployed below 1,000 feet. 4. Be passively guided, have fixed fins, and launch from a fixed launch rail. 5. Achieve an apogee of exactly 45,000 feet MSL, reaching at least 30,000 feet but not exceeding 50,000 feet. 6. Be successfully recovered with minimal damage to both the rocket and the payload. 7. Carry a 2.2-lb payload that will monitor the rocket s altitude at apogee. FAR-Mars Safety Requirements The following safety requirements must also be met: 1. Propellant and pressurant tanks must be proof tested to 1.5 of operating pressure. 2. The relief valves on the tanks must be rated at 1.25 of operating pressure. 3. Propellants must be filled and drained from the bottom of the rocket. 4. The rocket must be equipped with remote controlled vent valves for the propellant and pressurant tanks, utilizing an electrical, pneumatic, or hydraulic system. 5. The rocket must posses the ability to be depressurized independent of the launch controller, if it is computer controlled. 6. Remote electronic pressure instrumentation for tank pressures must be equipped, such as pressure transducers and telemetry or data acquisition. 7. The rocket must utilize electromechanical or pneumatic release or lift-off pressure umbilicals. 8. Lift-off pull and release of umbilicals must be utilized for remote vents and pressure instrumentation. 9. An electrical ignition with key lock-out on the pad and with the same key lock-out at the main launch controller must be equipped. 3

6 Hyperion Preliminary Technical Specifications Airframe The body tube of the airframe will consist of an internal structure of ribs. These ribs will form the shape of a cage and provide mounting points for internal hardware. When compared to a purely monocoque construction, ribs will provide superior load-bearing capabilities. The cage will be attached to the body tube using rivets; rivets will provide additional drag, which raises the center of pressure and ensures vehicle stability. Preliminary calculations show the empty mass of the body to be 416,506 grams, with the center of gravity (cg) located at 144 inches and the center of pressure (cp) located at 171 inches from the nose. Computational fluid dynamics simulations (CFD) of the airframe are still needed to determine the drag coefficient and pressure distribution over the entire rocket. A preliminary breakdown of each subsystem of the airframe is provided below: Body tube 25.4 cm outer diameter 5.5 m tube height 6061-T6 aluminum body Alodine coating for corrosion resistance Nose cone 25.4 cm maximum outer diameter 50 cm length x1/2 power series Combustion Chamber The architecture for the injection of the cryogenic liquid oxygen and liquid methane will be of the movable pintle type. This injector scheme is known to be extremely stable and is capable of deep throttling; this is achieved by actuating the pintle, which varies the area in which the fuel is allowed to enter the chamber. The injector will be of the oxidizer centered type. This was chosen to reduce the amount of failure modes associated with lean conditions in which combustion instabilities can potentially damage the combustion chamber. With this architecture, the fuel and oxidizer are sent through concentric fuel distribution manifolds and are then routed into the combustion chamber. This injector is composed of four different layers which integrate into each other to form the propellant passages and the distribution manifold. All of these are then bolted together. Concentric brass sealing rings are utilized as an additional sealing surface, as to reduce the potential for catastrophic failure. These four separate layers are designed to be fabricated out of T6061 aluminum using conventional milling processes. The total cost of the injector will vary depending on the manufacturing process and the materials used, both of which are currently being investigated. The cost of 3D printing the injector is additionally being evaluated. Fins 4-fin configuration Clipped delta or tapered design Fins will be modeled as a symmetric airfoil to reduce drag, and will be 3D printed 4

7 Tanks and Plumbing The tank and plumbing assembly represent the majority of the internal structure of the rocket. In addition to the various connections, including valves, pressure regulators, and fuel lines, the assembly itself can be broken down into four main component. These include: A cryogenic oxygen pressure vessel A cryogenic methane pressure vessel A gaseous helium pressure vessel Separation/support frames between each pressure vessel, which house the various pressure sensing/regulating equipment and fuel intake ports The cryogenic pressure vessels are currently designed to be constructed from aluminum and are intended to operate at 500 psi with a safety factor of 1.5. Currently, the plumbing of the system is designed to operate with a ¾ inch inner diameter in order to achieve a minimum mass flow to the nozzle of 2 kg/s. Due to the highly specialized nature of the system, an effective cost estimate will not be achievable until a manufacturer of custom equipment has been decided upon. Nozzle A conical nozzle will be manufactured from stainless steel 310S due, in part, to its high melting point and machinability. Metal spinning is currently being investigated to achieve the desired nozzle contour as spinning requires far less raw material than does conventional milling. A combination of film and radiative cooling are being considered to cool the nozzle and combustion chamber. Thrust and Mass Flow Rates Chamber pressure 300 psi Chamber thrust 5 kn Specific impulse (opt) 275 s Total mass flow rate 1.83 kg/s Oxidizer mass flow rate 1.37 kg/s Fuel mass flow rate 0.46 kg/s Thrust Chamber Geometry with Parabolic Nozzle Dc mm Lc mm Dt mm Le mm De mm Ae/At 6.94 Ac/At 5 Divergence efficiency Drag efficiency Thrust coefficient

8 Sponsorship Sponsor Benefits The members of SEDS at SJSU have continued to push the limits of what is possible, building upon the knowledge and experience gained by each preceding year since our founding. Our ambitions are constrained only by our knowledge and resources, both of which we strive to expand every day. Your contributions to SEDS at SJSU will go directly toward the development of our Hyperion bipropellant rocket being built for the FAR-Mars competition. Upon its completion, this project will stand as the testbed for future versions of better and more-ambitious rockets to be developed by future engineering students. It will be up to them to achieve our ultimate long-term goal of developing the first university-designed orbital CubeSat launch vehicle. However, none of this can be achieved without your help. By sponsoring SEDS at SJSU, you will enable our members to gain hands-on experience in designing, building, and flying a rocket with nearly all essential systems of a space-capable rocket. Additional benefits of sponsorship include: Tax deductible contributions (we are a 501(c)3 non-profit) Visibility of your company to a wide audience Association of your company with supporting higher education Gaining access to students who will soon be prospective employees We thank you for considering our request. All sponsors are welcome to visit us at the SJSU aerospace engineering department to witness the work of your contributions first-hand. 6

9 Sponsor Packages Mercury - up to $500 Your company name/logo on seds-sjsu.org sponsor page and ground support equipment (GSE) Venus - $501-$1,000 Mercury package benefits plus Small logo on rocket Earth - $1,001-$2,000 Venus package benefits plus Upgrade to large company name/logo on seds-sjsu.org sponsor page and small logo on main page Upgrade to medium logo on GSE Upgrade to two small logos on rocket Mars - $2,001-$5,000 Earth package benefits plus Upgrade to medium logo on seds-sjsu.org main page Upgrade to large logo on GSE and medium logo on rocket Jupiter - More than $5,000 Mars package benefits plus Upgrade to large logo on seds-sjsu.org sponsor page and main page Upgrade to large logo on GSE and rocket 7

10 Testimonials A huge part of encouraging investments in science and technology is reaching out and empowering prospective scientists and engineering students. We are proud to count the Students for the Exploration and Development of Space (SEDS) as one of our allies in the fight for space. William Pomerantz Vice President of Special Projects Virgin Galactic Chris Lewicki President and Chief of Engineering Planetary Resources The SEDS movement played a big part in my early life and I encourage any student to get involved in that for sure. I have always been a fan of SEDS and the things the students are trying to accomplish. Ben Brockert CEO Able Space CO. 8

11 Contact Us More Information seds-sjsu.org facebook.com/sedssjsu engineering.sjsu.edu seds.org friendsofamateurrocketry.org/launch_contest.html 9

PROJECT AQUILA 211 ENGINEERING DRIVE AUBURN, AL POST LAUNCH ASSESSMENT REVIEW

PROJECT AQUILA 211 ENGINEERING DRIVE AUBURN, AL POST LAUNCH ASSESSMENT REVIEW PROJECT AQUILA 211 ENGINEERING DRIVE AUBURN, AL 36849 POST LAUNCH ASSESSMENT REVIEW APRIL 29, 2016 Motor Specifications The team originally planned to use an Aerotech L-1520T motor and attempted four full

More information

CRITICAL DESIGN REVIEW. University of South Florida Society of Aeronautics and Rocketry

CRITICAL DESIGN REVIEW. University of South Florida Society of Aeronautics and Rocketry CRITICAL DESIGN REVIEW University of South Florida Society of Aeronautics and Rocketry 2017-2018 AGENDA 1. Launch Vehicle 2. Recovery 3. Testing 4. Subscale Vehicle 5. Payload 6. Educational Outreach 7.

More information

Auburn University Student Launch. PDR Presentation November 16, 2015

Auburn University Student Launch. PDR Presentation November 16, 2015 Auburn University Student Launch PDR Presentation November 16, 2015 Project Aquila Vehicle Dimensions Total Length of 69.125 inches Inner Diameter of 5 inches Outer Diameter of 5.25 inches Estimated mass

More information

NASA - USLI Presentation 1/23/2013. University of Minnesota: USLI CDR 1

NASA - USLI Presentation 1/23/2013. University of Minnesota: USLI CDR 1 NASA - USLI Presentation 1/23/2013 2013 USLI CDR 1 Final design Key features Final motor choice Flight profile Stability Mass Drift Parachute Kinetic Energy Staged recovery Payload Integration Interface

More information

Project NOVA

Project NOVA Project NOVA 2017-2018 Our Mission Design a Rocket Capable of: Apogee of 5280 ft Deploying an autonomous Rover Vehicle REILLY B. Vehicle Dimensions Total Length of 108 inches Inner Diameter of 6 inches

More information

GIT LIT NASA STUDENT LAUNCH PRELIMINARY DESIGN REVIEW NOVEMBER 13TH, 2017

GIT LIT NASA STUDENT LAUNCH PRELIMINARY DESIGN REVIEW NOVEMBER 13TH, 2017 GIT LIT 07-08 NASA STUDENT LAUNCH PRELIMINARY DESIGN REVIEW NOVEMBER TH, 07 AGENDA. Team Overview (5 Min). Educational Outreach ( Min). Safety ( Min) 4. Project Budget ( Min) 5. Launch Vehicle (0 min)

More information

Sponsorship Brochure

Sponsorship Brochure 2012 2013 Sponsorship Brochure Dear Prospective Sponsor, 2 Introduction In this short brochure we will introduce you to the Tufts Hybrid Racing Team and show you how we can work together to achieve success.

More information

FLIGHT READINESS REVIEW TEAM OPTICS

FLIGHT READINESS REVIEW TEAM OPTICS FLIGHT READINESS REVIEW TEAM OPTICS LAUNCH VEHICLE AND PAYLOAD DESIGN AND DIMENSIONS Vehicle Diameter 4 Upper Airframe Length 40 Lower Airframe Length 46 Coupler Band Length 1.5 Coupler Length 12 Nose

More information

2019 SpaceX Hyperloop Pod Competition

2019 SpaceX Hyperloop Pod Competition 2019 SpaceX Hyperloop Pod Competition Rules and Requirements August 23, 2018 CONTENTS 1 Introduction... 2 2 General Information... 3 3 Schedule... 4 4 Intent to Compete... 4 5 Preliminary Design Briefing...

More information

NASA SL - NU FRONTIERS. PDR presentation to the NASA Student Launch Review Panel

NASA SL - NU FRONTIERS. PDR presentation to the NASA Student Launch Review Panel NASA SL - NU FRONTIERS PDR presentation to the NASA Student Launch Review Panel 1 Agenda Launch Vehicle Overview Nose Cone Section Payload Section Lower Avionic Bay Section Booster Section Motor Selection

More information

Blue Origin Achievements and plans for the future

Blue Origin Achievements and plans for the future Blue Origin Achievements and plans for the future Blue Origin A private aerospace manufacturer and spaceflight services company Founded in 2000 by Amazon.com CEO Jeff Bezos Headquarters in Kent (Seattle),

More information

Auburn University. Project Wall-Eagle FRR

Auburn University. Project Wall-Eagle FRR Auburn University Project Wall-Eagle FRR Rocket Design Rocket Model Mass Estimates Booster Section Mass(lb.) Estimated Upper Section Mass(lb.) Actual Component Mass(lb.) Estimated Mass(lb.) Actual Component

More information

Jordan High School Rocketry Team. A Roll Stabilized Video Platform and Inflatable Location Device

Jordan High School Rocketry Team. A Roll Stabilized Video Platform and Inflatable Location Device Jordan High School Rocketry Team A Roll Stabilized Video Platform and Inflatable Location Device Mission Success Criteria No damage done to any person or property. The recovery system deploys as expected.

More information

Rocketry, the student way

Rocketry, the student way Rocketry, the student way Overview Student organization Based at TU Delft About 90 members > 100 rockets flown Design, Construction, Test, Launch All done by students Goal Design, build, and fly rockets

More information

Turbo-Rocket. A brand new class of hybrid rocket. Rene Nardi and Eduardo Mautone

Turbo-Rocket. A brand new class of hybrid rocket. Rene Nardi and Eduardo Mautone Turbo-Rocket R A brand new class of hybrid rocket Rene Nardi and Eduardo Mautone 53 rd AIAA/SAE/ASEE Joint Propulsion Conference July 10 12, 2017 - Atlanta, Georgia Rumo ao Espaço R - UFC Team 2 Background

More information

The Wildcat Formula Racing 2017 Sponsor Information Packet

The Wildcat Formula Racing 2017 Sponsor Information Packet The Wildcat Formula Racing 2017 Sponsor Information Packet A Letter from the Team Captain Thank you for your interest in Formula SAE at the University of Arizona, also known as Wildcat Formula Racing.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Aeronautics and Astronautics

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Aeronautics and Astronautics MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Aeronautics and Astronautics 16.00 Introduction to Aerospace and Design Problem Set #4 Issued: February 28, 2002 Due: March 19, 2002 ROCKET PERFORMANCE

More information

Rocketry and Spaceflight Teleclass Webinar!

Rocketry and Spaceflight Teleclass Webinar! Wednesday August 12, 2015 at 12pm Pacific Name Welcome to the Supercharged Science Rocketry and Spaceflight Teleclass Webinar! You can fill out this worksheet as we go along to get the most out of time

More information

Team Air Mail Preliminary Design Review

Team Air Mail Preliminary Design Review Team Air Mail Preliminary Design Review 2014-2015 Space Grant Midwest High-Power Rocket Competition UAH Space Hardware Club Huntsville, AL Top: Will Hill, Davis Hunter, Beth Dutour, Bradley Henderson,

More information

Flight Readiness Review Addendum: Full-Scale Re-Flight. Roll Induction and Counter Roll NASA University Student Launch.

Flight Readiness Review Addendum: Full-Scale Re-Flight. Roll Induction and Counter Roll NASA University Student Launch. Flight Readiness Review Addendum: Full-Scale Re-Flight Roll Induction and Counter Roll 2016-2017 NASA University Student Launch 27 March 2017 Propulsion Research Center, 301 Sparkman Dr. NW, Huntsville

More information

Newsletter November This month CFS10. Engine. Body. Welcome CFS10 p.1 CFS10 West p.4 What now? p.5 Interested? p.5

Newsletter November This month CFS10. Engine. Body. Welcome CFS10 p.1 CFS10 West p.4 What now? p.5 Interested? p.5 Newsletter November 2010 CFS10 This year s team includes 25 members of different nationalities and with different educational backgrounds. The team consists of six different subgroups, responsible for

More information

RDT&E BUDGET ITEM JUSTIFICATION SHEET (R-2 Exhibit) June 2001

RDT&E BUDGET ITEM JUSTIFICATION SHEET (R-2 Exhibit) June 2001 PE NUMBER: 0603302F PE TITLE: Space and Missile Rocket Propulsion BUDGET ACTIVITY RDT&E BUDGET ITEM JUSTIFICATION SHEET (R-2 Exhibit) June 2001 PE NUMBER AND TITLE 03 - Advanced Technology Development

More information

How Does a Rocket Engine Work?

How Does a Rocket Engine Work? Propulsion How Does a Rocket Engine Work? Solid Rocket Engines Propellant is a mixture of fuel and oxidizer in a solid grain form. Pros: Stable Simple, fewer failure points. Reliable output. Cons: Burns

More information

Rocket Activity Advanced High- Power Paper Rockets

Rocket Activity Advanced High- Power Paper Rockets Rocket Activity Advanced High- Power Paper Rockets Objective Design and construct advanced high-power paper rockets for specific flight missions. National Science Content Standards Unifying Concepts and

More information

Success of the H-IIB Launch Vehicle (Test Flight No. 1)

Success of the H-IIB Launch Vehicle (Test Flight No. 1) 53 Success of the H-IIB Launch Vehicle (Test Flight No. 1) TAKASHI MAEMURA *1 KOKI NIMURA *2 TOMOHIKO GOTO *3 ATSUTOSHI TAMURA *4 TOMIHISA NAKAMURA *5 MAKOTO ARITA *6 The H-IIB launch vehicle carrying

More information

Development Status of H3 Launch Vehicle -To compete and survive in the global commercial market-

Development Status of H3 Launch Vehicle -To compete and survive in the global commercial market- 32 Development Status of H3 Launch Vehicle -To compete and survive in the global commercial market- TOKIO NARA *1 TADAOKI ONGA *2 MAYUKI NIITSU *3 JUNYA TAKIDA *2 AKIHIRO SATO *3 NOBUKI NEGORO *4 The H3

More information

AEROSPACE TEST OPERATIONS

AEROSPACE TEST OPERATIONS CONTRACT AT NASA PLUM BROOK STATION SANDUSKY, OHIO CRYOGENIC PROPELLANT TANK FACILITY HYPERSONIC TUNNEL FACILITY SPACECRAFT PROPULSION TEST FACILITY SPACE POWER FACILITY A NARRATIVE/PICTORIAL DESCRIPTION

More information

Presentation Outline. # Title

Presentation Outline. # Title FRR Presentation 1 Presentation Outline # Title 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Team Introduction Mission Summary Vehicle Overview Vehicle Dimensions Upper Body Section Elliptical

More information

WHO ARE WE? WHAT WE DO OUR VALUES AND PRINCIPLES OUR HISTORY

WHO ARE WE? WHAT WE DO OUR VALUES AND PRINCIPLES OUR HISTORY WHO ARE WE? Titan Racing Baja- formally known as CSUF Baja SAE- is a student-run racing team and organization that competes at the Baja SAE Collegiate Design Competition. Driven by a passion to learn and

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION The development of Long March (LM) launch vehicle family can be traced back to the 1960s. Up to now, the Long March family of launch vehicles has included the LM-2C Series, the LM-2D,

More information

Georgia Tech NASA Critical Design Review Teleconference Presented By: Georgia Tech Team ARES

Georgia Tech NASA Critical Design Review Teleconference Presented By: Georgia Tech Team ARES Georgia Tech NASA Critical Design Review Teleconference Presented By: Georgia Tech Team ARES 1 Agenda 1. Team Overview (1 Min) 2. 3. 4. 5. 6. 7. Changes Since Proposal (1 Min) Educational Outreach (1 Min)

More information

Reentry Demonstration Plan of Flare-type Membrane Aeroshell for Atmospheric Entry Vehicle using a Sounding Rocket

Reentry Demonstration Plan of Flare-type Membrane Aeroshell for Atmospheric Entry Vehicle using a Sounding Rocket AIAA ADS Conference 2011 in Dublin 1 Reentry Demonstration Plan of Flare-type Membrane Aeroshell for Atmospheric Entry Vehicle using a Sounding Rocket Kazuhiko Yamada, Takashi Abe (JAXA/ISAS) Kojiro Suzuki

More information

Deployment and Drop Test for Inflatable Aeroshell for Atmospheric Entry Capsule with using Large Scientific Balloon

Deployment and Drop Test for Inflatable Aeroshell for Atmospheric Entry Capsule with using Large Scientific Balloon , Germany Deployment and Drop Test for Inflatable Aeroshell for Atmospheric Entry Capsule with using Large Scientific Balloon Kazuhiko Yamada, Takashi Abe (JAXA/ISAS) Kojiro Suzuki, Naohiko Honma, Yasunori

More information

Supersonic Combustion Experimental Investigation at T2 Hypersonic Shock Tunnel

Supersonic Combustion Experimental Investigation at T2 Hypersonic Shock Tunnel Supersonic Combustion Experimental Investigation at T2 Hypersonic Shock Tunnel D. Romanelli Pinto, T.V.C. Marcos, R.L.M. Alcaide, A.C. Oliveira, J.B. Chanes Jr., P.G.P. Toro, and M.A.S. Minucci 1 Introduction

More information

Critical Design Review

Critical Design Review Critical Design Review University of Illinois at Urbana-Champaign NASA Student Launch 2017-2018 Illinois Space Society 1 Overview Illinois Space Society 2 Launch Vehicle Summary Javier Brown Illinois Space

More information

AUBURN UNIVERSITY STUDENT LAUNCH. Project Nova. 211 Davis Hall AUBURN, AL Post Launch Assessment Review

AUBURN UNIVERSITY STUDENT LAUNCH. Project Nova. 211 Davis Hall AUBURN, AL Post Launch Assessment Review AUBURN UNIVERSITY STUDENT LAUNCH Project Nova 211 Davis Hall AUBURN, AL 36849 Post Launch Assessment Review April 19, 2018 Table of Contents Table of Contents...2 List of Tables...3 Section 1: Launch Vehicle

More information

Component and System Level Modeling of a Two-Phase Cryogenic Propulsion System for Aerospace Applications

Component and System Level Modeling of a Two-Phase Cryogenic Propulsion System for Aerospace Applications Component and System Level Modeling of a Two-Phase Cryogenic Propulsion System for Aerospace Applications J. LoRusso, B. Kalina, M. Van Benschoten, Roush Industries GT Users Conference November 9, 2015

More information

Illinois Space Society Flight Readiness Review. University of Illinois Urbana-Champaign NASA Student Launch March 30, 2016

Illinois Space Society Flight Readiness Review. University of Illinois Urbana-Champaign NASA Student Launch March 30, 2016 Illinois Space Society Flight Readiness Review University of Illinois Urbana-Champaign NASA Student Launch 2015-2016 March 30, 2016 Team Managers Project Manager: Ian Charter Structures and Recovery Manager:

More information

HYDROS Development of a CubeSat Water Electrolysis Propulsion System

HYDROS Development of a CubeSat Water Electrolysis Propulsion System HYDROS Development of a CubeSat Water Electrolysis Propulsion System Vince Ethier, Lenny Paritsky, Todd Moser, Jeffrey Slostad, Robert Hoyt Tethers Unlimited, Inc 11711 N. Creek Pkwy S., Suite D113, Bothell,

More information

MARS-OZ: A Design for a Simulated Mars Base in the Arkaroola Region

MARS-OZ: A Design for a Simulated Mars Base in the Arkaroola Region MARS-OZ: A Design for a Simulated Mars Base in the Arkaroola Region David Willson (david.willson@au.tenovagroup.com) and Jonathan D. A. Clarke (jon.clarke@bigpond.com), Mars Society Australia The centrepiece

More information

First Nations Launch Rocket Competition 2016

First Nations Launch Rocket Competition 2016 First Nations Launch Rocket Competition 2016 Competition Date April 21-22, 2016 Carthage College Kenosha, WI April 23, 2016 Richard Bong Recreational Park Kansasville, WI Meet the Team Wisconsin Space

More information

University Student Launch Initiative

University Student Launch Initiative University Student Launch Initiative HARDING UNIVERSITY Critical Design Review February 4, 2008 The Team Dr. Edmond Wilson Brett Keller Team Official Project Leader, Safety Officer Professor of Chemistry

More information

SpaceLoft XL Sub-Orbital Launch Vehicle

SpaceLoft XL Sub-Orbital Launch Vehicle SpaceLoft XL Sub-Orbital Launch Vehicle The SpaceLoft XL is UP Aerospace s workhorse space launch vehicle -- ideal for significant-size payloads and multiple, simultaneous-customer operations. SpaceLoft

More information

Development of a Low Cost Suborbital Rocket for Small Satellite Testing and In-Space Experiments

Development of a Low Cost Suborbital Rocket for Small Satellite Testing and In-Space Experiments Development of a Low Cost Suborbital Rocket for Small Satellite Testing and In-Space Experiments Würzburg, 2015-09-15 (extended presentation) Dr.-Ing. Peter H. Weuta Dipl.-Ing. Neil Jaschinski WEPA-Technologies

More information

Suborbital Flight Opportunities for Cubesat-Class Experiments Aboard NLV Test Flights

Suborbital Flight Opportunities for Cubesat-Class Experiments Aboard NLV Test Flights Suborbital Flight Opportunities for Cubesat-Class Experiments Aboard NLV Test Flights Christopher Bostwick John Garvey Garvey Spacecraft 9th ANNUAL CUBESAT DEVELOPERS WORKSHOP April 18-20, 2012 Cal Poly

More information

Liquid Fuel Rocket Engine Capstone

Liquid Fuel Rocket Engine Capstone Portland State Unversity Liquid Fuel Rocket Engine Capstone Progress Report - Winter 2016 Cam Yun, John Tucker, Kristin Travis, Tamara Dib, Taylor Rice & Bianca Viggiano Industry Advisor Erin Schmidt Sponsoring

More information

17-18 Sponsorship Package

17-18 Sponsorship Package 17-18 Sponsorship Package About the Team Rensselaer Formula Hybrid is a student-run organization that promotes the advancement of engineering proficiency at Rensselaer Polytechnic Institute in Troy, NY.

More information

Typical Rocketry Exam Questions

Typical Rocketry Exam Questions Typical Rocketry Exam Questions Who discovered that the accuracy of early rockets could be improved by spinning them? The Chinese William Hale Sir Isaac newton Sir William Congreve Who built and launched

More information

Flight Readiness Review

Flight Readiness Review Flight Readiness Review University of Illinois at Urbana-Champaign NASA Student Launch 2017-2018 Illinois Space Society 1 Overview Illinois Space Society 2 Launch Vehicle Summary Javier Brown Illinois

More information

CNY Rocket Team Challenge. Basics of Using RockSim 9 to Predict Altitude for the Central New York Rocket Team Challenge

CNY Rocket Team Challenge. Basics of Using RockSim 9 to Predict Altitude for the Central New York Rocket Team Challenge CNY Rocket Team Challenge Basics of Using RockSim 9 to Predict Altitude for the Central New York Rocket Team Challenge RockSim 9 Basics 2 Table of Contents A. Introduction.p. 3 B. Designing Your Rocket.p.

More information

Jay Gundlach AIAA EDUCATION SERIES. Manassas, Virginia. Joseph A. Schetz, Editor-in-Chief. Blacksburg, Virginia. Aurora Flight Sciences

Jay Gundlach AIAA EDUCATION SERIES. Manassas, Virginia. Joseph A. Schetz, Editor-in-Chief. Blacksburg, Virginia. Aurora Flight Sciences Jay Gundlach Aurora Flight Sciences Manassas, Virginia AIAA EDUCATION SERIES Joseph A. Schetz, Editor-in-Chief Virginia Polytechnic Institute and State University Blacksburg, Virginia Published by the

More information

Presentation Outline. # Title # Title

Presentation Outline. # Title # Title CDR Presentation 1 Presentation Outline # Title # Title 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Team Introduction Vehicle Overview Vehicle Dimensions Upper Body Section Payload

More information

CRITICAL DESIGN PRESENTATION

CRITICAL DESIGN PRESENTATION CRITICAL DESIGN PRESENTATION UNIVERSITY OF SOUTH ALABAMA LAUNCH SOCIETY BILL BROWN, BEECHER FAUST, ROCKWELL GARRIDO, CARSON SCHAFF, MICHAEL WIESNETH, MATTHEW WOJCIECHOWSKI ADVISOR: CARLOS MONTALVO MENTOR:

More information

University of San Diego 2017 SAE Baja

University of San Diego 2017 SAE Baja University of San Diego 2017 SAE Baja Society of Automotive Engineers University of San Diego Student Chapter University of San Diego SAE Shiley Marcos School of Engineering 5998 Alcala Park San Diego,

More information

Development of Low-thrust Thruster with World's Highest Performance Contributing to Life Extension of Artificial Satellites

Development of Low-thrust Thruster with World's Highest Performance Contributing to Life Extension of Artificial Satellites Development of Low-thrust Thruster with World's Highest Performance Contributing to Life Extension of Artificial Satellites 40 NOBUHIKO TANAKA *1 DAIJIRO SHIRAIWA *1 TAKAO KANEKO *2 KATSUMI FURUKAWA *3

More information

NASA USLI PRELIMINARY DESIGN REVIEW. University of California, Davis SpaceED Rockets Team

NASA USLI PRELIMINARY DESIGN REVIEW. University of California, Davis SpaceED Rockets Team NASA USLI 2012-13 PRELIMINARY DESIGN REVIEW University of California, Davis SpaceED Rockets Team OUTLINE School Information Launch Vehicle Summary Motor Selection Mission Performance and Predictions Structures

More information

Gravity Control Technologies Phase I - Unmanned Prototype

Gravity Control Technologies Phase I - Unmanned Prototype archived as http://www.stealthskater.com/documents/gct_02.pdf read more of GCT at http://www.stealthskater.com/ufo.htm#gct note: because important websites are frequently "here today but gone tomorrow",

More information

Statement of Work Requirements Verification Table - Addendum

Statement of Work Requirements Verification Table - Addendum Statement of Work Requirements Verification Table - Addendum Vehicle Requirements Requirement Success Criteria Verification 1.1 No specific design requirement exists for the altitude. The altitude is a

More information

Vandal Hybrid Racing Sponsorship Packet University of Idaho.

Vandal Hybrid Racing Sponsorship Packet University of Idaho. University of Idaho 1 Vandal Hybrid Racing The Vandal Hybrid Racing Team is a non-profit organization which advances the education of future engineers by designing and building a vehicle to compete in

More information

NWIC Space Center s 2017 First Nations Launch Achievements

NWIC Space Center s 2017 First Nations Launch Achievements NWIC Space Center s 2017 First Nations Launch Achievements On April 18, 2017, we were on two airplanes to Milwaukee, Wisconsin by 6:30 am for a long flight. There were 12 students, 3 mentors, 2 toddlers

More information

Lunar Missions by Year - All Countries. Mission count dropped as we transitioned from politically driven missions to science driven missions

Lunar Missions by Year - All Countries. Mission count dropped as we transitioned from politically driven missions to science driven missions n Lunar Missions by Year - All Countries Key: All Mission Attempts Mission Successes Mission count dropped as we transitioned from politically driven missions to science driven missions Capability Driven

More information

Dual Spacecraft System

Dual Spacecraft System Dual Spacecraft System Brent Viar 1, Benjamin Colvin 2 and Catherine Andrulis 3 United Launch Alliance, Littleton, CO 80127 At the AIAA Space 2008 Conference & Exposition, we presented a paper on the development

More information

Taurus II. Development Status of a Medium-Class Launch Vehicle for ISS Cargo and Satellite Delivery

Taurus II. Development Status of a Medium-Class Launch Vehicle for ISS Cargo and Satellite Delivery Taurus II Development Status of a Medium-Class Launch Vehicle for ISS Cargo and Satellite Delivery David Steffy Orbital Sciences Corporation 15 July 2008 Innovation You Can Count On UNCLASSIFIED / / Orbital

More information

AMBR* Engine for Science Missions

AMBR* Engine for Science Missions AMBR* Engine for Science Missions NASA In Space Propulsion Technology (ISPT) Program *Advanced Material Bipropellant Rocket (AMBR) April 2010 AMBR Status Information Outline Overview Objectives Benefits

More information

Team America Rocketry Challenge Launching Students into Aerospace Careers Miles Lifson, TARC Manger, AIA September 8, 2016

Team America Rocketry Challenge Launching Students into Aerospace Careers Miles Lifson, TARC Manger, AIA September 8, 2016 Team America Rocketry Challenge Launching Students into Aerospace Careers Miles Lifson, TARC Manger, AIA September 8, 2016 TARC Video https://youtu.be/tzzmcnh-wa8 What is the Team America Rocketry Challenge

More information

CubeSat Advanced Technology Propulsion System Concept

CubeSat Advanced Technology Propulsion System Concept SSC14-X-3 CubeSat Advanced Technology Propulsion System Concept Dennis Morris, Rodney Noble Aerojet Rocketdyne 8900 DeSoto Ave., Canoga Park, CA 91304; (818) 586-1503 Dennis.Morris@rocket.com ABSTRACT

More information

SABRE FOR HYPERSONIC & SPACE ACCESS PLATFORMS

SABRE FOR HYPERSONIC & SPACE ACCESS PLATFORMS SABRE FOR HYPERSONIC & SPACE ACCESS PLATFORMS Mark Thomas Chief Executive Officer 12 th Appleton Space Conference RAL Space, 1 st December 2016 1 Reaction Engines Limited REL s primary focus is developing

More information

H-IIA Launch Vehicle Upgrade Development

H-IIA Launch Vehicle Upgrade Development 26 H-IIA Launch Vehicle Upgrade Development - Upper Stage Enhancement to Extend the Lifetime of Satellites - MAYUKI NIITSU *1 MASAAKI YASUI *2 KOJI SHIMURA *3 JUN YABANA *4 YOSHICHIKA TANABE *5 KEITARO

More information

EXTENDED GAS GENERATOR CYCLE

EXTENDED GAS GENERATOR CYCLE EXTENDED GAS GENERATOR CYCLE FOR RE-IGNITABLE CRYOGENIC ROCKET PROPULSION SYSTEMS F. Dengel & W. Kitsche Institute of Space Propulsion German Aerospace Center, DLR D-74239 Hardthausen, Germany ABSTRACT

More information

To determine which number of fins will enable the Viking Model Rocket to reach the highest altitude with the largest thrust (or fastest speed.

To determine which number of fins will enable the Viking Model Rocket to reach the highest altitude with the largest thrust (or fastest speed. To determine which number of fins will enable the Viking Model Rocket to reach the highest altitude with the largest thrust (or fastest speed.) You are a mechanical engineer that has been working on a

More information

FACT SHEET SPACE SHUTTLE EXTERNAL TANK. Space Shuttle External Tank

FACT SHEET SPACE SHUTTLE EXTERNAL TANK. Space Shuttle External Tank Lockheed Martin Space Systems Company Michoud Operations P.O. Box 29304 New Orleans, LA 70189 Telephone 504-257-3311 l FACT SHEET SPACE SHUTTLE EXTERNAL TANK Program: Customer: Contract: Company Role:

More information

Lessons in Systems Engineering. The SSME Weight Growth History. Richard Ryan Technical Specialist, MSFC Chief Engineers Office

Lessons in Systems Engineering. The SSME Weight Growth History. Richard Ryan Technical Specialist, MSFC Chief Engineers Office National Aeronautics and Space Administration Lessons in Systems Engineering The SSME Weight Growth History Richard Ryan Technical Specialist, MSFC Chief Engineers Office Liquid Pump-fed Main Engines Pump-fed

More information

THE FALCON I LAUNCH VEHICLE Making Access to Space More Affordable, Reliable and Pleasant

THE FALCON I LAUNCH VEHICLE Making Access to Space More Affordable, Reliable and Pleasant 18 th Annual AIAA/USU Conference on Small Satellites SSC04-X-7 THE FALCON I LAUNCH VEHICLE Making Access to Space More Affordable, Reliable and Pleasant Hans Koenigsmann, Elon Musk, Gwynne Shotwell, Anne

More information

Testing and Manufacturing Update. 4/6/2015 Kisa Brostrom, Kent Evans

Testing and Manufacturing Update. 4/6/2015 Kisa Brostrom, Kent Evans Testing and Manufacturing Update 4/6/2015 Kisa Brostrom, Kent Evans 1 Our Main Problem 2 Rocket Classes Cutoff Total Impulse http://www.nar.org/standards-and-testing-committee/standard-motor-codes/ 3 Our

More information

Overview. Mission Overview Payload and Subsystems Rocket and Subsystems Management

Overview. Mission Overview Payload and Subsystems Rocket and Subsystems Management MIT ROCKET TEAM Overview Mission Overview Payload and Subsystems Rocket and Subsystems Management Purpose and Mission Statement Our Mission: Use a rocket to rapidly deploy a UAV capable of completing search

More information

Presentation 3 Vehicle Systems - Phoenix

Presentation 3 Vehicle Systems - Phoenix Presentation 3 Vehicle Systems - Phoenix 1 Outline Structures Nosecone Body tubes Bulkheads Fins Tailcone Recovery System Layout Testing Propulsion Ox Tank Plumbing Injector Chamber Nozzle Testing Hydrostatic

More information

AIAA Foundation Undergraduate Team Aircraft Design Competition. RFP: Cruise Missile Carrier

AIAA Foundation Undergraduate Team Aircraft Design Competition. RFP: Cruise Missile Carrier AIAA Foundation Undergraduate Team Aircraft Design Competition RFP: Cruise Missile Carrier 1999/2000 AIAA FOUNDATION Undergraduate Team Aircraft Design Competition I. RULES 1. All groups of three to ten

More information

Heat Shield Design Project

Heat Shield Design Project Name Class Period Heat Shield Design Project The heat shield is such a critical piece, not just for the Orion mission, but for our plans to send humans into deep space. Final Points Earned Class Participation/Effort

More information

AN OPTIMIZED PROPULSION SYSTEM FOR Soyuz/ST

AN OPTIMIZED PROPULSION SYSTEM FOR Soyuz/ST 1 RD-0124 AN OPTIMIZED PROPULSION SYSTEM FOR Soyuz/ST Versailles, May 14,2002 Starsem Organization 2 35% 25% 15% 25% 50-50 European-Russian joint venture providing Soyuz launch services for the commercial

More information

CONTENTS Duct Jet Propulsion / Rocket Propulsion / Applications of Rocket Propulsion / 15 References / 25

CONTENTS Duct Jet Propulsion / Rocket Propulsion / Applications of Rocket Propulsion / 15 References / 25 CONTENTS PREFACE xi 1 Classification 1.1. Duct Jet Propulsion / 2 1.2. Rocket Propulsion / 4 1.3. Applications of Rocket Propulsion / 15 References / 25 2 Definitions and Fundamentals 2.1. Definition /

More information

6. The Launch Vehicle

6. The Launch Vehicle 6. The Launch Vehicle With the retirement of the Saturn launch vehicle system following the Apollo-Soyuz mission in summer 1975, the Titan III E Centaur is the United State s most powerful launch vehicle

More information

Laboratory for Manufacturing Systems & Automation University of Patras. University of Patras Racing Team Formula Student. Call for cooperation

Laboratory for Manufacturing Systems & Automation University of Patras. University of Patras Racing Team Formula Student. Call for cooperation Racing Team Formula Student Call for cooperation Who are we? We are a team of passionate students, designing, building and racing cutting-edge technology electric racecars, that compete in Formula Student

More information

Media Event Media Briefing Arif Karabeyoglu President & CTO SPG, Inc. June 29, 2012

Media Event Media Briefing Arif Karabeyoglu President & CTO SPG, Inc. June 29, 2012 Media Event Media Briefing Arif Karabeyoglu President & CTO SPG, Inc. June 29, 2012 spg-corp.com SPG Background SPG, Inc is an Aerospace company founded in 1999 to advance state-of of-the-art propulsion

More information

RACING FORMULA SAE SAN JOSÉ STATE UNIVERSITY CHARLES W. DAVIDSON COLLEGE OF ENGINEERING SPONSOR INFORMATION

RACING FORMULA SAE SAN JOSÉ STATE UNIVERSITY CHARLES W. DAVIDSON COLLEGE OF ENGINEERING SPONSOR INFORMATION 2018 N FORMULA SAE RACING SAN JOSÉ STATE UNIVERSITY CHARLES W. DAVIDSON COLLEGE OF ENGINEERING SPONSOR INFORMATION Spartan Racing is the student Chapter of SAE International at San Jose State University.

More information

Monopropellant Micro Propulsion system for CubeSats

Monopropellant Micro Propulsion system for CubeSats Monopropellant Micro Propulsion system for CubeSats By Chris Biddy 174 Suburban Rd Suite 120 San Luis Obispo CA 93401 (805) 549 8200 chris@stellar exploration.com Introduction High Performance CubeSat

More information

SOONER ROAD. University Of Oklahoma. Sponsorship Packet

SOONER ROAD. University Of Oklahoma. Sponsorship Packet SOONER OFF- ROAD 2015 University Of Oklahoma Sponsorship Packet TEAM LETTER Thank you for taking interest in the University of Oklahoma s Sooner Off-Road racing team and Baja SAE. Baja SAE is an international

More information

'ELaNa XIX' press Kit DECEMBER 2018

'ELaNa XIX' press Kit DECEMBER 2018 ROCKET LAB USA 2018 'ELaNa XIX' press Kit DECEMBER 2018 LAUNCHING ON ELECTRON VEHICLE FOUR: 'THIS ONE'S FOR PICKERING' ROCKET LAB PRESS KIT 'ELANA-19' 2018 LAUNCH INFORMATION Launch window: 13 21 December,

More information

PRELIMINARY DESIGN REVIEW

PRELIMINARY DESIGN REVIEW PRELIMINARY DESIGN REVIEW 1 1 Team Structure - Team Leader: Michael Blackwood NAR #101098L2 Certified - Safety Officer: Jay Nagy - Team Mentor: Art Upton NAR #26255L3 Certified - NAR Section: Jackson Model

More information

Formula Electric

Formula Electric 2016-2017 Formula Electric Dear Sponsorship Partner, Thank you for taking an interest in McGill Formula Electric. Each year, we design, build and race an electric formula SAE car at competitions against

More information

Wichita State Launch Project K.I.S.S.

Wichita State Launch Project K.I.S.S. Wichita State Launch Project K.I.S.S. Benjamin Russell Jublain Wohler Mohamed Moustafa Tarun Bandemagala Outline 1. 2. 3. 4. 5. 6. 7. Introduction Vehicle Overview Mission Predictions Payload Design Requirement

More information

NEW MEXICO STATE UNIVERSITY

NEW MEXICO STATE UNIVERSITY Fall 2011 [HYBRID ROCKET TEAM] NEW MEXICO STATE UNIVERSITY Portable hybrid rocket motors and test stands can be seen in many papers, but none have been reported on the design or instrumentation at such

More information

R I T. Rochester Institute of Technology. Human Powered Vehicle Team Sponsorship and Information Packet

R I T. Rochester Institute of Technology. Human Powered Vehicle Team Sponsorship and Information Packet R I T Rochester Institute of Technology Human Powered Vehicle Team 2010-2011 Sponsorship and Information Packet Rochester Institute of Technology Human Powered Vehicle Team Kate Gleason College of Engineering

More information

Michigan Aeronautical Science Association

Michigan Aeronautical Science Association Michigan Aeronautical Science Association Established August 2003 Organizational Document December 29, 2003 Version 3 Authors: Jeffrey D. Lydecker: jlydec@umich.edu Matthew H. McKeown: mckeownm@umich.edu

More information

Rocketry Projects Conducted at the University of Cincinnati

Rocketry Projects Conducted at the University of Cincinnati Rocketry Projects Conducted at the University of Cincinnati 2009-2010 Grant Schaffner, Ph.D. (Advisor) Rob Charvat (Student) 17 September 2010 1 Spacecraft Design Course Objectives Students gain experience

More information

First Revision No. 9-NFPA [ Chapter 2 ]

First Revision No. 9-NFPA [ Chapter 2 ] 1 of 14 12/30/2015 11:56 AM First Revision No. 9-NFPA 1127-2015 [ Chapter 2 ] Chapter 2 Referenced Publications 2.1 General. The documents or portions thereof listed in this chapter are referenced within

More information

University Student Launch Initiative

University Student Launch Initiative University Student Launch Initiative HARDING UNIVERSITY Flight Readiness Review March 31, 2008 Launch Vehicle Summary Size: 97.7 (2.5 meters long), 3.1 diameter Motor: Contrail Rockets 54mm J-234 Recovery

More information

ECOCAR EcoCAR at The Ohio State University

ECOCAR EcoCAR at The Ohio State University ECOCAR EcoCAR at The Ohio State University Media & Sponsorship Kit EcoCAR Mobility Challenge 2018 2019 What is an AVTC? Since 1988, the U.S. Department of Energy has sponsored a series of Advanced Vehicle

More information

SSC Swedish Space Corporation

SSC Swedish Space Corporation SSC Swedish Space Corporation Platforms for in-flight tests Gunnar Florin, SSC Presentation outline SSC and Esrange Space Center Mission case: Sounding rocket platform, dedicated to drop tests Satellite

More information

DemoSat-B User s Guide

DemoSat-B User s Guide January 5, 2013 Authors: Chris Koehler & Shawn Carroll Revisions Revision Description Date Approval DRAFT Initial release 7/31/2009 1 Updated for 2011 2012 program dates, added revision page 9/27/11 LEM

More information

Australian Universities Rocket Competition 2018/2019

Australian Universities Rocket Competition 2018/2019 Australian Universities Rocket Competition 2018/2019 Rules, Standards, & Guidelines Page 1 of 15 Revision History Revision Description Date Baseline Document created 20/01/2018 AURC Director SA State Representative

More information