EKT112 Principles of Measurement and Instrumentation. Power Measurement

Size: px
Start display at page:

Download "EKT112 Principles of Measurement and Instrumentation. Power Measurement"

Transcription

1 EKT112 Principles of Measurement and Instrumentation Power Measurement 1

2 Outline Power? Power in DC and AC Circuits Power Measurements Power Instrumentation (Wattmeter) 2

3 Concept of Electric POWER Power can be defined as the time rate of energy transfer or energy dissipation in a load. Power is the rate of using or supplying energy. The rate at which work is done to maintain an electric current in a circuit is termed ELECTRIC POWER. Electric power is measured in watts (W). The SI unit of power is the watt (W), where W = 1 J/s. The kilowatt is a commonly used unit where I kilowatt = 1000 watts. 3

4 Electric POWER Formula Normally electric power is useful, making a lamp light or a motor turn. ELECTRIC POWER equals the product of the current I and the potential difference V. Power = Current x VoltageDifference P( Watts) = I( Amperes) x V ( volts) 4

5 If P is positive, the component absorb power. If P is negative, the component produces power. 5

6 POWER in DC Circuits The POWER in DC circuit is equal to the product of voltage and current. [Power = Current Voltage] When the system voltage is constant, ammeter readings are almost a sufficient indication of the POWER taken. The POWER is calculated by using voltmeter and ammeter or wattmeter. P = I V = I² R = V² / R where: P = power in watts (W) I = current in amps (A) R = resistance in ohms ( Ω) V = voltage in volts (V) 6

7 Example How much power is used in a circuit which is 110 volts and has a current of 1.36 amps? P = IV = 1.36 A x 110 V = 150 W 7

8 Examples Label on TV state 720W/120V. Find the current supply to this TV. A heater has 30Ω resistor connected to voltage source 120V. Find the total power which changed to heat. 8

9 POWER in AC Circuits In AC circuits the voltage and current are changing their magnitude and polarities with reference to time. The electric power in the circuit at any instant is equal to the product of the current and the voltage across its terminals at that instant.[p = vi] The instantaneous power, 9 p = vi = V = V max max sinθ x I max I max sin( θ φ) sinθ sin( θ φ)

10 The mean power 2π 1 p = V 2π 0 max I max VmaxImax cosφ = 2 P = VI cosφ sinθ sin ( θ φ) dφ V and I are rms value of voltage and current and to calculate power, we should know the power factor of the load in AC circuit. Power factors are usually stated as "leading" or "lagging" to show the sign of the phase angle of current with respect to voltage. 10

11 Example The real power is 700 W and the phase angle (φ) between voltage and current is The power factor = cos(45.6 ) = The apparent power = 700 W / cos(45.6 ) = 1000 VA 11

12 The power output rating of motors is usually expressed in a power unit call the horsepower (hp) The relation between horsepower and watts is 1hp = 746W Electric motors and other systems have an efficiency (η) of operation η = P out P in x100% 12

13 Examples 1. Calculate the power for a 12V battery supply 250A to a starter motor. 2. Find the current drawn from a 115V line by a DC electric motor that delivers 1hp by assuming 100% efficiency of operation. 3. What is the operating efficiency of a fully loaded 2hp DC electric motor that drawn 19A at 100V? 13

14 Quiz The d Arsonval meter movement known as Permanent Magnet Moving Coil (PMMC) used to be as voltmeter and ammeter. For both instruments, what we uses to increase the voltage range and the current range? Answer in 5 minutes and submit. 14

15 Why Wattmeter Needed? Ammeter measures load current IL and there is voltage drop VA across ammeter. VL=V VA Pdc= VL IL = (V VA)IL = VIL VAIL [Power measured by meters] = [Power consumed by load] + [Power loss in ammeter] The product of ammeter and voltmeter does not give correct power consumed by load 15

16 If voltmeter shifted across the load to measure the load voltage, it measures VL correctly but ammeter measures current I. I = IL + IV Pdc= VL IL = VL (I - IV)= VL I VL IV [Power measured by meters] = [Power consumed by load] + [Power loss in voltmeter] Power measured is higher than power actually consumed by load. 16

17 * The power loss in the instrument (ammeter or voltmeter) near the load cause an error. To avoid that errors in power measurement, we need a device called wattmeter which gives direct reading of power. Ammeter and Voltmeter is not sufficient to measure power in AC power because the measurement of power consumption in circuit considering the effect of cos φ. 17

18 POWER Measurement A wide variety of instrumentation and transducers for the measurement of POWER in AC and DC circuit. Important primarily for the testing, monitoring and maintenance of the energy supply network and electrical equipment. Required in high frequency and low power circuits. A wattmeter suitable used for power meter measurement in DC and AC systems, which will give the same angle of deflection for a given power. 18

19 Power Factor Meter Single Phase and Three Phase This instruments indicate the power factor of a circuit directly instead of obtaining the watts applied to a circuit dividing by the volt amperes in the circuit Class of power factor meter 1. Dynamometer type power factor meter 2. Moving iron type power factor meter 19

20 Wattmeters Three types of wattmeters 1. Dynamometer 2. Induction - can be used on AC circuit only when frequency and supply voltage are constant. 3. Electrostatic Class of Dynamometer Suspended coil torsion head Pivoted coil direct indicating 20

21 21 Dynamometer Wattmeter

22 Dynamometer Construction The moving coil is placed between the two fixed coils. The fixed coils is used as a current coils which are made of a few turns of thick copper wire and are connected in series with the load to carry the load current. The moving coil is used as pressure coil which is made of a very light wire several turns of fine copper wire. A high non inductive resistance is connected in series with the moving coil to limit the current. The jewel supported spindle carrying the pressure coil, a pointer damping vane and control springs. The flat aluminium thin pointer is fixed to the pressure coil spindle and moves over a suitably calibrated scale. A cast iron cylinder is placed around the coil to protect against stray magnetic fields. Air friction damping is used. 22

23 Dynamometer Operation The fixed coils carry load current and create a flux in the air gap between them. The pressure coil carries another small current proportional to load voltage and hence produces a flux in the air gap. The circuit coil produces a flux in phase with the load current. The flux produced by the pressure coil is very nearly inphase with the applied voltage. The magnetic fields of the fixed and moving coils react on one another causing the moving coil to turn its axis and a torque produced on the moving system. 23

24 The torque developed on moving system will be proportional to product of the two fields and in turn the voltage and current. Deflecting Torque, Control Torque, T c Under steady state condition, T d VI cosθ = W (power) θ T d = T c θ W power The angular displacement of the pointer is directly proportional to average power in circuits. 24

25 Dynamometer In dynamometer type instrument Deflecting torque is produced by magnetic effect of electric current. Control torque is provided by control springs. Damping torque is provided by Air Friction damping. 25

26 Advantages Can be used to measure power in DC and AC circuits. Gives fairly accurate readings. The scale is uniform. Free from hysteresis and eddy current losses 26

27 Disadvantages The torque-weight ratio is small (even when the current and pressure coils are fully exicited) High cost Affected by stray magnetic field The inductance of pressure coil tend to be large at low power factors introduces serious error. 27

28 Wattmeter's are designed for lower power factor rating. This improves precision & reduces error. As two different ranges of voltage and current are available for wattmeter to calculate actual power, multiplying factor should be used. Multiplyin g Factor = voltage range x current range x rated Full Scale Deplection power factor Measured Power = Wattmeter Reading x Multiplyin g Factor 28

29 Examples Let FSD of wattmeter be 1250W. If potential coil is connected across 250V and the current coil connected for a current range 5A, What is the multiplying factor? In a circuit power is measured with a wattmeter with 13A, 240V, 1500Watts F.S.D. The measurement reading was 700Watts. What is the power consumed by load? 29

30 Error in wattmeter Connection error can be reduced by used for low current, high voltage circuit. Wattmeter Reading = (power consumed by load) + (Power consumed by current coil) used for high current, low voltage circuit, by selecting a proper connection the Wattmeter Reading = (power consumed by load) + (power consumed by pressure coil) 30

31 Example A circuit takes 10A at 200V and the power absorbed is 1000W. If a current coil has a resistance of 0.15Ω resistance and a pressure coil has a resistance of 5000Ω, Inductance of 0.3H. Find The error due to resistance for each of two possible method of connection. The error due to the inductance if the frequency of 50Hz. The total error in each case. 31

32 32 Method of Connections

33 33

34 Compensated Wattmeter While measuring power in low power factor circuits, error due to connection is not negligible. So compensating winding is used. Compensating winding is a winding connected in series with pressure coil. It has same number of turns as that of current coil, but has small cross section. 34

35 35 Low Power Factor Wattmeter

36 Modifications on LPF Wattmeter Pressure coil circuit designed to have low resistance to make more current can flow through for develop more torque. (10xUFP). The large current causes higher voltage drop and power loss in current coil which is introduce an errors. The provision of a compensating is a must to reduce flux created by current coil. Error caused by pressure coil inductance is proportional to sin θ (power factor angle) which is large at low power factor. Compensation is carried out by putting a capacitor across a part of the series resistance To have small control torque relative to smaller deflection torque which able to give higher angular displacement and suitable for circuits with power factors as low as

37 A dynamometer type three-phase wattmeter consists of two separate wattmeter movements mounted together in one case with the two moving coils mounted on the same spindle. 37

38 There are two current coils and two pressure coils. A current coil together with its pressure coil is known as an element. Therefore, a three phase wattmeter has two elements. The connections of two elements of a 3 phase wattmeter are the same as that for two wattmeter method using two single phase wattmeter. The torque on each element is proportional to the power being measured by it. 38

39 The total torque deflecting the moving system is the sum of the deflecting torque of the two elements. Hence the total deflecting torque on the moving system is proportional to the total Power. In order that a 3 phase wattmeter read correctly, there should not be any mutual interference between the two elements. A laminated iron shield may be placed between the two elements to eliminate the mutual effects. 39

40 End of POWER Measurements 40

41 41

ELECTRICAL MAINTENANCE

ELECTRICAL MAINTENANCE ELECTRICAL MAINTENANCE II PRACTICAL JOURNAL DATA 1 EXPERIMENT NO. 1 AIM: TO FIND VOLTAGE RATIO OF A GIVEN TRANSFORMER. CIRCUIT DIAGRAM: OBSERVATION TABLE: Sr.No. 1 2 3 4 Primary Voltage (V 1 ) Secondary

More information

POWER METER. my2010 (c)

POWER METER. my2010 (c) POWER METER ELECTRIC POWER Electric power is the rate at which electric energy is transferred by an electric circuit. The SI unit of power is the watt. When electric current flows in a circuit, it can

More information

To study the constructional features of ammeter, voltmeter, wattmeter and energymeter.

To study the constructional features of ammeter, voltmeter, wattmeter and energymeter. Experiment o. 1 AME OF THE EXPERIMET To study the constructional features of ammeter, voltmeter, wattmeter and energymeter. OBJECTIVE 1. To be conversant with the constructional detail and working of common

More information

Unit-I MEASURING INSTRUMENTS

Unit-I MEASURING INSTRUMENTS Unit-I MEASURING INSTRUMENTS 1.1 Definition of instruments: An instrument is a device in which we can determine the magnitude or value of the quantity to be measured. The measuring quantity can be voltage,

More information

MODULE 3 MEASUREMENT OF RESISTANCE, POWER, POWER FACTOR AND ENERGY

MODULE 3 MEASUREMENT OF RESISTANCE, POWER, POWER FACTOR AND ENERGY MODULE 3 MEASUREMENT OF RESISTANCE, POWER, POWER FACTOR AND ENERGY 1 Measurement of resistance Measurement of low resistance (upto 1 ohm) Measurement of medium resistance (1Ω to 0.1M Ω) Measurement of

More information

Electrical Measuring Instruments

Electrical Measuring Instruments UNIT 12 Electrical Measuring Instruments Learning Objectives After studying this unit, the student will be able Understand different measuring instruments used in electricity Understand the working of

More information

2. Analog measurement of Electrical Quantities

2. Analog measurement of Electrical Quantities 2.1. Classification of Analog Instruments Definition and concept of Measurement The analog instruments can be classified on the basis of various parameters. Analog Instruments On the basis of measuring

More information

EXPERIMENT CALIBRATION OF 1PHASE ENERGY METER

EXPERIMENT CALIBRATION OF 1PHASE ENERGY METER EXPERIMENT CALIBRATION OF PHASE ENERGY METER THEORY:- Energy Meters are integrating instruments used to measure the quantity of electrical energy supplied to a circuit in a given time. Single phase energy

More information

Basic Instruments Introduction Classification of instruments Operating principles Essential features of measuring

Basic Instruments  Introduction Classification of instruments Operating principles Essential features of measuring Basic Instruments www.worldwebsites8.blogspot.com Introduction Classification of instruments Operating principles Essential features of measuring instruments PMMC Instruments Moving Iron instruments Introduction

More information

Electrical Power Electric power electrical electric power Electric power electric electric

Electrical Power Electric power electrical electric power Electric power electric electric Power Calculations Electrical Power Electric power is the rate at which electrical energy is transferred by an electric circuit. The SI unit of power is the watt, one joule per second. Electric power is

More information

MEASURING INSTRUMENTS. Basic Electrical Engineering (REE-101) 1

MEASURING INSTRUMENTS. Basic Electrical Engineering (REE-101) 1 MEASURING INSTRUMENTS Basic Electrical Engineering (REE-101) 1 MEASURING INSTRUMENTS The device used for comparing the unknown quantity with the unit of measurement or standard quantity is called a Measuring

More information

DC CIRCUITS ELECTROMAGNETISM

DC CIRCUITS ELECTROMAGNETISM DC CIRCUITS 1. State and Explain Ohm s Law. Write in brief about the limitations of Ohm s Law. 2. State and explain Kirchhoff s laws. 3. Write in brief about disadvantages of series circuit and advantages

More information

II/IV B.Tech(Regular) DEGREE EXAMINATION. Electronics & Instrumentation Engineering

II/IV B.Tech(Regular) DEGREE EXAMINATION. Electronics & Instrumentation Engineering SCHME OF EVALUTION II/IV B.Tech(Regular) DEGREE EXAMINATION JUNE,2016 EI ET 403 Electrical Technology Electronics & Instrumentation Engineering Max.Marks :60 marks -----------------------------------------------------------------------------------------------------------

More information

Century Style Analog Panel Meters

Century Style Analog Panel Meters UL Recognized File # E91015 Except for the Wattmeters and Frequency Meters Glass window for optimum viewing Rugged black plastic case Black knife-edge pointer for precision reading The Specifications &

More information

Principles and types of analog and digital ammeters and voltmeters

Principles and types of analog and digital ammeters and voltmeters Principles and types of analog and digital ammeters and voltmeters Electrical voltage and current are two important quantities in an electrical network. The voltage is the effort variable without which

More information

Circuits-Circuit Analysis

Circuits-Circuit Analysis Base your answers to questions 1 through 3 on the information and diagram below. 4. A 9-volt battery is connected to a 4-ohm resistor and a 5-ohm resistor as shown in the diagram below. A 3.0-ohm resistor,

More information

AP Physics B Ch 18 and 19 Ohm's Law and Circuits

AP Physics B Ch 18 and 19 Ohm's Law and Circuits Name: Period: Date: AP Physics B Ch 18 and 19 Ohm's Law and Circuits MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A device that produces electricity

More information

Electromagnetic Induction, Faraday s Experiment

Electromagnetic Induction, Faraday s Experiment Electromagnetic Induction, Faraday s Experiment A current can be produced by a changing magnetic field. First shown in an experiment by Michael Faraday A primary coil is connected to a battery. A secondary

More information

DHANALAKSHMI COLLEGE OF ENGINEERING MANIMANGALAM. TAMBARAM, CHENNAI B.E. ELECTRICAL AND ELECTRONICS ENGINEERING

DHANALAKSHMI COLLEGE OF ENGINEERING MANIMANGALAM. TAMBARAM, CHENNAI B.E. ELECTRICAL AND ELECTRONICS ENGINEERING DHANALAKSHMI COLLEGE OF ENGINEERING MANIMANGALAM. TAMBARAM, CHENNAI B.E. ELECTRICAL AND ELECTRONICS ENGINEERING V SEMESTER EE2305 ELECTRICAL MACHINES II LABORATORY LABORATORY MANUAL 1 CONTENT S. No. Name

More information

Induction type Energy meter Construction

Induction type Energy meter Construction Induction type Energy meter Construction The four main parts of an energy meter are: Driving system Moving system Braking system and Registering system The construction is as shown below: Fig. Construction

More information

EEE3441 Electrical Machines Department of Electrical Engineering. Lecture. Introduction to Electrical Machines

EEE3441 Electrical Machines Department of Electrical Engineering. Lecture. Introduction to Electrical Machines Department of Electrical Engineering Lecture Introduction to Electrical Machines 1 In this Lecture Induction motors and synchronous machines are introduced Production of rotating magnetic field Three-phase

More information

DC MOTORS DC Motors DC Motor is a Machine which converts Electrical energy into Mechanical energy. Dc motors are used in steel plants, paper mills, textile mills, cranes, printing presses, Electrical locomotives

More information

2014 ELECTRICAL TECHNOLOGY

2014 ELECTRICAL TECHNOLOGY SET - 1 II B. Tech I Semester Regular Examinations, March 2014 ELECTRICAL TECHNOLOGY (Com. to ECE, EIE, BME) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~~~

More information

ELECTRICAL MEASURING INSTRUMENT CHAPTER 15 ELECTRICAL MEASURING INSTRUMENTS THE MOVING COIL GALVANOMETER The moving coil galvanometer is a basic electrical instrument. It is used for the detection or measurement

More information

Single Phase Induction Motor. Dr. Sanjay Jain Department Of EE/EX

Single Phase Induction Motor. Dr. Sanjay Jain Department Of EE/EX Single Phase Induction Motor Dr. Sanjay Jain Department Of EE/EX Application :- The single-phase induction machine is the most frequently used motor for refrigerators, washing machines, clocks, drills,

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION Subject Code: 17322 (EEM) Model Answers Page No: 1 of 22 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

Instrumental technique presentation

Instrumental technique presentation Instrumental technique presentation ammeter Manju 28.10.2017 An ammeter is a measuring instrument used to measure the electric current in a circuit. History I A The relation between electric current, magnetic

More information

UNIT - 4 TESTING OF DC MACHINES

UNIT - 4 TESTING OF DC MACHINES UNIT - 4 TESTING OF DC MACHINES Testing of DC machines can be broadly classified as i) Direct method of Testing ii) Indirect method of testing DIRECT METHOD OF TESTING: In this method, the DC machine is

More information

PLATINUM SERIES SWITCHBOARD METERS

PLATINUM SERIES SWITCHBOARD METERS PLATINUM SERIES SWITCHBOARD METERS www.sifamtinsley.co.uk DATASHEET E471457 Multifunction Meters Transducers & Isolators PLATINUM SERIES SWITCHBOARD METERS Temperature Controllers Converters & Recorders

More information

List of Experiments (Cycle-2)

List of Experiments (Cycle-2) List of Experiments (Cycle-) SL.No Experiment HOPKINSON S TEST RETARDATION TEST 3 SEPARATION OF LOSSES IN A SINGLE PHASE TRANSFORMER 4 SEPERATION OF LOSSES IN A DC SHUNT MACHINE 5 SUMPNER S TEST Experiment

More information

Wide-Vue Analog Panel Meters

Wide-Vue Analog Panel Meters UL Recognized - File # E91015 Except for the Wattmeters & Frequency Meters Clear acrylic window for wide viewing area Rugged black plastic case Black spade pointer for easy distant reading Optional: Behind-panel

More information

ELECTRICITY: INDUCTORS QUESTIONS

ELECTRICITY: INDUCTORS QUESTIONS ELECTRICITY: INDUCTORS QUESTIONS No Brain Too Small PHYSICS QUESTION TWO (2017;2) In a car engine, an induction coil is used to produce a very high voltage spark. An induction coil acts in a similar way

More information

Unit P.2, P2.3. Currents in electric circuits E ½. F Fuel gauge indicator. Fuel tank. Ammeter. Float. Battery. Sliding contact. Pivot 12V.

Unit P.2, P2.3. Currents in electric circuits E ½. F Fuel gauge indicator. Fuel tank. Ammeter. Float. Battery. Sliding contact. Pivot 12V. Currents in electric circuits 1. The diagram shows the fuel gauge assembly in a car. The sliding contact touches a coil of wire and moves over it. The sliding contact and the coil form a variable resistor.

More information

Power Losses. b. Field winding copper losses Losses due to the shunt field (i sh 2 R sh. ) or series field winding (i s 2 R s

Power Losses. b. Field winding copper losses Losses due to the shunt field (i sh 2 R sh. ) or series field winding (i s 2 R s Power Losses The various losses inside a generator can be subdivided according to: 1. copper losses a. armature copper losses = i a 2 R a Where R is the resistance of the armature, interpoles and series

More information

ELECTRO MAGNETIC INDUCTION

ELECTRO MAGNETIC INDUCTION 6 ELECTRO MAGNETIC INDUCTION 06.01 Electromagnetic induction When the magnetic flux linked with a coil or conductor changes, an emf is developed in it. This phenomenon is known as electromagnetic induction.

More information

Part- A Objective Questions (10X1=10 Marks)

Part- A Objective Questions (10X1=10 Marks) Dr. Mahalingam College of Engineering and Technology, Pollachi-3 (An Autonomous Institution) CCET 3(2016Regulation) Name of Programme: B.E. (EEE) Course Code&Course Title: 16EET41 & Synchronous & Induction

More information

PHYS 1444 Section 004. Lecture #19. DC Generator Transformer. Generalized Faraday s Law Mutual Inductance Self Inductance. Wednesday, Apr.

PHYS 1444 Section 004. Lecture #19. DC Generator Transformer. Generalized Faraday s Law Mutual Inductance Self Inductance. Wednesday, Apr. PHYS 1444 Section 004 DC Generator Transformer Lecture #19 Wednesday, April 11, 2012 Dr. Generalized Faraday s Law Mutual Inductance Self Inductance 1 Announcements Term exam #2 Non-comprehensive Date

More information

16.3 Ohm s Law / Energy and Power / Electric Meters

16.3 Ohm s Law / Energy and Power / Electric Meters 16.3 Ohm s Law / Energy and Power / Electric Meters Voltage Within a battery, a chemical reaction occurs that transfers electrons from one terminal to another terminal. This potential difference across

More information

Step Motor Lower-Loss Technology An Update

Step Motor Lower-Loss Technology An Update Step Motor Lower-Loss Technology An Update Yatsuo Sato, Oriental Motor Management Summary The demand for stepping motors with high efficiency and low losses has been increasing right along with the existing

More information

UNIT 2. INTRODUCTION TO DC GENERATOR (Part 1) OBJECTIVES. General Objective

UNIT 2. INTRODUCTION TO DC GENERATOR (Part 1) OBJECTIVES. General Objective DC GENERATOR (Part 1) E2063/ Unit 2/ 1 UNIT 2 INTRODUCTION TO DC GENERATOR (Part 1) OBJECTIVES General Objective : To apply the basic principle of DC generator, construction principle and types of DC generator.

More information

Wide-Vue Analog Panel Meters

Wide-Vue Analog Panel Meters UL Recognized - File # E91015 Except for the Wattmeters & Frequency Meters Clear acrylic window for wide viewing area Rugged black plastic case Black spade pointer for easy distant reading Optional: Behind-panel

More information

Name: Base your answer to the question on the information below and on your knowledge of physics.

Name: Base your answer to the question on the information below and on your knowledge of physics. Name: Figure 1 Base your answer to the question on the information below and on your knowledge of physics. A student constructed a series circuit consisting of a 12.0-volt battery, a 10.0-ohm lamp, and

More information

Electrical Energy and Power Ratings

Electrical Energy and Power Ratings Section 1 - From the Wall Socket Electrical Energy and ower Ratings Batteries and the mains are sources of electrical energy. Electrical appliances can then convert this into other forms of energy. e.g.

More information

AE105 PRINCIPLES OF ELECTRICAL ENGINEERING JUNE 2014

AE105 PRINCIPLES OF ELECTRICAL ENGINEERING JUNE 2014 Q.2 a. Explain in detail eddy current losses in a magnetic material. Explain the factors on which it depends. How it can be reduced? IETE 1 b. A magnetic circuit with a single air gap is shown in given

More information

ELECTRICAL AND ELECTRONICS LABORATROY MANUAL

ELECTRICAL AND ELECTRONICS LABORATROY MANUAL ELECTRICAL AND ELECTRONICS LABORATROY MANUAL K CHAITANYA Assistant Professor Department of Electrical and Electrical Engineering A. NARESH KUMAR Assistant Professor Department of Electrical and Electrical

More information

ELECTRICAL MACHINES-II LABORATORY MANUAL

ELECTRICAL MACHINES-II LABORATORY MANUAL ELECTRICAL MACHINES-II LABORATORY MANUAL T. ANIL KUMAR Associate Professor Department of Electrical and Electrical Engineering N. SINDHU Assistant Professor Department of Electrical and Electrical Engineering

More information

A - Add New Information C - Change Existing Information D - Delete Information. Page 7. Delete the fourth paragraph beginning CAUTION

A - Add New Information C - Change Existing Information D - Delete Information. Page 7. Delete the fourth paragraph beginning CAUTION ABB Effective: November 1990 This Addendum Supersedes all Previous Addenda Addendum to Instruction Leaflet 41-137.3H Type KRD-4 Directional Overcurrent Ground Relay A - Add New Information C - Change Existing

More information

Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field

Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field PHYSICS 1B Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field PHYSICS 1B Lenz's Law Generators Electric generators take in energy by work and transfer it out by

More information

CHAPTER 19 DC Circuits Units

CHAPTER 19 DC Circuits Units CHAPTER 19 DC Circuits Units EMF and Terminal Voltage Resistors in Series and in Parallel Kirchhoff s Rules EMFs in Series and in Parallel; Charging a Battery Circuits Containing Capacitors in Series and

More information

Voltmeter. for Experiments with the fischertechnik Expansion Kit. Order No

Voltmeter. for Experiments with the fischertechnik Expansion Kit. Order No Voltmeter for Experiments with the fischertechnik Expansion Kit Order No. 30083 Fischer Werke 7241 Tumlingen Printed in Germany Ref. No. 33-8/70/5 2. Operation of the Moving Coil Meter If a current flows

More information

Principles of Electrical Engineering

Principles of Electrical Engineering D.C GENERATORS Principle of operation of D.C machines, types of D.C Generators, e.m.f equation of D.C Generator, O.C.C of a D.C Shunt Generator, Load characteristics of D.C.Generators GENERATOR PRINCIPLE:

More information

Lower-Loss Technology

Lower-Loss Technology Lower-Loss Technology FOR A STEPPING MOTOR Yasuo Sato (From the Fall 28 Technical Conference of the SMMA. Reprinted with permission of the Small Motor & Motion Association.) Management Summary The demand

More information

I Ish. Figure 2 Ammeter made from galvanometer and shunt resistor.

I Ish. Figure 2 Ammeter made from galvanometer and shunt resistor. Page 1/6 Revision 2 1-Jun-10 OBJECTIVES Understand the galvanometer and its limitations. Use circuit laws to build a suitable ammeter and voltmeter from the galvanometer. Understand the loading effect

More information

Electromagnetic Induction

Electromagnetic Induction Electromagnetic Induction Question Paper Level ubject Exam oard Unit Topic ooklet O Level Physics ambridge International Examinations Electricity and Magnetism Electromagnetic Induction Question Paper

More information

To expose the students to the operation of D.C. machines and transformers and give them experimental skill.

To expose the students to the operation of D.C. machines and transformers and give them experimental skill. TOTAL: 45 PERIODS EE6411 ELECTRICAL MACHINES LABORATORY I L T P C 0 0 3 2 OBJECTIVES: To expose the students to the operation of D.C. machines and transformers and give them experimental skill. LIST OF

More information

PHY 152 (ELECTRICITY AND MAGNETISM)

PHY 152 (ELECTRICITY AND MAGNETISM) PHY 152 (ELECTRICITY AND MAGNETISM) ELECTRIC MOTORS (AC & DC) ELECTRIC GENERATORS (AC & DC) AIMS Students should be able to Describe the principle of magnetic induction as it applies to DC and AC generators.

More information

APPARATUS AND MATERIAL REQUIRED Resistor, ammeter, (0-1.5A) voltmeter (0-5V ), battery, one way key, rheostat, sand paper, connecting wires.

APPARATUS AND MATERIAL REQUIRED Resistor, ammeter, (0-1.5A) voltmeter (0-5V ), battery, one way key, rheostat, sand paper, connecting wires. ACTIVITIES ACTIVITY 1 AIM To assemble the components of a given electrical circuit. APPARATUS AND MATERIAL REQUIRED Resistor, ammeter, (0-1.5A) voltmeter (0-5V ), battery, one way key, rheostat, sand paper,

More information

ANSI Switchboard Meters

ANSI Switchboard Meters ANSI Switchboard Meters High quality range of switchboard instruments with Class 1 accuracy and which complies with American ANSI-C39.1 (1981) specifications. Available in 4 1 /2" case size, the rugged

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Question Bank EE6401 ELECTRICAL MACHINES I UNIT I: MAGNETIC CIRCUITS AND MAGNETIC

More information

The instantaneous torque is pulsating. The average value of the torque is

The instantaneous torque is pulsating. The average value of the torque is Problems 113 2. ω m = ω s ω r. Both stator and rotor windings carry ac currents at different frequencies and the motor runs at an asynchronous speed (ω m 6¼ ω s, ω m 6¼ ω r ). From Eq. 3.50, the torque

More information

Regulation: R16 Course & Branch: B.Tech EEE

Regulation: R16 Course & Branch: B.Tech EEE SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (Descriptive) Subject with Code : Electrical Machines-II (16EE215) Regulation: R16 Course & Branch: B.Tech

More information

ELECTRICAL FUNDAMENTALS

ELECTRICAL FUNDAMENTALS ELECTRICAL FUNDAMENTALS PLUG OCTOBER 27, 2016 ARINDERPAL MATHARU IDEAWORKS MOHAWK COLLEGE Introduction Goal: To provide you with the Electrical Fundamentals Early 1800s Timeline 21 ST Century Current Current

More information

Chapter 9 Basic meters

Chapter 9 Basic meters Chapter 9 Basic meters Core Competency Units UEENEEE003B Solve problems in extra-low voltage single path circuits UEENEEE004B Solve problems in multiple path DC Circuits Essential Knowledge and Associated

More information

The Wound-Rotor Induction Motor Part I

The Wound-Rotor Induction Motor Part I Experiment 1 The Wound-Rotor Induction Motor Part I OBJECTIVE To examine the construction of the three-phase wound-rotor induction motor. To understand exciting current, synchronous speed and slip in a

More information

Application Notes. Calculating Mechanical Power Requirements. P rot = T x W

Application Notes. Calculating Mechanical Power Requirements. P rot = T x W Application Notes Motor Calculations Calculating Mechanical Power Requirements Torque - Speed Curves Numerical Calculation Sample Calculation Thermal Calculations Motor Data Sheet Analysis Search Site

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK 16EET41 SYNCHRONOUS AND INDUCTION MACHINES UNIT I SYNCHRONOUS GENERATOR 1. Why the stator core is laminated? 2. Define voltage regulation

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Direct Current When the current in a circuit has a constant magnitude and direction, the current is called direct current Because the potential difference between the

More information

INTERACTIVE SCIENCE 2A

INTERACTIVE SCIENCE 2A INTERACTIVE SCIENCE 2A Workbook Solutions (Enrichment Edition) Chapter 8 MAKING USE OF ELECTRICITY Part A Sectional Exercise 8.1 & 8.2 Concept checking p.35 1. False 2. True 3. False 4. True 5. True Questions

More information

Motional emf. as long as the velocity, field, and length are mutually perpendicular.

Motional emf. as long as the velocity, field, and length are mutually perpendicular. Motional emf Motional emf is the voltage induced across a conductor moving through a magnetic field. If a metal rod of length L moves at velocity v through a magnetic field B, the motional emf is: ε =

More information

Chapter 21 Practical Electricity

Chapter 21 Practical Electricity Chapter 21 Practical Electricity (A) Electrical Power 1. State four applications of the heating effect of electricity. Home: o Used in electric kettles o Used in electric irons o Used in water heaters

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043 MECHANICAL ENGINEERING ASSIGNMENT Name : Electrical and Electronics Engineering Code : A40203 Class : II B. Tech I Semester Branch :

More information

INDUCTANCE FM CHAPTER 6

INDUCTANCE FM CHAPTER 6 CHAPTER 6 INDUCTANCE INTRODUCTION The study of inductance is a very challenging but rewarding segment of electricity. It is challenging because at first it seems that new concepts are being introduced.

More information

Circuit Analysis Questions A level standard

Circuit Analysis Questions A level standard 1. (a) set of decorative lights consists of a string of lamps. Each lamp is rated at 5.0 V, 0.40 W and is connected in series to a 230 V supply. Calculate the number of lamps in the set, so that each lamp

More information

Faraday's Law of Induction

Faraday's Law of Induction Purpose Theory Faraday's Law of Induction a. To investigate the emf induced in a coil that is swinging through a magnetic field; b. To investigate the energy conversion from mechanical energy to electrical

More information

Induction machine characteristics and operation. Induction Machines

Induction machine characteristics and operation. Induction Machines Induction Machines 1.1 Introduction: An essential feature of the operation of the synchronous machine is that the rotor runs at the same speed as the rotating magnetic field produced by the stator winding.

More information

Type CRN-1 Reverse Power Relay 50 and 60 Hertz

Type CRN-1 Reverse Power Relay 50 and 60 Hertz ABB Automation Inc. Substation Automation and Protection Division Coral Springs, FL 33065 Instruction Leaflet 41-251.2P Effective: June 1991 Supersedes I.L. 41-251.2N Dated April 1988 ( )Denotes Change

More information

Write the term that correctly completes the statement. Use each term once. ampere. electric current. resistor battery.

Write the term that correctly completes the statement. Use each term once. ampere. electric current. resistor battery. Date Period Name CHAPTER 22 Study Guide Current Electricity Vocabulary Review Write the term that correctly completes the statement. Use each term once. ampere electric current resistor battery kilowatt-hour

More information

7. How long must a 100-watt light bulb be used in order to dissipate 1,000 joules of electrical energy? 1) 10 s 3) 1,000 s 2) 100 s 4) 100,000 s

7. How long must a 100-watt light bulb be used in order to dissipate 1,000 joules of electrical energy? 1) 10 s 3) 1,000 s 2) 100 s 4) 100,000 s 1. Which quantity must be the same for each component in any series circuit? 1) power 3) current 2) resistance 4) voltage 2. A student needs a 4-ohm resistor to complete a circuit. Only a large quantity

More information

INTRODUCTION Principle

INTRODUCTION Principle DC Generators INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. Principle Whenever a conductor is moved within a

More information

INVESTIGATION ONE: WHAT DOES A VOLTMETER DO? How Are Values of Circuit Variables Measured?

INVESTIGATION ONE: WHAT DOES A VOLTMETER DO? How Are Values of Circuit Variables Measured? How Are Values of Circuit Variables Measured? INTRODUCTION People who use electric circuits for practical purposes often need to measure quantitative values of electric pressure difference and flow rate

More information

Model Volt-Amp-Wattmeter INSTRUCTION MANUAL

Model Volt-Amp-Wattmeter INSTRUCTION MANUAL Model 390-2 Volt-Amp-Wattmeter INSTRUCTION MANUAL About this Manual To the best of our knowledge and at the time written, the information contained in this document is technically correct and the procedures

More information

Math and Science for Sub-Saharan Africa (MS4SSA)

Math and Science for Sub-Saharan Africa (MS4SSA) () Project-Based Learning: Introduction to Photovoltaics M.G. Zebaze Kana Visiting Scholar, Introduction to Electricity and Photovoltaics Section A: Background and introduction Section B: Introduction

More information

RICHLAND COLLEGE School of Engineering Business & Technology Rev. 0 W. Slonecker Rev. 1 (8/26/2012) J. Bradbury

RICHLAND COLLEGE School of Engineering Business & Technology Rev. 0 W. Slonecker Rev. 1 (8/26/2012) J. Bradbury RICHLAND COLLEGE School of Engineering Business & Technology Rev. 0 W. Slonecker Rev. 1 (8/26/2012) J. Bradbury INTC 1307 Instrumentation Test Equipment Teaching Unit 2 Direct Current Meters Unit 2 Direct

More information

Class X Chapter 09 Electrical Power and Household circuits Physics

Class X Chapter 09 Electrical Power and Household circuits Physics EXERCISE- 9 (A) Question 1: Write an expression for the electrical energy spent in flow of current through an electrical appliance in terms of current, resistance and time. Solution 1: Electrical energy,

More information

ELECTRICAL MACHINES I

ELECTRICAL MACHINES I PRACTICAL WORK BOOK ELECTRICAL MACHINES I EX-404 Name: Enrollment No: Branch: Semester: Batch: Department of Electrical Engineering Name of Laboratory : Electrical Machine - I Lab Subject Code : Ex 404

More information

Lab Electrical Power Engineering I

Lab Electrical Power Engineering I INSTITUT FÜR ELEKTRISCHE MASCHINEN RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lab Electrical Power Engineering I Test 3: Induction machine with squirrel cage rotor and slip ring rotor 1 Experiment

More information

ABB ! CAUTION. Type KRV Directional Overcurrent Relay E 1.0 APPLICATION 2.0 CONSTRUCTION AND OPERATION. Instruction Leaflet

ABB ! CAUTION. Type KRV Directional Overcurrent Relay E 1.0 APPLICATION 2.0 CONSTRUCTION AND OPERATION. Instruction Leaflet ABB Instruction Leaflet 41-137.2E Effective: February 1994 Supersedes I.L. 41-137.2D, Dated February 1973 ( )Denotes Change Since Previous Issue. Type KRV Directional Before putting relays into service,

More information

Physics 121 Practice Problem Solutions 11 Faraday s Law of Induction

Physics 121 Practice Problem Solutions 11 Faraday s Law of Induction Physics 121 Practice Problem Solutions 11 Faraday s Law of Induction Contents: 121P11-1P, 3P,4P, 5P, 7P, 17P, 19P, 24P, 27P, 28P, 31P Overview Magnetic Flux Motional EMF Two Magnetic Induction Experiments

More information

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY (Approved by A.I.C.T.E & Affiliated to JNTUK,Kakinada) Jonnada, Denkada (M), Vizianagaram Dist 535 005 Phone No. 08922-241111, 241666 E-Mail: lendi_2008@yahoo.com

More information

ELECTRICITY & MAGNETISM - EXAMINATION QUESTIONS (4)

ELECTRICITY & MAGNETISM - EXAMINATION QUESTIONS (4) ELECTRICITY & MAGNETISM - EXAMINATION QUESTIONS (4) 1. Which two electrical quantities are measured in volts? A current and e.m.f. B current and resistance C e.m.f. and potential difference D potential

More information

Electrical Theory. Generator Theory. PJM State & Member Training Dept. PJM /22/2018

Electrical Theory. Generator Theory. PJM State & Member Training Dept. PJM /22/2018 Electrical Theory Generator Theory PJM State & Member Training Dept. PJM 2018 Objectives The student will be able to: Describe the process of electromagnetic induction Identify the major components of

More information

AC Wattmeters and VArmeters

AC Wattmeters and VArmeters AC Wattmeters and VArmeters The Crompton Instruments Switchboard series of AC Wattmeters and VArmeters incorporate a DC moving coil, pivot and jewel indicator with a micro-circuit watt transducer PCB to

More information

4.2 Electrical Quantities

4.2 Electrical Quantities For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ 4.2 Electrical Quantities Question Paper Level IGSE Subject Physics (625) Exam oard Topic Sub Topic ooklet ambridge International

More information

12.7 Power in Electric Circuits

12.7 Power in Electric Circuits 1.7 1.7 Power in Electric Circuits To predict the amount of energy used by an electrical device, such as a radio, stove, lights, or television, we first need to know the amount of time the device will

More information

Electrical Machines -II

Electrical Machines -II Objective Type Questions: 1. Basically induction machine was invented by (a) Thomas Alva Edison (b) Fleming (c) Nikola Tesla (d) Michel Faraday Electrical Machines -II 2. What will be the amplitude and

More information

PI Electrical Equipment - Course PI 30.2 MOTORS

PI Electrical Equipment - Course PI 30.2 MOTORS Electrical Equipment - Course PI 30.2 MOTORS OBJECTIVES On completion of this module the student will be able to: 1. Briefly explain, in writing, "shaft rotation" as an interaction of stator and rotor

More information

Chapter 22: Electric motors and electromagnetic induction

Chapter 22: Electric motors and electromagnetic induction Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on

More information

Figure 1. Type CWP-1 Ground Relay (Front View) Figure 2. Type CWP-1 Ground Relay (Rear View) E

Figure 1. Type CWP-1 Ground Relay (Front View) Figure 2. Type CWP-1 Ground Relay (Rear View) E Figure 1. Type CWP-1 Ground Relay (Front View) Figure 2. Type CWP-1 Ground Relay (Rear View) 41-242.5E 2 Typical 60 Hertz time product curves for the type CWP-1 relay are shown in Figure 4 with 100 volts

More information

10. Starting Method for Induction Motors

10. Starting Method for Induction Motors 10. Starting Method for Induction Motors A 3-phase induction motor is theoretically self starting. The stator of an induction motor consists of 3-phase windings, which when connected to a 3-phase supply

More information

Chapter 3.1: Electrical System

Chapter 3.1: Electrical System Part-I: Objective type Questions and Answers Chapter 3.1: Electrical System 1. The heat input required for generating one kilo watt-hour of electrical output is called as. a) Efficiency b) Heat Rate c)

More information