Speed Reducers for Precision Motion Control Reducer Catalog

Size: px
Start display at page:

Download "Speed Reducers for Precision Motion Control Reducer Catalog"

Transcription

1 Speed Reducers for Precision Motion Control Reducer Catalog SHD-2SH

2 Excellent Technology for Evolving Industries Harmonic Drive actuators utilize high-precision, zero-backlash Harmonic Drive precision gears and play critical roles in robotics, semiconductor manufacturing equipment, factory automation equipment, medical diagnostics and surgical robotics. Additionally, our products are frequently used in mission-critical spaceflight applications which capture the human spirit. With over 5 years of experience, our expert engineering and production teams continually develop enabling technologies for the evolving motion control market. We are proud of our outstanding engineering capabilities and successful history of providing customer specific solutions to meet their application requirements. Harmonic Drive LLC continues to develop enabling technologies for the evolving motion control market, which drives the pace of global innovation. C. Walton Musser Patented Strain Wave Gearing in

3 Operating Principle of Gears A simple three-element construction combined with the unique operating principle puts extremely high reduction ratio capabilities into a very compact and lightweight package. The high-performance attributes of this gearing technology including, zero-backlash, high-torque-to-weight ratio, compact size, and excellent positional accuracy, are a direct result of the unique operating principles. Wave Generator The Wave Generator is a thin, raced-ball bearing fitted onto an elliptical hub. This serves as a high-efficiency torque converter and is generally mounted onto the input or motor shaft. Flexspline The Flexspline is a non-rigid, thin cylindrical cup with external teeth on the open end of the cup. The Flexspline fits over the Wave Generator and takes on its elliptical shape. The Flexspline is generally used as the output of the gear. Circular Spline The Circular Spline is a rigid ring with internal teeth. It engages the teeth of the Flexspline across the major axis of the Wave Generator ellipse. The Circular Spline has two more teeth than the Flexspline and is generally mounted onto a housing. Circular Spline Wave Generator Flexspline The Flexspline is slightly smaller in diameter than the Circular Spline and usually has two fewer teeth than the Circular Spline. The elliptical shape of the Wave Generator causes the teeth of the Flexspline to engage the Circular Spline at two opposite regions across the major axis of the ellipse. As the Wave Generator rotates the teeth of the Flexspline engage with the Circular Spline at the major axis. For every 18 degree clockwise movement of the Wave Generator, the Flexspline rotates counterclockwise by one tooth in relation to the Circular Spline. Each complete clockwise rotation of the Wave Generator results in the Flexspline moving counterclockwise by two teeth from its original position, relative to the Circular Spline. Normally, this motion is taken out as output. Development of HarmonicDrive Speed Reducers Harmonic Drive gears have been evolving since the strain wave gear was first patented in Our innovative development and engineering teams have led us to significant advances in our gear technology. In 1988, Harmonic Drive successfully designed and manufactured a new tooth profile, the "S" tooth. Since implementing the "S" tooth profile, improvement in life, strength and torsional stiffness have been realized. In the 199s, we focused engineering efforts on designing gears featuring space savings, higher speed, higher load capacity and higher reliability. Then in the s, significant reduction in size and thickness were achieved, all while maintaining high precision specifications. 3

4 SHG/SHF SHD Series Gear Unit SHD Features Ordering code Technical data Design guide Rating table Outline dimension (2SH) Outline dimension (2UH) Positional accuracy Hysteresis loss Torsional stiffness Starting torque Backdriving torque Ratcheting torque Buckling torque No-load running torque Efficiency (2SH) Efficiency (2UH) Checking output bearing Design guide and assembly tolerances Design guide (2UH) installation and transmission Recessing of the mounting pilot Axial force of the wave generator Lubrication Precautions on assembly

5 Gear Unit SHD Features SHD series Axially compact, these gear units feature a large hollow input shaft and a robust cross roller bearing so loads can be mounted directly to the unit without the need for additional support bearings Features of SHD series Zero Backlash Ultra-flat design - 15% thinner than the SHF Series Large Hollow Input Shaft Accuracy <1 arc-min (most sizes) Rigid cross roller output bearing Lightweight - 3% lower weight than Standard SHF Series Structure of SHD gear unit CRB Fig CRB outer ring Circular spline (CRB inner ring) Flexspline (Output) Wave generator (Input) Bolt to prevent separation * CRB: Cross roller bearing Shaft thickness Fig /2 SHF series (2SO) SHD series 268

6 Application example, SHD series SCARA robot SHD is ideal when space is limited. Gear Unit SHD Fig SHD series Ordering Code SHD SH -SP Series Ratio*1 Model Special specification SHD *1 The reduction ratio value is based on the following configuration: Input: wave generator, fixed: circular spline, output: flexspline SH = Simplicity Unit 2UH = Gear Unit Table LW = Lightweight SP= Special specification code Blank=Standard product 269

7 Gear Unit SHD Technical Data SHD-2SH/SHD-2UH-LW Gear Unit Gear ratio Rated torque at input speed rpm Limit for repeated peak torque Limit for average torque Limit for momentary peak torque Maximum input speed (rpm) Limit for average input speed (rpm) Moment of inertia (2SH) Moment of inertia (2UH) Nm kgfm Nm kgfm Nm kgfm Nm kgfm Grease Grease I x 1-4 kgm 2 J x 1-5 kgfms 2 I x 1-4 kgm 2 J x 1-5 kgfms Outline Dimensions SHD-2SH You can download the CAD files from our website: harmonicdrive.net Fig φn L-φM equally spaced F f (o-ring provided) D E1 E2 Usable pilot length g (seal) e (o-ring provided) R1-R2 equally spaced φs U1-U2 depth V equally spaced φw φo Z2 d H B2 φt φj h7 φz1 φk H7 φc X1 I* G* φc H7 φa φb1 φa h6 P4 P1-P2 length P3 Note 1: See undercutting the housing on Page 24 for details. * Please refer to the confirmation drawing for detailed dimensions. * See Fig. 4-3 on Page 4 for the shapes of the wave generator. X2 C.3 Note 1 b φq 27

8 Dimensions SHD-2SH Symbol Minimum housing clearance φa h6 φb 1 B 2 φc H7 D E 1 E 2 F G* H I* φj h7 φk H7 L φm φn φo P 1 P 2 P 3 P 4 φq R 1 R 2 φs φt U 1 U 2 V φw X 1 X 2 Z 1 Z 2 φa b φc d e f g h Mass (kg) ± M M M C.4 C d37.1d.6 d54.38d1.19 D ± ± M M M C.4 C d45.4d.8 d64.d1.5 D ± M M M C.5 C d53.28d.99 d72.d2. D ± M M M C.5 C d66.5d1.3 d88.62d1.78 D M M M C.5 C d87.5d1.5 d117.d2. D Gear Unit SHD ± M M5.25 M6 9.3 C.5 C d17.5d1.6 d2d2. D Table Unit : mm The following dimensions can be modified to accommodate: Wave Generator: C Flexspline: O and P Circular Spline: X1 and X2 *The G and I sizes indicated by an asterisk are the mounting positions in the shaft direction and allowance of the three parts (wave generator, flexspline, circular spline). Strictly observe these sizes as they affect the performance and strength. As the flexspline is subject to elastic deformation, the inner wall should be φa, b, c or more and it should not exceed φd to prevent possible contact with the housing. Wave generator is removed when the product is delivered. 271

9 Gear Unit SHD Outline Dimensions SHD-2UH T-φU a d H L I G J M N e b c W-X Fig Input shaft φs Q-R φp φd h7 φe h7 φf H7 K P (O) Z φf H7 φc h7 φb φa h7 φv 3-M3 φy Input configuration, size and 17 Dimensions SHD-2UH φa h7 φb φc h7 φd h7 φe h7 φf H7 G H I J K L M N O φp(p) Q R φs T φu φv W X φy Z a b c d e Mass (kg) Table Unit : mm (2.5) 3 M M3 4.5 φ ZZ 684ZZ D49585 S34.5 S (2.5) 3 M M3 4.5 φ ZZ 685ZZ D59685 S25356 S ー M M3 4.5 φ ーー 686ZZ 686ZZ D69785 S345 S ー M M4 6 φ ーー 688ZZ 688ZZ D84945 S38475 S ー M M5 8 φ ーー 6811ZZ 681ZZ D1126 S54645 S ー M M6 9 φ6.6 1 ーー 6813ZZ 6813ZZ D13267 S64745 S

10 Positional Accuracy Positional Accuracy 1-4 rad arc min See "Engineering data" for a description of terms Gear Unit SHD Table Unit: X1-4 rad (arc min) Hysteresis loss Ratio 5 8 or more T1 T2 K1 K2 K3 θ1 θ2 K1 K2 K3 θ1 θ2 1-4 rad arc min 1-4 rad arc min Torsional Stiffness Symbol Ratio 5 Ratio 8 or more Nm kgfm Nm kgfm 1 4 Nm/rad kgfm/arc min 1 4 Nm/rad kgfm/arc min 1 4 Nm/rad kgfm/arc min 1-4 rad arc min 1-4 rad arc min 1 4 Nm/rad kgfm/arc min 1 4 Nm/rad kgfm/arc min 1 4 Nm/rad kgfm/arc min 1-4 rad arc min 1-4 rad arc min See "Engineering data" for a description of terms. Table See "Engineering data" for a description of terms * The values in this table are reference values. The minimum value is approximately 8% of the displayed value Table

11 Gear Unit SHD Simplicity unit (2SH) Starting torque Ratio See "Engineering data" for a description of terms. The values are reference values Table Unit: Ncm Gear unit (2UH) Starting torque Ratio See "Engineering data" for a description of terms. The values are reference values Table Unit: Nm Simplicity unit (2SH) Backdriving torque Ratio Gear unit (2UH) Backdriving torque Ratio See "Engineering data" for a description of terms. The values are reference values See "Engineering data" for a description of terms. The values are reference values Table Unit: Ncm Table Unit: Nm Ratcheting torque Ratio See "Engineering data" for a description of terms Table Unit: Nm Buckling torque All ratios See "Engineering data" for a description of terms Table Unit: Nm 274

12 No-load running torque No-load running torque is the torque which is required to rotate the input side (high speed side), when there is no load on the output side (low speed side). Measurement condition Lubricant Grease lubrication Ratio 1 Gear Unit SHD Table Harmonic Grease SK-1A (size or more) Name Harmonic Grease SK-2 (size, 17) Quantiy Recommended quantity (See page 281) Torque value is measured after 2 hours at rpm input. Compensation Value in Each Ratio No-load running torque of the gear varies with ratio. Graphs to show the values for a reduction ratio of 1. For other gear ratios, add the compensation values in the right-hand table (Table 275-2). Table No-Load Torque Running Torque Compensation Value Unit: Ncm Ratio ー Temperature range of the operating environment Table SK-1A ºC to + 4ºC Grease SK-2 ºC to + 4ºC * Housing temperature should not exceed 8ºC. 275

13 Gear Unit SHD No-load running torque for a reduction ratio of 1:1 SHD-2SH (Simplicity unit) Input speed: 5rpm Input speed: 1rpm 1 Graph Graph No-load running torque (Ncm) No-load running torque (Ncm) Input speed: rpm Ambient Temperature ( o C) Ambient Temperature ( o C) Graph Input speed: 35rpm 1 Graph No-load running torque (Ncm) No-load running torque (Ncm) Ambient Temperature ( o C) Ambient Temperature ( o C) *The values in this graph are average values (X). 276

14 Gear Unit SHD SHD-2UH (Gear unit) Input speed: 5rpm Input speed: 1rpm 1 Graph Graph No-load running torque (Ncm) No-load running torque (Ncm) Input speed: rpm Ambient Temperature ( o C) Ambient Temperature ( o C) Graph Input speed: 35rpm 1 Graph No-load running torque (Ncm) No-load running torque (Ncm) Ambient Temperature ( o C) Ambient Temperature ( o C) *The values in this graph are average values (X). 277

15 Gear Unit SHD SHD-2SH (Simplicity unit) Efficiency The efficiency varies depending on the following conditions. Reduction ratio Input rotational speed Load torque Temperature Lubrication (Type and quantity) Measurements Installation Load torque Lubricant Based on recommended tolerance Rated torque in rating table Grease lubrication Name Quantity Efficiency at rated torque Table Harmonic Grease SK-1A ( or larger) Harmonic Grease SK-2 ( and 17) Recommended quantity Efficiency compensation coefficient When the load torque is lower than the rated torque, the efficiency value decreases. Calculate compensation coefficient Ke from Graph Compensation coefficient Ke rpm 1 rpm rpm 35 rpm Torque ratio α Graph * When the load torque is higher than the rated torque, efficiency compensation value Ke is 1. Ratio 5 17,, 25, 32, 4 1 Graph Graph Efficiency (%) rpm 1rpmn rpm Efficiency (%) rpm 1rpm rpm 35rpm 4 35rpm σ 3% σ 3% Ambient Temperature ( o C) Ambient Temperature ( o C) Ratio 1 17,, 25, 32, 4 Graph Graph Ratio 16, 25, 32, Graph rpm 8 Efficiency (%) rpm 1rpm rpm 35rpm Efficiency (%) rpm rpm 35v σ 3% σ 3% σ 3% 3 4 Ambient Temperature ( o C) Ambient Temperature ( o C) Ambient Temperature ( o C) Efficiency (%) rpm 1rpm rpm 35rpm 278

16 SHD-2UH (Gear unit) Efficiency The efficiency varies depending on the following conditions. Reduction ratio Input rotational speed Load torque Temperature Lubrication (Type and quantity) Measurements Installation Load torque Lubricant Based on recommended tolerance Rated torque in rating table Grease lubrication Name Quantity Efficiency at rated torque Table Harmonic Grease SK-1A ( or larger) Harmonic Grease SK-2 ( and 17) Recommended quantity Efficiency compensation coefficient When the load torque is lower than the rated torque, the efficiency value decreases. Calculate compensation coefficient Ke from Graph Compensation coefficient Ke rpm 1 rpm.3 rpm 35 rpm Torque ratio α Gear Unit SHD Graph * When the load torque is higher than the rated torque, efficiency compensation value Ke is 1. Ratio 5 1 Graph Ratio 1 1 Graph Efficiency (%) rpm 1rpm rpm 35rpm Efficiency (%) rpm 1rpm rpm 35rpm Ambient Temperature ( o C) Ambient Temperature ( o C) Ratio 5 Ratio 1 Ratio 16 17,, 25, 32, 4 17,, 25, 32, 4 17,, 25, 32, 4 1 Graph Graph Graph Efficiency (%) r/min 1r/min 5rrpm 1rpmn r/min rpmn 35rpm 35r/min Efficiency (%) 3 3% rpm 1rpm rpmn 35rpm rpm 1rpmn rrpm 35rpmn Ambient Temperature ( o C) Ambient Temperature ( o C) Ambient Temperature ( o C) Efficiency (%) 279

17 Gear Unit SHD Checking output bearing A precision cross roller bearing is built in the unit type to directly support the external load (output flange). Check the maximum moment load, life of the cross roller bearing and static safety coefficient to fully bring out the performance of the unit type. See page 3 to 34 of "Engineering data" for each calculation formula. Checking procedure (1) Checking the maximum moment load (Mmax) Calculate the maximum moment load (Mmax). (2) Checking the life Calculate the average radial load (Frav) and the average axial load (Faav). (3) Checking the static safety coefficient Calculate the static equivalent radial load coefficient (Po). Maximum moment load (Mmax) allowable moment (Mc) Calculate the radial load coefficient (x) and the axial load coefficient (y). Check the static safety coefficient. (fs) Calculate the lifetime Output bearing specifications The specifications of the cross roller are shown in Table Specifications Table 28-1 Pitch circle dia. of a roller Offset Basic rated load Allowable Moment stiffness Km Basic dynamic rated load Basic static rated load moment load Mc dp R C Co 1 4 Nm/rad kgfm/arc min m m 1 2 N kgf 1 2 N kgf Nm kgfm (Note) * The basic dynamic rated load is the static radial load needed to result in a basic dynamic rated life of one million rotations. * The basic static rated load is the static load that produces a contact stress of 4 kn/mm2 in the center of the contact area between the rolling element receiving the maximum load. * The moment stiffness value is an average. * Allowable moment load is the maximum moment load that may be applied to the output shaft. Please adhere to these values for optimum performance. Moment stiffness is a reference value. The minimum value is approximately 8% of the displayed value. * Allowable axial or radial load is the value that satisfies the reducer life when either a radial load or an axial load is applied to the main shaft. (When radial load is Lr+R=mm, and axial load is La=mm) * As the life of the cross roller bearing of the unit of the reduction ratio corresponding to the table below (Table 28-2) is shorter than that (note) of the gear during operation under the allowable moment load, consideration should be made in designing the load condition and the lifetime. (Note) The life of the gear indicates the life (L1=7 hours) of the wave generator bearing when it operates at rpm input rotational speed and the rated torque (see "Life of the wave generator" on Page ). Life of cross roller bearing < Life of Reducer Table 28-2 Ratio

18 Simplicity Unit (2SH) Design Guide Installation accuracy For peak performance of the gear, it is essential that the following tolerances be observed when assembly is complete. Pay careful attention to the following points and maintain the recommended assembly tolerances to avoid grease leakage. Gear Unit SHD Warping and deformation on the mounting surface Contamination due to foreign matter Burrs, raised surfaces and location around the tap area of the mounting holes Insufficient chamfering on the mounting pilot joint Insufficient radii on the mounting pilot joint Recommended tolerances for assembly Fig φb A Recommended shaft tolerance H6 or h6 A B Case mating face c B Recommended housing tolerance H7 Recommended housing tolerance a φb c d φe a A Flexspline mounting face d B Wave generator mounting face φe B Recommended shaft tolerance h Table Unit:mm H7 Recommended tolerances for assembly Symbol 281

19 Gear Unit SHD Unit Type (2UH) Design Guide Output part and fixed part Fig The output part of the SHD series varies depending on where it is to be fixed. The reduction ratio and the rotational direction also change. The relation is shown below. (A) side (B) side Fixed part (A) side (B) side Output part (B) side (A) side Table Rotational direction and reduction ratio (2) on page 11 (1) on page 11 Installation and transmission torque Installation and transmission torque on (A) side Table Item Number of bolts 8 Bolt size Pitch Circle Diameter Clamp torque mm Nm M M M M M M Transmission torque Nm (Notes) 1. The material of the thread must withstand the clamp torque. 2. Recommended bolt: JIS B 1176 socket head cap screw. Strength range : JIS B 151 over Torque coefficient: K=.2 4. Tightening coefficient: A= Tightening friction coefficient μ=.15 Installation and transmission torque on (B) side Table Item Number of bolts 8 Bolt size Pitch Circle Diameter mm M3 43 M3 52 M M4 76 M5 99 M6 Effective depth of screw part mm Clamp torque Nm Transmission torque Nm (Notes) 1. The material of the thread must withstand the clamp torque. 2. Recommended bolt: JIS B 1176 socket head cap screw. Strength range : JIS B 151 over Torque coefficient: K=.2 4. Tightening coefficient: A= Tightening friction coefficient μ=.15 * Since the flange material on the case side is AL (aluminum), be sure to tighten the bolt to the specified torque as described above. If the tightening torque exceeds the above value, the correct transmission torque may not be secured or the bolt may be loosened. Use washers instead of putting the aluminum directly on the bolt-bearing surface when tightening with the bolt from the A side. 282

20 Recessing of the mounting pilot When the housing interferes with corner A shown below, an undercut in the housing is recommended. Mounting pilot Fig Recommended housing undercut Gear Unit SHD Fig Axial force of the wave generator When a SHD gear is used to accelerate a load, the deflection of the Flexspline leads to an axial force acting on the Wave Generator. This axial force, which acts in the direction of the back end of the Flexspline, (toward the left in fig ) must be supported by the bearings of the input shaft (motor shaft). When an SHD gear is used to decelerate a load, an axial force acts to push the Wave Generator out of the Flexspline (toward the right in fig ). Maximum axial force of the Wave Generator can be calculated by the equation shown to the right. The axial force may vary depending on its operating condition. The value of axial force tends to be a larger number when using high torque, extreme low speed and constant operation. The force is calculated (approximately) by the equation. In all cases, the Wave Generator must be axially (in both directions), as well as torsionally, fixed to the input shaft. (Note) Please contact us for further information on attaching the Wave Generator to the input (motor) shaft. Axial force of the wave generator Fig A Formula for axial force F D T 2μPF Ratio i =5:1 i =1:1 more F=2 F=2 T D T D Axial force by bearing reaction force Model 17 SHD Symbols of the calculation formula Axial force ().254 Output torque Axial force by bearing reaction force Calculation formula.7 tan 3 +2μPF.7 tan +2μPF N m Nm N Table Table μPF(N) Table See Fig See Table Axial force direction when the speed is reduced Lubrication F F Axial force direction when the speed is increased Standard lubrication for SHD series is grease lubrication. See "Engineering data" on Page 16 for details of the lubricant. Calculation example Model : SHD : 32 Ratio : i=5:1 Output torque : Nm F=2.7 tan3 +16 (32.254) F=215N Formula Recommended minimum housing clearance These dimensions must be maintained to prevent damage to the gear and to maintain a proper grease cavity. Minimum housing clearance Symbol φa b φc d e (3) (3) (4.5) (4.5) (6) Table Unit: mm (7.5) (Note) The value in parenthesis is the value when the wave generator is facing upward. Recommended minimum housing clearance Fig Maximum Length for Installation (Internal diameter is d e b used for attachment) φc φa Counter bore for bolt head 283

21 Gear Unit SHD Application guide As the SHD series is shipped with the outer race of the cross roller bearing and the flexspline temporarily bolted together, grease is applied to the gear teeth, the periphery of the flexspline and the tooth groove of the circular spline. Refer to the following application guide for grease application instructions. Application guide Table Cross roller bearing (outer race) Circular spline Wave Generator Flexspline Thickness of diameter of wave generator bearing Apply grease to inner surface in accordance with a value shown below Apply thin coating of grease before installation Fill cavity between retainer and bearing with grease Application quantity Application qty When to replace grease SK-1A SK The wear characteristics of the gear is strongly influenced by the condition of the grease lubrication. The condition of the grease is affected by the ambient temperature. The graph shows the maximum number of input rotations for various temperatures. This graph applies to applications where the average load torque does not exceed the rated torque. Formula when the average load torque exceeds the rated torque Formula Tr LGT=LGTn Tav When to replace grease: LGTn (when the average load torque is equal to or less than the rated torque) Graph The total number of rotations of the wave generator corresponding to the time to replace grease (times) Life of grease 4B No.2 Life of wave generator * Grease temperature ( o C) * Life of wave generator is based on L1 life of the bearing. 3 Symbols for formula LGT LGTn Tr Tav Replacement timing if average load torque exceeds rated torque Replacement timing if average load torque is equal to or less than rated torque (or use formulas, i.e. Tav Tr) Rated torque Average load torque Number of input revolutions Number of input revolutions Nm Nm Table Unit: g Table See Fig. on the left. See the Rating table on Page 27. Calculation formula: See Page. Other precautions 1. Avoid using it with other grease. The gear should be in an individual case when installed. 2. If you use the gear with the wave generator facing upward (see Figure 5-2 on Page 5) at low-speed rotation (input rotational speed: 1 rpm or less) and in one direction, please contact us as it may cause lubrication problems. 3. Fill the gap between the wave generator and the input cover (motor flange) with grease to use the wave generator facing upward or downward (see Figure 94-2 on Page 94). 284

22 Precautions on installation Assembly order of the three basic elements The wave generator is installed after the flexspline and circular spline. If the wave generator is not inserted into the flexspline last, gear teeth scuffing damage or improper eccentric gear mesh may result. Installation resulting in an eccentric tooth mesh (Dedoidal) will cause noise and vibration, and can lead to early failure of the gear. For proper function, the teeth of the flexspline and Circular Spline mesh symmetrically. Assembly order for basic three elements Gear Unit SHD Fig Wave generator Wave generator Precautions on assembly It is extremely important to assemble the gear accurately and in proper sequence. For each of the three components, utilize the following precautions. Circular spline Flexspline Cross roller bearing (Note) Do not build in the wave generator from the diaphragm side of flexspline. Wave generator 1. Avoid applying undue axial force to the wave generator during installation. Rotating the wave generator bearing while inserting it is recommended and will ease the process. 2. Extra care must be given to ensure that concentricity and inclination are within the specified limits (see page 281). 3. Installation bolts on the Wave Generator and Flexspline should not interfere each other. Circular spline The circular Spline must not be deformed in any way during the assembly. It is particularly important that the mounting surfaces are prepared correctly. 1. Mounting surfaces need to have adequate flatness, smoothness, and no distortion. 2. Especially in the area of the screw holes, burrs or foreign matter should not be present. 3. Adequate relief in the housing corners is needed to prevent interference with the corner of the circular spline. 4. The circular spline should be rotatable within the housing. Be sure there is not interference and that it does not catch on anything. 5. Bolts should not rotate freely when tightening and should not have any irregularity due to the bolt hole being misaligned or oblique. 6. Do not tighten the bolts with the specified torque all at once. Tighten the bolts temporarily with about half the specified torque, and then tighten them with the specified torque. Tighten them in an even, crisscross pattern. 7. Avoid pinning the circular spline if possible as it can reduce the rotational precision and smoothness of operation. Flexspline 1. Mounting surfaces need to have adequate flatness, smoothness, and no distortion. 2. Especially in the area of the screw holes, burrs or foreign matter should not be present. 3. Adequate clearance with the housing is needed to ensure no interference especially with the major axis of flexspline 4. Bolts should rotate freely when installing through the mounting holes of the flexspline and should not have any irregularity due to the shaft bolt holes being misaligned or oblique. 5. Do not tighten the bolts with the specified torque all at once. Tighten the bolts temporarily with about half the specified torque, and then tighten them to the specified torque. Tighten them in an even, crisscross pattern. 6. The flexspline and circular spline are concentric after assembly. After installing the wave generator bearing, if it rotates in unbalanced way, check the mounting for dedoidal or non-concentric installation. 7. Care should be taken not to damage the flexspline diaphragm or gear teeth during assembly. Avoid hitting the tips of the flexpline teeth and circular spline teeth. Avoid installing the CS from the open side of the flexspline after the wave generator has been installed. Rust prevention Although Harmonic Drive gears come with some corrosion protection, the gear can rust if exposed to the environment. The gear external surfaces typically have only a temporary corrosion inhibitor and some oil applied. If an anti-rust product is needed, please contact us to review the options. 285

23 6

24 Tooth profile Rotational direction and reduction ratio Rating table definitions Life Torque limits Product sizing and selection Lubrication Torsional stiffness Positional accuracy Vibration Starting torque Backdriving torque No-load running torque Efficiency Design guidelines Assembly guidelines Checking output bearing S tooth profile Cup style Silk hat style Pancake style Grease lubricant Precautions on using Harmonic Grease 4B No.2 Oil lubricant Lubricant for special environments Design guideline Bearing support of the input and output shafts Wave Generator Sealing Assembly Precautions "dedoidal" state Checking procedure How to calculate the maximum moment load How to calculate the average load How to calculate the radial load coefficient (X) and axial load coefficient (Y) How to calculate life How to calculate the life under oscillating movement How to calculate the static safety coefficient

25 Tooth Profile S tooth profile Harmonic Drive developed a unique gear tooth profile that optimizes the tooth engagement. It has a special curved surface unique to the S tooth profile that allows continuous contact with the tooth profile. It also alleviates the concentration of stress by widening the width of the tooth groove against the tooth thickness and enlarging the radius on the bottom. This tooth profile (the S tooth ) enables up to 3% of the total number of teeth to be engaged simultaneously. Additionally the large tooth root radius increases the tooth strength compared with an involute tooth. This technological innovation results in high torque, high torsional stiffness, long life and smooth rotation. *Patented Engaged route of teeth Conventional tooth profile Fig. 9-1 Engaged area of teeth Fig. 9-2 S tooth profile Beginning of engagement Optimum engaged status 9

26 Rotational direction and reduction ratio Cup Style Series: CSG, CSF, CSD, CSF-mini Rotational direction Fig Input * R indicates the reduction ratio value from the ratings table. Output (Note) Contact us if you use the product as Accelerator (5) and (6). FS CS (1) Reducer Input: Wave Generator (WG) Output: Flexspline (FS) Fixed: Circular Spline (CS) WG i= ー 1 R (2) Reducer Input: Wave Generator Output: Circular Spline Fixed: Flexspline i= ー 1 R+1 (3) Reducer Input: Flexspline Output: Circular Spline Fixed: Wave Generator i= ー R R (4) Overdrive Input: Circular Spline Output: Flexspline Fixed: Wave Generator i= ー R+1 R (5) Overdrive Input: Flexspline Output: Wave Generator Fixed: Circular Spline i= R (6) Overdrive Input: Circular Spline Output: Wave Generator Fixed: Flexspline i=r+1 (7) Differential When all of the wave generator, the flexspline and the circular spline rotate, combinations (1) through (6) are available. Silk hat Series: SHG, SHF, SHD Rotational direction Fig Input * R indicates the reduction ratio value from the ratings. table Output (Note) Contact us if you use the product as an overdrive of (5) or (6). (1) Reducer Input: Wave Generator Output: Flexspline Fixed: Circular Spline i= ー 1 R (2) Reducer Input: Wave Generator Output: Circular Spline Fixed: Flexspline i= ー 1 R+1 (3) Reducer Input: Flexspline Output: Circular Spline Fixed: Wave Generator i= ー R R (4) Overdrive Input: Circular Spline Output: Flexspline Fixed: Wave Generator i= ー R+1 R (5) Overdrive Input: Flexspline Output: Wave Generator Fixed: Circular Spline i= R (6) Overdrive Input: Circular Spline Output: Wave Generator Fixed: Flexspline i=r+1 (7) Differential When all of the wave generator, the flexspline and the circular spline rotate, Combinations (1) through (6) are available. 1

27 Pancake Series: FB and FR Rotational direction Fig Input Output (Note) Contact us if you use the product as Accelerator (5) and (6). Output (1) Reducer Input: Wave Generator Output: Circular Spline D Fixed: Circular Spline S Input i= ー 1 R Output (2) Reducer Input: Wave Generator Output: Circular Spline S Fixed: Circular Spline D Input i= ー 1 R+1 Output Input (3) Reducer Input: Circular Spline D Output: Circular Spline S Fixed: Wave Generator i= ー R R Output Input (4) Overdrive Input: Circular Spline S Output: Circular Spline D Fixed: Wave Generator i= ー R+1 R Input Output Input Output (5) Overdrive Input: Circular Spline S Output: Wave Generator Fixed: Circular Spline D i=r+1 (6) Overdrive Input: Circular Spline D Output: Wave Generator Fixed: Circular Spline S i= R (7) Differential When all of the Wave Generator, the Circular Spline S and the Circular Spline D rotate, Combinations (1) through (6) are available. Reduction ratio The reduction ratio is determined by the number of teeth of the Flexspline and the Circular Spline Number of teeth of the Flexspline: Number of teeth of the Circular Spline: Input: Wave Generator Output: Flexspline Fixed: Circular Spline Reduction ratio Zf Zc 1 i1 = = Input: Wave Generator Reduction 1 Output: Circular Spline i2 ratio = = Fixed: Flexspline R 2 R1 indicates the reduction ratio value from the ratings table. R 1 Zf-Zc Zf Zc-Zf Zc Example Number of teeth of the Flexspline: Number of teeth of the Circular Spline: 2 Input: Wave Generator Output: Flexspline Fixed: Circular Spline Input: Wave Generator Output: Circular Spline Fixed: Flexspline Reduction ratio Reduction ratio 1-2 i1 = = = R i2 = = = R

28 Rating Table Definitions See the corresponding pages of each series for values. Rated torque Rated torque indicates allowable continuous load torque at rated input speed. Limit for Repeated Peak Torque (see Graph -1) During acceleration and deceleration the Harmonic Drive gear experiences a peak torque as a result of the moment of inertia of the output load. The table indicates the limit for repeated peak torque. Limit for Average Torque In cases where load torque and input speed vary, it is necessary to calculate an average value of load torque. The table indicates the limit for average torque. The average torque calculated must not exceed this limit. (calculation formula: Page ) Limit for Momentary Peak Torque (see Graph -1) The gear may be subjected to momentary peak torques in the event of a collision or emergency stop. The magnitude and frequency of occurrence of such peak torques must be kept to a minimum and they should, under no circumstance, occur during normal operating cycle. The allowable number of occurrences of the momentary peak torque may be calculated by using formula Maximum Average Input Speed Maximum Input Speed Do not exceed the allowable rating. (calculation formula of the average input speed: Page ). Example of application motion profile + Load torque + Wave Generator rotational speed Start Steady Stop (Speed cycle) Start Abnormal impact torque Time Load Torque Repeated Peak Torque Time Graph -1 Momentary Peak Torque Moment of Inertia The rating indicates the moment of inertia reflected to the gear input. Life Life of the wave generator The life of a gear is determined by the life of the wave generator bearing. The life may be calculated by using the input speed and the output load torque. Calculation formula for Rated Lifetime Ln Tr Nr Tav Nav Series name L1 CSF, CSD, SHF, SHD, CSF-mini 7, hours 35, hours 3 Tr Lh=Ln Tav Life Nr Nav CSG, SHG 1, hours 5, hours L5 (average life) * Life is based on the input speed and output load torque from the rating table. Table -1 Formula -1 Life of L1 or L5 Rated torque Rated input speed Average load torque on the output side (calculation formula: Page ) Average input speed (calculation formula: Page ) Table -2 Relative torque rating Load torque (when the rated torque is 1) Momentary peak torque Graph -2 Buckling torque Racheting torque Life of wave generator (L1) Fatigue strength of the flexspline 2 Repeated peak torque 1 Rated torque Total number of input rotations * Lubricant life not taken into consideration in the graph described above. * Use the graph above as reference values.

29 Torque Limits Strength of flexspline The Flexspline is subjected to repeated deflections, and its strength determines the torque capacity of the Harmonic Drive gear. The values given for Rated Torque at Rated Speed and for the allowable Repeated Peak Torque are based on an infinite fatigue life for the Flexspline. The torque that occurs during a collision must be below the momentary peak torque (impact torque). The maximum number of occurrences is given by the equation below. Allowable limit of the bending cycles of the flexspline during rotation of the wave generator while the impact torque is applied: 1. x 1 4 (cycles) The torque that occurs during a collision must be below the momentary peak torque (impact torque). The maximum number of occurrences is given by the equation below. Calculation formula Caution N= n 2 t 6 Formula 13-1 Allowable occurances N occurances Time that impact torque is applied t sec Rotational speed of the wave generator n rpm The flexspline bends two times per one revolution of the wave generator. If the number of occurances is exceeded, the Flexspline may experience a fatigue failure. Ratcheting torque When excessive torque (8 to 9 times rated torque) is applied while the gear is in motion, the teeth between the Circular Spline and Flexspline may not engage properly. This phenomenon is called ratcheting and the torque at which this occurs is called ratcheting torque. Ratcheting may cause the Flexspline to become non-concentric with the Circular Spline. Operating in this condition may result in shortened life and a Flexspline fatigue failure. * See the corresponding pages of each series for ratcheting torque values. * Ratcheting torque is affected by the stiffness of the housing to be used when installing the circular spline. Contact us for details of the ratcheting torque. Caution Caution When ratcheting occurs, the teeth may not be correctly engaged and become out of alignment as shown in Figure Operating the drive in this condition will cause vibration and damage the flexspline. Once ratcheting occurs, the teeth wear excessively and the ratcheting torque may be lowered. Circular Spline Figure 13-1 Buckling torque When a highly excessive torque (16 to 17 times rated torque) is applied to the output with the input stationary, the flexspline may experience plastic deformation. This is defined as buckling torque. * See the corresponding pages of each series for buckling torque values. "Dedoidal" condition. Flexspline Warning When the flexspline buckles, early failure of the HarmonicDrive gear will occur. 13

30 Product Sizing & Selection In general, a servo system rarely operates at a continuous load and speed. The input rotational speed, load torque change and comparatively large torque are applied at start and stop. Unexpected impact torque may be applied. These fluctuating load torques should be converted to the average load torque when selecting a model number. As an accurate cross roller bearing is built in the direct external load support (output flange), the maximum moment load, life of the cross roller bearing and the static safety coefficient should Flowchart for selecting a size Please use the flowchart shown below for selecting a size. Operating conditions must not exceed the performance ratings. also be checked.+ Checking the application motion profile Review the application motion profile. Check the specifications shown in the figure below. Load torque Output rotational speed ーT1 T2 T3 T4 t1 t2 t3 t4 tn n1 n2 n3 n4 * n1, n2 and nn indicate the average values. nn Tn Time Time Graph -1 Calculate the average load torque applied on the output side from the application motion profile: Tav (Nm). Tav = 3 n 1 t 1 T 1 3 +n 2 t 2 T n n t n T n 3 n 1 t 1 +n 2 t 2 + n n t n Make a preliminary model selection with the following conditions. Tav Limit for average torque torque (See the rating table of each series). Calculate the average output speed: no av (rpm) Obtain the reduction ratio (R). A limit is placed on ni max by motors. Calculate the average input rotational speed from the average output rotational speed (no av) and the reduction ratio (R): ni av (rpm) Calculate the maximum input rotational speed from the max. output rotational speed (no max) and the reduction ratio (R): ni max (rpm) Check whether the preliminary model number satisfies the following condition from the rating table. Ni av n 1 t 1 +n 2 t 2 + n n t n no av = t 1 + t 2 + t n ni max R no max ni av = no av R ni max = no max R Limit for average speed (rpm) Ni max Limit for maximum speed (rpm) NG OK Obtain the value of each application motion profile. Load torque Tn (Nm) Time tn (sec) Output rotational speed nn (rpm) Check whether T1 and T3 are less than the repeated peak torque specification. OK NG Normal operation pattern Starting (acceleration) Steady operation (constant velocity) Stopping (deceleration) Dwell Maximum rotational speed Max. output speed Max. input rotational speed (Restricted by motors) Emergency stop torque When impact torque is applied T1, t1, n1 T2, t2, n2 T3, t3, n3 T4, t4, n4 no max ni max Ts, ts, ns Check whether Ts is less than the the momentary peak torque specification. Calculate (Ns) the allowable number of rotations during impact torque. OK 1 N 4 S = N S n S R 2 t 6 OK NG NG Review the operation conditions and model number Required life L1 = L (hours) Calculate the lifetime. L 1 = 7 ( ) ( ) (hours) OK Tr Tav 3 nr ni av Check whether the calculated life is equal to or more than the life of the wave generator (see Page 13). The model number is confirmed. NG

31 Example of model number selection Value of each application motion profile Load torque T(Nm) n Time t(sec) n Output speed n(rpm) n Maximum rotational speed Max. output speed Max. input speed (Restricted by motors) no max = rpm ni max = 18 rpm Normal operation pattern Starting (acceleration) T1 = 4 Nm, t1 =.3sec, n1 = 7rpm Steady operation (constant velocity) T2 = 3 Nm, t2 = 3sec, n2 = rpm Stopping (deceleration) T3 = Nm, t3 =.4sec, n3 = 7rpm Dwell T4 = Nm, t4 =.2 sec, n4 = rpm Emergency stop torque When impact torque is applied Required life Ts = 5 Nm, ts =.15 sec, ns = rpm L 1 = 7 (hours) Calculate the average load torque to the output side based on the application motion profile: Tav (Nm). Tav = 3 7 rpm.3 sec 4Nm 3 + rpm 3 sec 3Nm 3 +7 rpm.4 sec Nm 3 7 rpm.3 sec+ rpm 3 sec+7 rpm.4 sec Make a preliminary model selection with the following conditions. Tav = 319 Nm 6 Nm (Limit for average torque for model number CSF-4--2A-GR: See the rating table on Page 39.) Thus, CSF-4--2A-GR is tentatively selected. Calculate the average output rotational speed: no av (rpm) Obtain the reduction ratio (R). Calculate the average input rotational speed from the average output rotational speed (no av) and the reduction ratio (R): ni av (rpm) Calculate the maximum input rotational speed from the maximum output rotational speed (no max) and the reduction ratio (R): ni max (rpm) 7 rpm.3 sec+ rpm 3 sec+7 rpm.4 sec no av = = rpm.3 sec + 3 sec +.4 sec +.2 sec 18 rpm = 8.6 rpm ni av = rpm = 4 rpm ni max = rpm = 168 rpm Check whether the preliminary selected model number satisfies the following condition from the rating table. Ni av = 4 rpm 36 rpm (Max average input speed of size 4) Ni max = 168 rpm 56 rpm (Max input speed of size 4) OK NG Check whether T1 and T3 are equal to or less than the repeated peak torque specification. T1 = 4 Nm 617 Nm (Limit of repeated peak torque of size 4) T3 = Nm 617 Nm (Limit of repeated peak torque of size 4) OK NG Check whether Ts is equal to or less than the momentary peak torque specification. Ts = 5 Nm 118 Nm (Limit for momentary torque of size 4) Calculate the allowable number (Ns) rotation during impact torque and confirm Calculate the lifetime. OK OK OK 1 N 4 S == rpm 2.15 sec 6 L 1 = 7 ( ) 294 Nm Nm ( ) rpm 4 rpm (hours) Check whether the calculated life is equal to or more than the life of the wave generator (see Page ). L 1 =761 hours 7 (life of the wave generator: L1) The selection of model number CSF-4--2A-GR is confirmed from the above calculations. NG NG NG Review the operation conditions, size and reduction ratio 15

32 Lubrication : CSD-2A, CSF-2A, CSG-2A, FB-2, FB-, FR-2, SHF-2A, SHG-2A and SHD and SHG/SHF -2SO and -2SH gear units: Grease lubricant and oil lubricant are available for lubricating the component sets and SHD gear unit. It is extremely important to properly grease your component sets and SHD gear unit. Proper lubrication is essential for high performance and reliability. Harmonic Drive component sets are shipped with a rust- preventative oil. The characteristics of the lubricating grease and oil types approved by Harmonic Drive are not changed by mixing with the preservation oil. It is therefore not necessary to remove the preservation oil completely from the gear components. However, the mating surfaces must be degreased before the assembly. : CSG/CSF 2UH and 2UH-LW; CSD-2UF and -2UH; SHG/SHF-2UH and 2UH- LW; SHG/SHF-2UJ; CSF Supermini, CSF Mini, and CSF-2UP. Grease lubricant is standard for lubricating the gear units. You do not need to apply grease during assembly as the product is lubricated and shipped. See Page 19 for using lubricant beyond the temperature range in table * Contact us if you want consistency zero (NLGI No.) for maintenance reasons. Grease lubricant Types of lubricant Harmonic Grease SK-1A This grease was developed for Harmonic Drive gears and features good durability and efficiency. Harmonic Grease SK-2 This grease was developed for small sized Harmonic Drive gears and features smooth rotation of the Wave Generator since high pressure additive is liquefied. Harmonic Grease 4B No.2 This has been developed exclusively for the CSF and CSG and features long life and can be used over a wide range of temperature. (Note) 1. Grease lubrication must have proper sealing, this is essential for 4B No.2. Rotating part: Oil seal with spring is needed. Mating part: O ring or seal adhesive is needed. 2. The grease has the highest deterioration rate in the region where the grease is subjected to the greatest shear (near wave generator). Its viscosity is between JIS No. and No. depending on the operation. NLGI consistency No. Mixing consistency range SK-1A SK-2 4B No.2 Table 16-3 Name of lubricant Table 16-1 Harmonic Grease SK-1A Grease Harmonic Grease SK-2 Harmonic Grease 4B No.2 Oil Industrial gear oil class-2 (extreme pressure) ISO VG68 Temperature Table 16-2 SK-1A ºC to + 4ºC Grease SK-2 ºC to + 4ºC 4B No.2 1ºC to + 7ºC Oil ISO VG68 ºC to + 4ºC * The hottest section should not be more than 4 above the ambient temperature. Note: The three basic components of the gear - the Flexspline, Wave Generator and Circular Spline - are matched and serialized in the factory. Depending on the product they are either greased or prepared with preservation oil. Then the individual components are assembled. If you receive several units, please be careful not to mix the matched components. This can be avoided by verifying that the serial numbers of the assembled gear components are identical. Compatible grease by size Compatible grease varies depending on the size and reduction ratio. See the following compatibility table. We recommend SK-1A and SK-2 for general use. Ratios 3:1 SK-1A SK-2 4B No.2 SK-1A SK-2 4B No.2 SK-1A SK-2 4BNo Ratios 5:1* and above SK-1A - - SK-2 Table 16-5 Table 16-6 : Standard grease : Semi-standard grease : Recommended grease for long life and high load * Oil lubrication is required for component-sets size 5 or larger with a reduction ratio of 5:1. Grease characteristics Grease specification Table 16-4 Table 16-7 Grease Base oil Refined oil Refined oil Base Viscosity cst (25ºC) Thickening agent NLGI consistency No. Additive Storage life Lithium soap base Extreme-pressure additive, others 5 years in sealed condition Lithium soap base Extreme-pressure additive, others 5 years in sealed condition 355 to to 43 Composite hydrocarbon oil 265 to to to 3 Urea No. 2 No. 2 No. 1.5 Extreme-pressure additive, others Drop Point 197ºC 198ºC 247ºC Appearance Yellow Green Light yellow 5 years in sealed condition Grease Durability Fretting resistance Low-temperature performance Grease leakage Excellent : Good : Use Caution : - - 4B No.2 16

Speed Reducers for Precision Motion Control Reducer Catalog

Speed Reducers for Precision Motion Control Reducer Catalog Speed Reducers for Precision Motion Control Reducer Catalog CSD Excellent Technology for Evolving Industries Harmonic Drive actuators utilize high-precision, zero-backlash Harmonic Drive precision gears

More information

Speed Reducers for Precision Motion Control Reducer Catalog

Speed Reducers for Precision Motion Control Reducer Catalog Speed Reducers for Precision Motion Control Reducer Catalog CSF-mini Excellent Technology for Evolving Industries Harmonic Drive actuators utilize high-precision, zero-backlash Harmonic Drive precision

More information

Speed Reducers for Precision Motion Control Reducer Catalog

Speed Reducers for Precision Motion Control Reducer Catalog Speed Reducers for Precision Motion Control Reducer Catalog CSG/CSF2UH Excellent Technology for Evolving Industries Harmonic Drive actuators utilize highprecision, zerobacklash Harmonic Drive precision

More information

Speed Reducers for Precision Motion Control Reducer Catalog

Speed Reducers for Precision Motion Control Reducer Catalog Speed Reducers for Precision Motion Control Reducer Catalog CSG/CSF Excellent Technology for Evolving Industries Harmonic Drive actuators utilize high-precision, zero-backlash Harmonic Drive precision

More information

Speed Reducers for Precision Motion Control Reducer Catalog

Speed Reducers for Precision Motion Control Reducer Catalog Speed Reducers for Precision Motion Control Reducer Catalog FB Excellent Technology for Evolving Industries Harmonic Drive actuators utilize high-precision, zero-backlash Harmonic Drive precision gears

More information

Speed Reducers for Precision Motion Control Reducer Catalog

Speed Reducers for Precision Motion Control Reducer Catalog Speed Reducers for Precision Motion Control Reducer Catalog FR Excellent Technology for Evolving Industries Harmonic Drive actuators utilize high-precision, zero-backlash Harmonic Drive precision gears

More information

Speed Reducers for Precision Motion Control Reducer Catalog

Speed Reducers for Precision Motion Control Reducer Catalog Speed Reducers for Precision Motion Control Reducer Catalog CSG-2UK Excellent Technology for Evolving Industries Harmonic Drive actuators utilize high-precision, zero-backlash Harmonic Drive precision

More information

Speed Reducers for Precision Motion Control Reducer Catalog

Speed Reducers for Precision Motion Control Reducer Catalog Speed Reducers for Precision Motion Control Reducer Catalog CSF-2UP Excellent Technology for Evolving Industries Harmonic Drive actuators utilize high-precision, zero-backlash Harmonic Drive precision

More information

Differential Gear HDI

Differential Gear HDI Speed Reducers for Precision Motion Control Harmonic Drive Reducers Differential Gear HDI 1 Excellent Technology for Evolving Industries Harmonic Drive actuators utilize high-precision, zero-backlash Harmonic

More information

The CSF-mini series now includes Ultra Flat models with High-Moment Stiffness

The CSF-mini series now includes Ultra Flat models with High-Moment Stiffness New Product News Vol. 22 Toll Free Speed Phone (877) SERVO98 Sensor Toll Reducer Free Fax (877) SERV99 Controller Motor Other System Elements Driver The CSF-mini series now includes Ultra Flat models with

More information

HPG CSF-GH Helical Gearhead Series. Sizes. New Two-Stage Ratios Coming Soon!

HPG CSF-GH Helical Gearhead Series. Sizes. New Two-Stage Ratios Coming Soon! HPG CSF-GH Helical Gearhead Series HPG Helical Series High-Performance Gearhead for Servomotors HPG Helical Series Size 11, 14,, 32 Peak torque 5 4 Reduction ratio 3:1 to :1 Low backlash New Two-Stage

More information

CSF-mini Series, Ultra Flat and High Stiffness Type

CSF-mini Series, Ultra Flat and High Stiffness Type New Product News Vol. 22 CSF-mini Series, Ultra Flat and High Stiffness Type To the HarmonicDrive CSF-mini series, the ultra flat and high stiffness type has been added to its lineup. For the CSF-mini

More information

Speed Reducers for Precision Motion Control. Reducer Catalog. Differential Gear FBB. Engineering Data

Speed Reducers for Precision Motion Control. Reducer Catalog. Differential Gear FBB. Engineering Data Speed Reducers for Precision Motion Control Reducer Catalog Differential Gear FBB Excellent Technology for Evolving Industries Harmonic Drive actuators utilize highprecision, zerobacklash Harmonic Drive

More information

FR Gearing. Total Motion Control. Harmonic Drive gear

FR Gearing. Total Motion Control. Harmonic Drive gear FR Gearing Total Motion Control Harmonic Drive gear P r e c i s i o n G e a r i n g a n d M o t i o n Control Contents The Basic Assembly...2 Configurations...3 Ordering Information...3 Typical Applications...4

More information

SHF and SHG. Component Sets Housed Units. Precision Gearing & Motion. Total Motion Control

SHF and SHG. Component Sets Housed Units. Precision Gearing & Motion. Total Motion Control SHF and SHG Component Sets Housed Units Total Motion Control Precision Gearing & Motion Control 2 SHF AND SHG HOUSED UNIT CONTENTS SHF-SHG Series ABOUT HARMONIC DRIVE Ordering Information......................................................................4

More information

Cup Type Component Sets & Housed Units. CSF & CSG Series Component Sets Housed Units. Total Motion Control. Harmonic Drive gear

Cup Type Component Sets & Housed Units. CSF & CSG Series Component Sets Housed Units. Total Motion Control. Harmonic Drive gear Cup Type Component Sets & Housed Units CSF & CSG Series Component Sets Housed Units Total Motion Control Harmonic Drive gear P r e c i s i o n G e a r i n g a n d M o t i o n Control 2 Contents ABOUT Harmonic

More information

SHF and SHG Component Sets Housed Units. Total Motion Control. Harmonic Drive gear

SHF and SHG Component Sets Housed Units. Total Motion Control. Harmonic Drive gear SHF and SHG Component Sets Housed Units TM Total Motion Control Harmonic Drive gear P r e c i s i o n G e a r i n g a n d M o t i o n 1 Control 2 SHF and SHG Housed Unit Contents SHF-SHG Series ABOUT SHF-SHG

More information

New Product Information Vol.11. Ultra-Flat, Lightweight, Hollow Shaft Gear Unit

New Product Information Vol.11. Ultra-Flat, Lightweight, Hollow Shaft Gear Unit New Product Information Vol. SHD-2UH-LW Ultra-Flat, Lightweight, Hollow Shaft Gear Unit Now offering a lightweight gear unit based upon our SHD Series of Ultra-Flat Hollow Shaft Gears! Using new lightweight

More information

Harmonic Drive CSG-LW High Torque, Lightweight Gear Unit

Harmonic Drive CSG-LW High Torque, Lightweight Gear Unit Harmonic Drive CSGLW High Torque, Lightweight Gear Unit Harmonic Drive now offers a NEW lightweight version of our CSGUH Gear Units! 3% lighter than our standard CSGUH! 3% More Torque than the CSF Series!

More information

FB Gearing. Total Motion Control. Harmonic Drive gear

FB Gearing. Total Motion Control. Harmonic Drive gear FB Gearing Total Motion Control Harmonic Drive gear P r e c i s i o n G e a r i n g a n d M o t i o n Control Contents Compact, High Ratio, In-Line Gearing...2 The Basic Component Set...2 Configuration...3

More information

CSG Series Fully Enclosed, Sealed Housing

CSG Series Fully Enclosed, Sealed Housing New Product News Vol.19 Sensor Controller Other System Elements Speed Reducer Driver Motor CSG Series Fully Enclosed, Sealed Housing Harmonic Drive CSG high torque speed reducer is now available with a

More information

HPN Gearhead Series. 5 Sizes. Easy mounting to a wide variety of servomotors

HPN Gearhead Series. 5 Sizes. Easy mounting to a wide variety of servomotors HPN Value Series Size,, 0,, Peak Torque 9Nm ~ Nm Reduction Single stage: : to 0:, Two stage: : to : Sizes Backlash Single stage: < arcmin, Two stage: < arcmin High Efficiency Up to 9% Output Bearing A

More information

HDUF Gearing. Total Motion Control. Precision Gearing & Motion

HDUF Gearing. Total Motion Control. Precision Gearing & Motion HDUF Gearing Total Motion Control Precision Gearing & Motion Control Contents Compact, High Ratio, In-Line Gearing...2 The Basic Component Set...2 Configuration...3 Typical Installation...3 Ordering Information...3

More information

bearing to conform to the same elliptical shape as the wave generator plug.

bearing to conform to the same elliptical shape as the wave generator plug. 32 Gear Product News April 2006 t h e b a s i c s o f H a r m o n i c D r i v e G e a r i n g Anthony Lauletta H armonic drives were invented in the late 1950s and have been a major part of the motion

More information

PANCAKE COMPONENT GEAR SETS

PANCAKE COMPONENT GEAR SETS PANCAKE COMPONENT GEAR SETS Pancake Component Gear Sets The Most Axially Compact, Single-Stage, High-Ratio Gearing Available DYNAMIC CIRCULAR SPLINE: An internal gear which has the same number of teeth

More information

Axial-radial cylindrical roller bearings

Axial-radial cylindrical roller bearings Axial-radial cylindrical roller bearings Designs and variants.............. 320 Bearing data..................... 321 (Boundary dimensions, tolerances) Product table 5.1 Axial-radial cylindrical roller

More information

HKS Short Cup Component. HKS Photo

HKS Short Cup Component. HKS Photo HKS Short Cup Component HKS Photo FEATURES Zero backlash Precise positional accuracy High ratio High torque +/- 5 arc second repeatability LOADING ANALYSIS Normal operating conditions involve momentary

More information

RH Series. Features. Structure. High resolution High resolution of maximum 400,000 pulses/revolution ( /pulse) combining a HarmonicDrive.

RH Series. Features. Structure. High resolution High resolution of maximum 400,000 pulses/revolution ( /pulse) combining a HarmonicDrive. RH Series The RH series includes compact and high-torque DC servo actuators with a high rotational accuracy combining a speed reducer HarmonicDrive for precision control and a DC servo motor. A combination

More information

LIGHTWEIGHT HARMONIC DRIVE GEARS FOR NEXT GENERATION ROBOTS

LIGHTWEIGHT HARMONIC DRIVE GEARS FOR NEXT GENERATION ROBOTS LIGHTWEIGHT HARMONIC DRIVE GEARS FOR NEXT GENERATION ROBOTS Dr. Rolf Slatter * & Dr. Hans Koenen ** *Director of Marketing & Sales E-mail: slatter@harmonicdrive.de **Manager Mechanical R&D E-mail: koenen@harmonicdrive.de

More information

Engineering Data CSG-2A Component Sets

Engineering Data CSG-2A Component Sets Engineering Data CSG-2A Component Sets QUICKLINK www.harmonicdrive.de/3010 Contents 1. General...03 1.1 Description of Safety Alert Symbols...04 1.2 Disclaimer and Copyright...04 2. Safety and Installation

More information

HDT T-Cup Component Gear Sets. Precise Robotic Accuracy Large Center Through Hole Proven Reliability. Total Motion Control. Harmonic Drive gear

HDT T-Cup Component Gear Sets. Precise Robotic Accuracy Large Center Through Hole Proven Reliability. Total Motion Control. Harmonic Drive gear HDT T-Cup Component Gear Sets Precise Robotic Accuracy Large Center Through Hole Proven Reliability Total Motion Control Harmonic Drive gear P r e c i s i o n G e a r i n g a n d M o t i o n Control DIMENSIONS

More information

Features of the LM Guide

Features of the LM Guide Features of the Functions Required for Linear Guide Surface Large permissible load Highly rigid in all directions High positioning repeatability Running accuracy can be obtained easily High accuracy can

More information

Engineering Data HFUS-2UH/2SO/2SH Units

Engineering Data HFUS-2UH/2SO/2SH Units Engineering Data HFUS-2UH/2SO/2SH Units QUICKLINK www.harmonicdrive.de/2060 Contents 1. General... 03 1.1 Description of Safety Alert Symbols...04 1.2 Disclaimer and Copyright...04 2. Safety and Installation

More information

Precision Actuators Gearheads Gearing Components

Precision Actuators Gearheads Gearing Components Precision Actuators Gearheads Gearing Components TM Excellent Technology for Evolving Industries Harmonic Drive actuators utilize high-precision, zero-backlash Harmonic Drive precision gears and play critical

More information

NEW. TwinSpin G. Perfection improved

NEW. TwinSpin G. Perfection improved NEW TwinSpin G Perfection improved TwinSpin G A New Generation of Reduction Gears About 04 Product 06 Innovations 10 Specifications 17 Contact 24 SPINEA, s.r.o. 2017. All rights reserved. Reproduction

More information

Engineering Data CSD-2A Component Sets

Engineering Data CSD-2A Component Sets Engineering Data CSD-2A Component Sets QUICKLINK www.harmonicdrive.de/3060 1 Contents 1. General...03 1.1 Description of Safety Alert Symbols...04 1.2 Disclaimer and Copyright...04 2. Safety and Installation

More information

Crossed Roller Ways. Description of each series and Table of dimensions. Anti-Creep Cage Crossed Roller Way

Crossed Roller Ways. Description of each series and Table of dimensions. Anti-Creep Cage Crossed Roller Way Crossed Roller Ways Description of each series and Table of dimensions Crossed Roller Way Page - to -7 Anti-Creep Cage Crossed Roller Way Page - to - Crossed Roller Way Unit Page - to - In the table of

More information

Linear Actuator with Toothed Belt Series OSP-E..B

Linear Actuator with Toothed Belt Series OSP-E..B Linear Actuator with Toothed Belt Series OSP-E..B Contents Description Data Sheet No. Page Overview 1.20.001E 21-24 Technical Data 1.20.002E-1 to 5 25-29 Dimensions 1.20.002E-6 30 Order Instructions 1.20.002E-7

More information

High-Performance, Face-Mount Gearheads for Servo and Stepper Motors. HPN-L Series. Gearheads

High-Performance, Face-Mount Gearheads for Servo and Stepper Motors. HPN-L Series. Gearheads High-Performance, Face-Mount for Servo and Stepper Motors HPN-L Series 1 Revolutionary Technology for Evolving Industries Harmonic Drive LLC engineers and manufactures precision servo actuators, gearheads

More information

HARMONIC GEARHEAD. Features & Benefits Specifications... 53

HARMONIC GEARHEAD. Features & Benefits Specifications... 53 HARMOIC GEARHEAD exen s revolutionary (HG) is the perfect combination of size and precision. Use the integrated with exen s RPS Pinion (HGP) to create a true backlash-free solution from the motor to the

More information

NSK Linear Guides. Roller Guide RA Series. Extended series

NSK Linear Guides. Roller Guide RA Series. Extended series NSK Linear Guides A roller guide series employing advanced analysis technology offers super-high load capacity and rigidity. The RA series includes a complete lineup to handle a wide range of applications.

More information

Ball Rail Systems RE / The Drive & Control Company

Ball Rail Systems RE / The Drive & Control Company Ball Rail Systems RE 82 202/2002-12 The Drive & Control Company Rexroth Linear Motion Technology Ball Rail Systems Roller Rail Systems Standard Ball Rail Systems Super Ball Rail Systems Ball Rail Systems

More information

Linear Actuator with Ball Screw Series OSP-E..S. Contents Description Overview Technical Data Dimensions 89

Linear Actuator with Ball Screw Series OSP-E..S. Contents Description Overview Technical Data Dimensions 89 Linear Actuator with Ball Screw Series OSP-E..S Contents Description Page Overview 79-82 Technical Data 83-88 Dimensions 89 79 The System Concept ELECTRIC LINEAR ACTUATOR FOR HIGH ACCURACY APPLICATIONS

More information

Linear Drive with Toothed Belt Series OSP-E..B. Contents Description Overview Technical Data Dimensions Order Instructions 46

Linear Drive with Toothed Belt Series OSP-E..B. Contents Description Overview Technical Data Dimensions Order Instructions 46 Linear Drive with Toothed Belt Contents Description Page Overview 35-38 Technical Data 39-43 Dimensions 44-45 Order Instructions 46 35 The System Concept ELECTRIC LINEAR DRIVE FOR POINT-TO-POINT APPLICATIONS

More information

PRODUCT OVERVIEW HIGHEST PRECISION

PRODUCT OVERVIEW HIGHEST PRECISION PRODUCT OVERVIEW If you need high precision gear reducers at a reasonable cost and you value innovation and excellent service, take a close look at our product line. You ll find a wide range of products

More information

Precision Linear Pack

Precision Linear Pack Precision Linear Pack General Catalog A Technical Descriptions of the Products B Product Specifications (Separate) Features... Features of the Precision Linear Pack... Structure and features... Rated Load

More information

CobaltLine -CP CobaltLine CSG CPU HFUC HFUS CSD SHD PMG CSF-Mini HPG HPGP Optimised for your applications: Harmonic Drive combine the precision Harmonic Drive Component Sets consisting of three components

More information

High-Performance Gearheads for Servo and Stepper Motors. HPN Series. Gearheads

High-Performance Gearheads for Servo and Stepper Motors. HPN Series. Gearheads HighPerformance Gearheads for Servo and Stepper Motors Gearheads Revolutionary Technology for Evolving Industries Harmonic Drive LLC engineers and manufactures precision servo actuators, gearheads and

More information

High performance metal disk coupling SERVOFLEX SFF (N)

High performance metal disk coupling SERVOFLEX SFF (N) High performance metal disk coupling SERVOFLEX SFF (N) Best design for the latest servo motor SERVOFLEX for feed shaft which introduce the high precision clamp method Coupling outer diameter, lineup for

More information

Linear Actuator with Ball Screw Series OSP-E..S. Contents Description Overview Technical Data Dimensions 79

Linear Actuator with Ball Screw Series OSP-E..S. Contents Description Overview Technical Data Dimensions 79 Linear Actuator with Ball Screw Series OSP-E..S Contents Description Page Overview 71-74 Technical Data 75-78 Dimensions 79 71 The System Concept ELECTRIC LINEAR ACTUATOR FOR HIGH ACCURACY APPLICATIONS

More information

Engineering Data CPL-2A Component Sets

Engineering Data CPL-2A Component Sets Engineering Data CPL-2A Component Sets QUICKLINK www.harmonicdrive.de/3030 Contents 1. General...04 1.1 Description of Safety Alert Symbols...05 1.2 Disclaimer and Copyright...05 2. Safety and Installation

More information

TECHNICAL INFORMATION

TECHNICAL INFORMATION General Nomenclature Spherical Roller Bearings The spherical roller bearing is a combination radial and thrust bearing designed for taking misalignment under load When loads are heavy, alignment of housings

More information

Linear Drive with Ball Screw Drive Series OSP-E..SB

Linear Drive with Ball Screw Drive Series OSP-E..SB Linear Drive with Ball Screw Drive Series OSP-E..SB Contents Description Data Sheet No. Page Overview 1.30.001E 47-50 Technical Data 1.30.002E-1 to 5 51-55 Dimensions 1.30.002E-6, -7 56-57 Order instructions

More information

Highest Precision: Dyna Series

Highest Precision: Dyna Series GAM can. Just ask! If you don t see exactly what you need, let us know. We can modify the Dyna Series gearboxes to meet your needs. Page 3 provides a list of commonly requested modifications to give you

More information

Features of the LM Guide

Features of the LM Guide Features of the Functions Required for Linear Guide Surface Large permissible load Highly rigid in all directions High positioning repeatability Running accuracy can be obtained easily High accuracy can

More information

Gearheads H-51. Gearheads for AC Motors H-51

Gearheads H-51. Gearheads for AC Motors H-51 Technical Reference H-51 for AC Since AC motor gearheads are used continuously, primarily for transmitting power, they are designed with priority on ensuring high permissible torque, long life, noise reduction

More information

Highest Precision: Dyna Series

Highest Precision: Dyna Series Highest Precision: Dyna Series GAM can. Just ask! If you don t see exactly what you need, let us know. We can modify the Dyna Series gearboxes to meet your needs. Page 3 provides a list of commonly requested

More information

Inner block. Grease nipple. Fig.1 Structure of LM Guide Actuator Model KR

Inner block. Grease nipple. Fig.1 Structure of LM Guide Actuator Model KR LM Guide ctuator Model LM Guide + all Screw = Integral-structure ctuator Stopper Housing all screw Inner block Grease nipple Outer rail earing (supported side) Housing Stopper Double-row ball circuit earing

More information

Harmonic Drive Product World

Harmonic Drive Product World Harmonic Drive Product World Robotics and Automation Machine tools Semiconductor technology Medical Packaging machines Special environments Our inspiration Your business drives us. For every individual

More information

ZERO BACKLASH GEARING

ZERO BACKLASH GEARING ZERO BACKLASH GEARING Based on Nexen s innovative Roller Pinion technology, the Geared Bearing comes complete with a gear and a precision grade, high capacity bearing. With a wide range of sizes and ratios,

More information

506E. LM Guide Actuator General Catalog

506E. LM Guide Actuator General Catalog LM Guide Actuator General Catalog A LM Guide Actuator General Catalog A Product Descriptions 506E Caged Ball LM Guide Actuator Model SKR.. A2-4 Structure and Features... A2-4 Caged Ball Technology... A2-6

More information

LIGHTWEIGHT AND COMPACT. SERIES SL Nm. single-position multi-position. THE ultimate COUPLING from Nm

LIGHTWEIGHT AND COMPACT. SERIES SL Nm. single-position multi-position.   THE ultimate COUPLING from Nm LIGHTWEIGHT AND COMPACT L SAFETY COUPLINGS TOQLIGHT SEIES SL 5 700 Nm THE ultimate COUPLING from 5 700 Nm SEIES SL DESIGN / FEATUES Extremely lightweight construction Up to 60 % weight reduction in comparison

More information

Ball. Ball cage. Fig.1 Structure of Caged Ball LM Guide Actuator Model SKR

Ball. Ball cage. Fig.1 Structure of Caged Ball LM Guide Actuator Model SKR Caged all LM Guide Actuator Model Inner block all screw shaft Grease nipple Outer rail all cage all Structure and Features Fig.1 Structure of Caged all LM Guide Actuator Model Caged all LM Guide Actuator

More information

Highest Performance: Dyna Series

Highest Performance: Dyna Series Highest Performance: Dyna Series The Dyna Series is our highest performance right-angle gear reducer utilizing sophisticated hypoid gearing. The benefit of hypoid gearing is that it combines the space

More information

Infinit-Indexer Phase Adjuster. HDI Series. Total Motion Control. Harmonic Drive gear

Infinit-Indexer Phase Adjuster. HDI Series. Total Motion Control. Harmonic Drive gear Infinit-Indexer Phase Adjuster HDI Series Total Motion Control Harmonic Drive gear P r e c i s i o n G e a r i n g a n d M o t i o n Control HDI Infinit-Indexer Phase Adjusters HDI s are shaft mounted

More information

Courtesy of CMA/Flodyne/Hydradyne Motion Control Hydraulic Pneumatic Electrical Mechanical (800)

Courtesy of CMA/Flodyne/Hydradyne Motion Control Hydraulic Pneumatic Electrical Mechanical (800) 01_1 Miniature st Headline_36 Ball Rail pt/14.4 Systems mm second line 2 Linear Motion and Assembly Technologies Miniature Ball Rail Systems Ball Rail Systems Roller Rail Systems Linear Bushings and Shafts

More information

Courtesy of Steven Engineering, Inc - (800) PATENTED

Courtesy of Steven Engineering, Inc - (800) PATENTED PRECISION RING DRIVE SYSTEMS Based on Nexen s innovative Roller Pinion technology, Nexen Ring Drive Systems come complete with a precision grade, high capacity bearing and drive mechanism in a rigid housing.

More information

Highest Precision: SPL Series

Highest Precision: SPL Series Highest Precision: SPL Series GAM can. Just ask! If you don t see exactly what you need, let us know. We can modify the SPL Series gearboxes to meet your needs. Page 3 provides a list of commonly requested

More information

Precision Actuators Gearheads Gearing Components

Precision Actuators Gearheads Gearing Components TM Precision Actuators Gearheads Gearing Components Electromate Industrial Sales is the exclusive Canadian distributor of Harmonic Drive products (except the province of Alberta) Excellent Technology for

More information

In-house development Own manufacturing Sole distributor in Germany Working with distributors worldwide

In-house development Own manufacturing Sole distributor in Germany Working with distributors worldwide In-house development Own manufacturing Sole distributor in Germany Working with distributors worldwide External Clamping devices Overview 3073 Mini-Range For very low torque transmission Very small profile

More information

Linear Guideways HG Series

Linear Guideways HG Series 18 G99TE1-67 Linear Guideways 2-1 - Heavy Load Ball Type Linear Guideway HG series linear guideways are designed with load capacity and rigidity higher than other similar products with circular-arc groove

More information

Focus on Sci. & Tech. Grasp Details

Focus on Sci. & Tech. Grasp Details Focus on Sci. & Tech. Grasp Details B Series Safety brake, adopts modular design and has multiple functions, which can facilitate super rapid response with its professionally designed for low power electromagnetic

More information

PRECISION BELLOWS COUPLINGS

PRECISION BELLOWS COUPLINGS PRECISION BELLOWS COUPLINGS Bellows couplings are used where precise rotation, high speeds, and dynamic motion must be transmitted. They exhibit zero backlash and a high level of torsional stiffness, offering

More information

Ball Screw Support Bearings

Ball Screw Support Bearings Ball Screw Support Bearings. Ball Screw Support Bearings CONTENTS. Ball Screw Support Bearings q Angular contact thrust ball bearings A-BST series w Duplex angular contact ball bearings HT series e Needle

More information

Miniature Ball Rail Systems

Miniature Ball Rail Systems R310EN 2210 (2004.06) The Drive & Control Company 2 Bosch Rexroth AG Linear Motion and Assembly Technologies Miniature-BRS R310EN 2210 (2004.06) Linear Motion Systems Ball Rail System Standard Ball Rail

More information

Introduction. Lubrication Related Failures. Gear Couplings. Failure Analysis All Types (Page 1 of 7)

Introduction. Lubrication Related Failures. Gear Couplings. Failure Analysis All Types (Page 1 of 7) All Types (Page 1 of 7) Introduction A gear coupling serves as a mechanical device which connects shafts of two separate machines and accommodates small amounts of shaft misalignment. Commercial gear couplings

More information

Cross Roller Guide/Ball Guide General Catalog

Cross Roller Guide/Ball Guide General Catalog General Catalog A Product Descriptions Features and Types... A7-2 Features of the.. A7-2 Structure and Features... A7-2 Types of the.. A7-3 Types and Features... A7-3 Point of Selection... A7-4 Rated Load

More information

TORQLIGHT SAFETY COUPLINGS

TORQLIGHT SAFETY COUPLINGS LIGHTWEIGHT AND COMPACT single-position TOQLIGHT SAFETY COUPLINGS SEIES SL 10 700 Nm THE ULTIMATE COUPLING FOM 10 700 Nm SEIES SL DESIGN / FEATUES Extremely lightweight construction Up to 60 % weight reduction

More information

SKF Disc Couplings. Selection

SKF Disc Couplings. Selection SK Disc Couplings The SK disc coupling is the ideal solution in medium to high applications that require torsional rigidity, offer some allowance for misalignment, and do not require lubrication. These

More information

Shifting gears: simplify your design with slewing ring bearings

Shifting gears: simplify your design with slewing ring bearings White Paper Shifting gears: simplify your design with slewing ring bearings Scott Hansen, VP, Manufacturing Planning, Kaydon Bearings, an SKF Group company A slewing ring bearing has rolling elements designed

More information

2-1 HG Series - Heavy Load Ball Type Linear Guideway

2-1 HG Series - Heavy Load Ball Type Linear Guideway 2 G99TE15-114 Linear Guideways 2-1 - Heavy Load Ball Type Linear Guideway HG series linear guideways are designed with load capacity and rigidity higher than other similar products with circular-arc groove

More information

Collaborative Success

Collaborative Success New Product News Vol.25 Sensor Controller Other System Elements Speed Reducer Driver Motor AC Servo Actuator SHA Series Yaskawa Electric Corporation AC Servo Drive Σ-7 series Collaborative Success AC servo

More information

SLEWING RING CHARACTERISTICS, APPLICATIONS

SLEWING RING CHARACTERISTICS, APPLICATIONS SLEWING RING CHARACTERISTICS, APPLICATIONS Slewing rings are large-sized bearings which are able to accommodate combined load, i.e. axial, radial loads and tilting moment. They are usually provided with

More information

Heavy Duty Ball Screw Linear Actuators

Heavy Duty Ball Screw Linear Actuators Heavy Duty Ball Screw Linear Actuators Thrust From 2,000 to 25,000 lbf Heavy Wall Steel Construction Longest Life Simultaneous High Thrust with High Speed Piston with Rugged Anti Rotation Feature Sealed

More information

Stopping Accuracy of Brushless

Stopping Accuracy of Brushless Stopping Accuracy of Brushless Features of the High Rigidity Type DGII Series Hollow Rotary Actuator The DGII Series hollow rotary actuator was developed for positioning applications such as rotating a

More information

The Available Solution CYCLO DRIVE. Gearmotors & Speed Reducers. Series

The Available Solution CYCLO DRIVE. Gearmotors & Speed Reducers. Series The Available Solution CYCLO DRIVE Gearmotors & Speed Reducers 6000 Series WHAT DO YOU THINK OF THIS? THESE ARE THE ADVANTAGES OF THE NEWEST CYCLO, 6000 SERIES: More frame sizes, gear ratios and motor

More information

F-39. Technical Reference

F-39. Technical Reference Gearheads Role of the Gearhead The role of a gearhead is closely related to motor development. Originally, when the AC motor was a simple rotating device, the gearhead was mainly used to change the motor

More information

Axial Piston Fixed Motor A2FNM for Fan Drives and Flywheel Mass

Axial Piston Fixed Motor A2FNM for Fan Drives and Flywheel Mass Electric Drives and Controls Hydraulics Linear Motion and ssembly Technologies Pneumatics Service xial Piston Fixed Motor 2FNM for Fan Drives and Flywheel Mass RE 91007/02.11 1/16 Data sheet Series 61

More information

ELECTROMAGNETIC-ACTUATED CLUTCHES & BRAKES

ELECTROMAGNETIC-ACTUATED CLUTCHES & BRAKES -ACTUATED -ACTUATED Clutch/brake 1 1 1 11/ odels (5 ~ 32) odels (2.4 ~ 1) 111 odels (5 ~ 32) odels (2.4 ~ 1) Application rinting machinery, bookbinding machinery, food machinery, wrapping machinery, textiles

More information

Precision Reduction Gear RV TM. E Series / C Series / Original Series

Precision Reduction Gear RV TM. E Series / C Series / Original Series Precision Reduction Gear RV TM E Series C Series Original Series Nabtesco's technologies o es supporting port society Contributing to society with our Moving it. Stopping it. technologies Nabtesco manufactures

More information

Precision on the highest level

Precision on the highest level 6 - line Precision on the highest level The series is the standard Neugart inline high precision planetary gearhead for applications with very high precision requirements. Whether high torque density,

More information

Accessories smart additions for efficiency and intelligent performance

Accessories smart additions for efficiency and intelligent performance smart additions for efficiency and intelligent performance Metal bellows couplings Perfectionists you can count on Metal bellows couplings are designed for the highest requirements in servo drive technology.

More information

Chapter 11. Keys, Couplings and Seals. Keys. Parallel Keys

Chapter 11. Keys, Couplings and Seals. Keys. Parallel Keys Chapter 11 Keys, Couplings and Seals Material taken for Keys A key is a machinery component that provides a torque transmitting link between two power-transmitting elements. The most common types of keys

More information

Installation and Operational Instructions for EAS - HTL housed overload clutch Sizes 01 3 Type 490._24.0

Installation and Operational Instructions for EAS - HTL housed overload clutch Sizes 01 3 Type 490._24.0 Please read these Operational Instructions carefully and follow them accordingly! Ignoring these Instructions may lead to malfunctions or to clutch failure, resulting in damage to other parts. Contents:

More information

Highest Performance: SPH Series

Highest Performance: SPH Series Highest Performance: Series The series features helical gearing which brings a whole new level of power and precision to GAM s already extensive portfolio of gear reducer technology. With special attention

More information

Huco Dynatork Flexible Couplings

Huco Dynatork Flexible Couplings Huco Dynatork Flexible Couplings Flexible Couplings The Company & Its Products Huco products are manufactured in Hertford, England, in a modern plant equipped with all necessary design, development, toolroom

More information

A superior alternative to hydraulic or pneumatic motion providing 15 times the life of a ball screw. Planetary Roller Screws

A superior alternative to hydraulic or pneumatic motion providing 15 times the life of a ball screw. Planetary Roller Screws A superior alternative to hydraulic or pneumatic motion providing 15 times the life of a ball screw Planetary Roller Screws Exlar Your Linear Motion Experts Exlar Corporation is committed to providing

More information

NSK Standard Ball Screws High Speed SS Series

NSK Standard Ball Screws High Speed SS Series NSK Standard Ball Screws igh Speed SS Series NSK s high speed and low noise ball screws provide high-level performance for drive systems of industrial machines such as those used in manufacturing. standard

More information

Linear Drive with Toothed Belt and Integrated Guide with Recirculating Ball Bearing Guide with Roller Guide Series OSP-E..BHD

Linear Drive with Toothed Belt and Integrated Guide with Recirculating Ball Bearing Guide with Roller Guide Series OSP-E..BHD Linear Drive with and Integrated Guide with Recirculating Ball Bearing Guide with Roller Guide Contents Description Page Overview 11-14 Version with Recirculating Ball Bearing Guide Technical Data 15-17

More information

III B.Tech I Semester Supplementary Examinations, May/June

III B.Tech I Semester Supplementary Examinations, May/June Set No. 1 III B.Tech I Semester Supplementary Examinations, May/June - 2015 1 a) Derive the expression for Gyroscopic Couple? b) A disc with radius of gyration of 60mm and a mass of 4kg is mounted centrally

More information