Renewable Energy Systems

Size: px
Start display at page:

Download "Renewable Energy Systems"

Transcription

1 Renewable Energy Systems 8 Buchla, Kissell, Floyd

2 Chapter Outline Wind Turbine Control 8 Buchla, Kissell, Floyd 8-1 PITCH AND YAW CONTROL 8-2 TURBINE ORIENTATION 8-3 DRIVE TRAIN GEARING AND DIRECT DRIVE TURBINES 8-4 WIND MEASUREMENT 8-5 BRAKING

3 Source: US DOE 8-1 Pitch and Yaw Control Pitch control is the principle method for adjusting the speed on a horizontal axis wind turbine. Pitch control is also used in case of high winds to stall the blades. The photo shows modern wind turbines with active yaw control beside an old wind pump that used passive yaw control.

4 8-1 Pitch and Yaw Control Pitch control can be used to maintain constant rotational speed or to harvest maximum energy (variable speed). The pitch control rotates the blades to control their speed. The yaw motors and control keep the nacelle facing into the wind but can turn the entire nacelle away in case of high winds. Source: NREL

5 Source: NREL 8-1 Pitch and Yaw Control Pitch control can also be used to feather the blades for maintenance as shown here. Feathering is also done when winds exceed a safe limit for the turbine. The blades are turned perpendicular to the direction of travel to feather them. Once stopped, brakes are set for safety.

6 Source: Courtesy of Bosch Rexroth Group 8-1 Pitch and Yaw Control Hydraulic actuators are often used to control pitch and can even control each blade independently. Independent movements provide the best possible efficiency. A 4-20 ma current loop is frequently used for signaling because it is unaffected by electrical noise.

7 8-1 Pitch and Yaw Control Another type of pitch control is electric pitch control. Electric controls are more efficient than hydraulic controls and avoid problems with hydraulic fluid. Smaller wind turbines can use a mechanical system to change the pitch with a strong spring. The system responds to the centripetal force from spinning to cause the blade to stall if the design limit is reached. Source: Tom Kissell

8 Source: Courtesy of Bosch Rexroth Group 8-1 Pitch and Yaw Control As in the case of pitch mechanisms, the yaw motors can be powered by either an electric or hydraulic motor. Generally, the yaw motors are designed for high torque to turn the nacelle slowly and avoid wear and stress. yaw motors

9 Source: NREL 8-2 Turbine Orientation The three-bladed HAWT is the dominant wind turbine design. Most HAWTs are upwind designs, where the wind blows over the blades first and then over the nacelle and tower. A consideration for the upwind design is tower clearance, which can be alleviated with a slight tilt in the drive train. A consideration for any type of turbine is tower shading and potential resonances. wind

10 Source: NREL 8-2 Turbine Orientation Blade design for large upwind turbines calls for thin and light weight but structurally strong blades. Testing can be done in NREL s Wind Technology Testing Center in Charleston, MA as illustrated here. The particular test shown is a resonant blade fatigue test.

11 Source: NREL 8-2 Turbine Orientation In a downwind turbine, the wind blows over the nacelle first and then to the rotor blades. The advantage to downwind turbines is that the blades flex away from the tower and smaller turbines can orient themselves naturally into the wind, saving the cost of a yaw drive but this saving is not practical for large turbines. wind

12 8-3 Drive Train Gearing and Direct Drive Turbines The rotational speed of large turbines is around 20 rpm, which is far too slow for most generators. Typically a gearbox is used to change the speed to 1500 to 1800 rpm, depending on the type of system and the required output. The gearbox shown is designed for wind turbines that are 2.5 to 8 MW. It can be configured for a gear ratio of 100 to 120. Source: Courtesy of Bosch Rexroth Group

13 8-3 Drive Train Gearing and Direct Drive Turbines The gearbox is but one element in the drive train of a typical HAWT. The turbine blades and rotor and parts in blue in this drawing are all part of the drive train: low speed shaft gearbox high speed shaft generator Source: Courtesy of Nordex SE

14 Source: NREL 8-3 Drive Train Gearing and Direct Drive Turbines Drive train alignment is critical for best performance, so it is often assembled and aligned prior to sending to the field. Here a large drive train for a 2.5 MW turbine is tested on a dynamometer for evaluating power and torque. Drive train alignment is critical because there are many stresses on the components due to wind turbulence.

15 Source: NREL 8-3 Drive Train Gearing and Direct Drive Turbines Some wind systems avoid the need for a gearbox by using a special large diameter multipole generators that can be turned slower. Many use permanent magnets, which are more efficient. Here a 1.5 MW direct drive generator is being prepared for testing.

16 Source: NREL 8-4 Wind Measurement Wind data is an important part of insuring that turbines are operating efficiently and provides information about locations where winds are highest. Anemometers and other instruments are usually located on the back of the nacelle. Wind speed data is used by the controller to set pitch angle and the data is sent to a central collection point for other analysis.

17 8-4 Wind Measurement There are several types of sensors to measure wind parameters. The most common ones are the rotational anemometer and the cooling power anemometer (also called a hotwire anemometer). Source: Courtesy of NovaLynx Corporation hot wire Source: Courtesy of R. M. Young Co. Rotational anemometers are moved by the wind and cause a small generator to spin, or can send electrical pulses to be counted. Cooling power anemometers use heat transfer from a wire to determine the wind speed based on heat transfer. Ultrasonic sensors can determine wind speed, direction and air temperature. Ultrasonic signals are sent between the sensor tips.

18 Source: NREL 8-4 Wind Measurement The supervisory control and data acquisition (SCADA) system is used to monitor a large variety of data from any number of wind turbines. Data is used to control the wind turbines and to monitor performance over a long period of time. It can detect turbines that need maintenance.

19 8-5 Braking Wind turbines need to be stopped for maintenance or for controlling the load. There are three main brakes: Rotor brakes are caliper brakes to keep the rotor from turning High speed shaft brakes are caliper brakes to prevent the generator from turning. Yaw brakes are caliper brakes that secure the yaw ring. Source: Courtesy of Bosch Rexroth Group

20 8-5 Braking Fail-safe brakes are a general type of brake that are designed to be in the set position in case of loss of power or hydraulic pressure. With fail-safe brakes, the brakes are released by application of power or hydraulic pressure. Mechanical brakes are a type of fail-safe brakes that typically operate by applying spring pressure unless released by winds above a level that can produce power. Mechanical parking brakes are brakes that can be set during maintenance.

21 rmwood1/ Fotolia 8-5 Braking Dynamic braking operates by increasing the load on a generator to slow it down. When the generator supplies more current, it requires a greater force to turn. The energy from dynamic braking is dissipated in a resistive load bank. Dynamic braking is used by locomotives to slow down by increasing generator loading.

22 Selected Key Terms Direct-drive wind turbine Downwind turbine Drive train Dynamic braking A type of wind turbine in which the rotor is connected directly to the generator; it does not have a gearbox. A type of wind turbine that is designed so that the wind blows over the nacelle first and then over the rotor and blades. The turbine blades, rotor, low-speed shaft, gearbox, high-speed shaft, and generator in a wind turbine. A method of braking that increases the load on the generator to slow it down and control speed. The dynamic braking system puts an electrical load bank across the generator output as required for control.

23 Selected Key Terms Fail-safe brakes High speed shaft brakes Rotor brakes Upwind turbine Yaw brakes A type of braking system that is normally set to stop motion in the event of a loss of power or hydraulic pressure. Caliper brakes that are mounted around a rotor plate on the high speed shaft to prevent the high speed shaft from rotating Caliper brakes that are located directly behind the rotor hub at the front of the wind turbine to keep the rotor from turning. A type of wind turbine that is designed so that the wind blows over the blades and then over the nacelle and tower. A series of caliper brakes that are located on the yaw ring gear to secure the yaw mechanism so that it cannot move

24 true/false quiz 1. Pitch control rotates the blades to control their speed

25 true/false quiz 2. To feather the blades of a turbine, they are turned perpendicular to the direction of travel.

26 true/false quiz 3. The Yaw motors are designed to turn the nacelle rapidly for shifting winds.

27 true/false quiz 4. Most HAWTs are downwind types.

28 true/false quiz 5. An advantage to the upwind turbine is that it does not need a yaw drive.

29 true/false quiz 6. The purpose of the gearbox on a wind turbine is to slow the shaft speed for the generator.

30 true/false quiz 7. The drive train includes the yaw drive motors.

31 true/false quiz 8. Wind speed data is used by the controller to set pitch angle.

32 true/false quiz 9. SCADA stands for supervisory control and data acquisition.

33 true/false quiz 10. Rotor brakes are used to keep the nacelle from turning during maintenance.

34 true/false quiz Answers: 1.T 2.T 3.F 4.F 5.F 6.F 7.F 8.T 9.T 10. F

Renewable Energy Systems

Renewable Energy Systems Renewable Energy Systems 5 Buchla, Kissell, Floyd Chapter Outline Solar Tracking 5 Buchla, Kissell, Floyd 5-1 MOVEMENT OF THE SUN 5-2 COSTS AND BENEFITS OF TRACKING 5-3 SINGLE-AXIS AND DUAL-AXIS SOLAR

More information

Technical Documentation Wind Turbine Generator Systems /60 Hz

Technical Documentation Wind Turbine Generator Systems /60 Hz Technical Documentation Wind Turbine Generator Systems 3.8-130 - 50/60 Hz imagination at work www.gepower.com Visit us at https://renewable.gepower.com Copyright and patent rights All documents are copyrighted

More information

Renewable Energy Systems 14

Renewable Energy Systems 14 Renewable Energy Systems 14 Buchla, Kissell, Floyd Chapter Outline The Electric Power Grid 14 Buchla, Kissell, Floyd 14-1 THREE-PHASE AC 14-2 THREE-PHASE TRANSFORMERS 14-3 GRID OVERVIEW 14-4 SMART GRID

More information

Wind Turbine Generator System. General Specification for HQ2000

Wind Turbine Generator System. General Specification for HQ2000 Wind Turbine Generator System General Specification for HQ2000 April 15, 2010 Hyundai Heavy Industries Co., Ltd Electro Electric Systems h t t p : / / w w w. h y u n d a i - e l e c. c o. k r 1. General

More information

Classification of Wind Power Plants (WPP)

Classification of Wind Power Plants (WPP) ISSN 2278 0211 (Online) Classification of Wind Power Plants (WPP) Viren Pereira Faculty, Department of General Engineering, Shree Rayeshwar Institute of Engineering & Information Technology, Shiroda, Goa,

More information

Renewable Energy Systems 13

Renewable Energy Systems 13 Renewable Energy Systems 13 Buchla, Kissell, Floyd Chapter Outline Generators 13 Buchla, Kissell, Floyd 13-1 MAGNETISM AND ELECTROMAGNETISM 13-2 DC GENERATORS 13-3 AC SYNCHRONOUS GENERATORS 13-4 AC INDUCTION

More information

Gearbox Fault Detection

Gearbox Fault Detection Gearbox Fault Detection At the University of Iowa, detecting wind turbine gearbox faults based on vibration acceleration data provided by NREL is augmented by data mining techniques. By Andrew Kusiak and

More information

EE 742 Chap. 7: Wind Power Generation. Y. Baghzouz Fall 2011

EE 742 Chap. 7: Wind Power Generation. Y. Baghzouz Fall 2011 EE 742 Chap. 7: Wind Power Generation Y. Baghzouz Fall 2011 Overview Environmental pressures have led many countries to set ambitious goals of renewable energy generation. Wind energy is the dominant renewable

More information

RW-30kW variable pitch wind turbine

RW-30kW variable pitch wind turbine RW-30kW variable pitch wind turbine 2018 www.instrumentsgroup.c o.za 1. RW-30kw variable pitch wind turbine parameter 1.1 RW-30kW parameter RW-30kw variable pitch Technical parameters 13.5V Wind rotor

More information

GE Renewable Energy. GE s 3 MW Platform POWERFUL AND EFFICIENT.

GE Renewable Energy. GE s 3 MW Platform POWERFUL AND EFFICIENT. GE Renewable Energy GE s 3 MW Platform POWERFUL AND EFFICIENT www.gerenewableenergy.com GE S 3 MW PLATFORM PITCH Since entering the wind industry in 2002, GE Renewable Energy has invested more than $2.5

More information

MSD Concept Generation Created 9/20/11 Edited 9/29/11, 10/3/11, 10/18/11

MSD Concept Generation Created 9/20/11 Edited 9/29/11, 10/3/11, 10/18/11 MSD 1 12401 Concept Generation Created 9/20/11 Edited 9/29/11, 10/3/11, 10/18/11 Efficiency Concept According to Betz Law, no wind turbine can extract more than 59% of the energy of the wind Source: Wikipedia

More information

MAJOR SYSTEM FUNCTIONS

MAJOR SYSTEM FUNCTIONS MAJOR SYSTEM FUNCTIONS The ROTOR converts the aerodynamic energy in the wind to mechanical shaft torque. It also provides a lightning path from the blade tips to the main shaft. The GENERATOR converts

More information

Wind Turbine Configuration for the Offshore Environment. Simon Watson Loughborough University

Wind Turbine Configuration for the Offshore Environment. Simon Watson Loughborough University Wind Turbine Configuration for the Offshore Environment Simon Watson Loughborough University Overview The Issues Rotor Drive Train Control Electricals Summary Issues Higher winds Wind shear Wave loading

More information

Model: H kW. Features: 1. SCF Supercritical generator. 2. NSK bearings. 3. PLC integrated with Siemens module. 4. Low noise

Model: H kW. Features: 1. SCF Supercritical generator. 2. NSK bearings. 3. PLC integrated with Siemens module. 4. Low noise Model: H16.5-50kW Hummer 50kW wind turbine can be applied in both on-grid and off-grid systems. The output is three-phase AC and it can drive loads below 50kW. Features: 1. SCF Supercritical generator

More information

Control of wind turbines and wind farms Norcowe 2015 PhD Summer school Single Turbine Control

Control of wind turbines and wind farms Norcowe 2015 PhD Summer school Single Turbine Control of wind and wind farms Norcowe 2015 PhD Summer school Single Turbine August, 2015 Department of Electronic Systems Aalborg University Denmark Outline Single Turbine Why is Historic Stall led in partial

More information

ned100 Wind Turbine Generator a step towards your energy independence

ned100 Wind Turbine Generator a step towards your energy independence ned100 Wind Turbine Generator a step towards your energy independence Energy production 450 Ø22 Ø24 4.5 138 155 5.0 183 203 5.5 230 252 6.0 276 300 6.5 321 346 7.0 363 388 7.5 401 425 8.0 435 ---- 8.5

More information

THE NEXT GENERATION- YAW AND PITCH POSITION MONITORING

THE NEXT GENERATION- YAW AND PITCH POSITION MONITORING THE NEXT GENERATION- YAW AND PITCH POSITION MONITORING i n f o 2 company info The team of B-COMMAND has a long tradition and many years of experience in the Wind Power branch. The company with its headquarter

More information

Job Sheet 2 Aerodynamics Power Control

Job Sheet 2 Aerodynamics Power Control Job Sheet 2 Aerodynamics Power Control Power Control Power control is an important feature of a wind turbine. It regulates the speed of rotation of the rotor assembly when wind is present. For stand-alone

More information

JOINT VENTURE: Wind Power Development Project United States of America. - Proposal Appendix -

JOINT VENTURE: Wind Power Development Project United States of America. - Proposal Appendix - EnerQuest Power Development Corporation France Wind Technologies JOINT VENTURE: Wind Power Development Project United States of America. - Proposal Appendix - APPENDIX TABLE of CONTENTS. Appendix I : Examples

More information

Wind Energy: A new energy with new challenges

Wind Energy: A new energy with new challenges Wind Energy: A new energy with new challenges Edward Ross Engineering and Technology Engineering and Technology 9/14/2011 PAGE 1 Introduction to Edward Ross Edward.Ross@rwe.com Introduction > Graduate

More information

The two RENK LABECO test stands are intended to provide endurance and acceptance testing for both R&D and post-assembly quality assurance.

The two RENK LABECO test stands are intended to provide endurance and acceptance testing for both R&D and post-assembly quality assurance. October, 200 RENK LABECO Test Systems Corporation Supports Largest Wind Turbine Test Facility with October 28th Groundbreaking at Clemson University Restoration Institute RENK LABECO Test Systems Corporation

More information

Low Speed Wind Turbines. Current Applications and Technology Development

Low Speed Wind Turbines. Current Applications and Technology Development Low Speed Wind Turbines Current Applications and Technology Development Why low wind speed turbines? Easily accessible prime class 6 sites are disappearing. Many class 6 sites are located in remote areas

More information

Drivetrain Simulation and Load Determination using SIMPACK

Drivetrain Simulation and Load Determination using SIMPACK Fakultät Maschinenwesen, Institut für Maschinenelemente und Maschinenkonstruktion, Lehrstuhl Maschinenelemente Drivetrain Simulation and Load Determination using SIMPACK SIMPACK Conference Wind and Drivetrain

More information

Technical specifications. Wind Turbine GS 21 S. Power 60 kwp

Technical specifications. Wind Turbine GS 21 S. Power 60 kwp Technical specifications Wind Turbine GS 21 S Power 60 kwp GS 21 S - 60 kwp The best wind turbines, without compromise. In order to exploit the kinetic energy contained in the wind and convert it into

More information

Product Presentation. September 09

Product Presentation. September 09 Product Presentation September 09 Corporate History 1993: founded by a local engineering cooperative in Århus, DK 1994: first commercial turbine deployed; participates in RISØ testing program for small

More information

Bright outlook for improved profitability. Direct drive wind turbine SWT Answers for energy.

Bright outlook for improved profitability. Direct drive wind turbine SWT Answers for energy. Bright outlook for improved profitability Direct drive wind turbine SWT-3.0-101 Answers for energy. How can you gain maximum performance with 50 percent fewer parts? 2 As wind power plants develop capacities

More information

Lightweight, Collapsible Wind Turbine

Lightweight, Collapsible Wind Turbine Lightweight, Collapsible Wind Turbine Design Team Dan Faulkner, Leanne Fortune, Alex Schaps, Kevin Zephir Design Advisor Prof. Mohammad Taslim Abstract The goal of this project is to create a more cost

More information

Adelaide Wind Power Project Turbine T05 (AD117) IEC Edition 3.0 Measurement Report

Adelaide Wind Power Project Turbine T05 (AD117) IEC Edition 3.0 Measurement Report REPORT ID: 14215.01.T05.RP6 Adelaide Wind Power Project Turbine T05 (AD117) IEC 61400-11 Edition 3.0 Measurement Report Prepared for: Suncor Adelaide Wind General Partnership Inc. 2489 North Sheridan Way

More information

Christof Deckmyn DEVELOPING AND TESTING POWER CONTROL FOR A WIND POWER STATION MODEL

Christof Deckmyn DEVELOPING AND TESTING POWER CONTROL FOR A WIND POWER STATION MODEL Christof Deckmyn DEVELOPING AND TESTING POWER CONTROL FOR A WIND POWER STATION MODEL Unit Technology and Communication 2011 VAASAN AMMATTIKORKEAKOULU UNIVERSITY OF APPLIED SCIENCES Master in Renewable

More information

Fully Integrated Wind Turbine Solutions

Fully Integrated Wind Turbine Solutions Fully Integrated Wind Turbine Solutions WWW.ORENDAENERGY.COM Company PDFS To download our company PDFs, please scan the code below to access our site: 2 Orenda Design Orenda s Skye wind turbine is the

More information

Contents INTRODUCTION... 2 CHECK YOU HAVE RECEIVED... 4 WHAT YOU WILL NEED...4 TECHNICAL CHARACTERISTICS...5 WIRING DIAGRAMES...6 CABLES...

Contents INTRODUCTION... 2 CHECK YOU HAVE RECEIVED... 4 WHAT YOU WILL NEED...4 TECHNICAL CHARACTERISTICS...5 WIRING DIAGRAMES...6 CABLES... Contents Page INTRODUCTION... 2 CHECK YOU HAVE RECEIVED... 4 WHAT YOU WILL NEED...4 TECHNICAL CHARACTERISTICS...5 WIRING DIAGRAMES...6 CABLES...6 BATTERY...7 CHARGE CONTROLLER...8 FUSE...8 TOWERS...8 INSTALLATIONS...9

More information

BLADEcontrol Greater output less risk

BLADEcontrol Greater output less risk BLADEcontrol Greater output less risk 2 Expensive surprises? Unnecessary downtime? Rotor blade monitoring increases the output of your wind turbine generator system 3 Detect damage at an early stage For

More information

Hedeager Aarhus N Denmark S (IEC IB)*, :2005

Hedeager Aarhus N Denmark S (IEC IB)*, :2005 Certificate No. This certificate is issued to for the wind turbine wind turbine class (class, standard, year) Vestas Wind Systems A/S Hedeager 42 8200 Aarhus N Denmark Vestas V117-3.45 MW / V117-3.60 MW

More information

LA10 (480 VAC, 3-phase, 60 Hz)

LA10 (480 VAC, 3-phase, 60 Hz) SWCC Summary Report Manufacturer: Wind Turbine Model: Certification Number: Lely Aircon This report summarizes the results of testing and certification of the Lely Aircon LA10 in accordance with AWEA 9.1-2009.

More information

SeaGen-S 2MW. Proven and commercially viable tidal energy generation

SeaGen-S 2MW. Proven and commercially viable tidal energy generation SeaGen-S 2MW Proven and commercially viable tidal energy generation The SeaGen Advantage The generation of electricity from tidal flows requires robust, proven, available, and cost effective technology.

More information

Job Sheet 6 Pitch Control

Job Sheet 6 Pitch Control Job Sheet 6 Pitch Control Not all wind can be captured as energy by the wind turbine. Some wind has to pass by the blades for the rotor system to function properly. There are limits to how fast motors

More information

Reliability Driven By Technology. M a k e t h e r i g h t m o v e...

Reliability Driven By Technology. M a k e t h e r i g h t m o v e... Reliability Driven By Technology M a k e t h e r i g h t m o v e... Make the right move... Business is akin to a master game of chess. The right strategy and the ability to anticipate the opponent's future

More information

GENERAL SPECIFICATIONS

GENERAL SPECIFICATIONS GENERAL SPECIFICATIONS The GP Yonval 40-16 is designed to generate high levels of energy, in accordance with the IEC 61400-2 standards and manufactured with reliable European components. The variable speed

More information

Modern Auto Tech Study Guide Chapters 71 & 73 Pages Brake Systems 49 Points. Automotive Service

Modern Auto Tech Study Guide Chapters 71 & 73 Pages Brake Systems 49 Points. Automotive Service Modern Auto Tech Study Guide Chapters 71 & 73 Pages 1369 1444 Brake Systems 49 Points 1. Automotive systems use to stop, slow or to hold the wheels from turning. Brake, Friction Brake, Fraction Brake,

More information

FD21-50 GHREPOWER. Version: 3.0

FD21-50 GHREPOWER.   Version: 3.0 FD21-50 GHREPOWER ShanghaiGhrepower Green Energy Co Ltd Shanghai Ghrepower Green Energy Co., Ltd. Version: 3.0 1.0 Design Features Ghrepower s 50kW wind system is a gearless, direct drive permanent magnet

More information

ATLAS Principle to Product

ATLAS Principle to Product ATLAS Principle to Product SUPERGEN 26th May 2016 Wind and tidal energy control experts SgurrControl Experts in wind and tidal energy control Engineering organisation providing control solutions to wind

More information

Wind Turbine Generator System Safety and Function Test Report. Atlantic Orient 15/50 Wind Turbine

Wind Turbine Generator System Safety and Function Test Report. Atlantic Orient 15/50 Wind Turbine June 23 NREL/EL-5-34382 Wind Turbine Generator System Safety and Function Test Report for the Atlantic Orient 15/5 Wind Turbine by National Wind Technology Center National Renewable Energy Laboratory 1617

More information

Wind Power Exploration

Wind Power Exploration 1 Directions: Read the following about wind power and electricity and answer the given questions. How Wind Power Works It's hard sometimes to imagine air as a fluid. It just seems so... invisible. But

More information

EE 742 Chap. 7: Wind Power Generation. Y. Baghzouz

EE 742 Chap. 7: Wind Power Generation. Y. Baghzouz EE 742 Chap. 7: Wind Power Generation Y. Baghzouz Wind Energy 101: See Video Link Below http://energy.gov/eere/videos/energy-101- wind-turbines-2014-update Wind Power Inland and Offshore Growth in Wind

More information

GRAND RENEWABLE ENERGY PARK PROJECT DESCRIPTION REPORT. Attachment C. Turbine Specifications

GRAND RENEWABLE ENERGY PARK PROJECT DESCRIPTION REPORT. Attachment C. Turbine Specifications GRAND RENEWABLE ENERGY PARK PROJECT DESCRIPTION REPORT Attachment C Turbine Specifications Published by and copyright 2009: Siemens AG Energy Sector Freyeslebenstrasse

More information

V MW Creating more from less

V MW Creating more from less V82-1.65 MW Creating more from less Grid compliance As wind turbines capture more of the electricity market each year, they have an increasingly significant role to play in grid management. Fortunately,

More information

T701 (240 VAC, 1-phase, 60 Hz)

T701 (240 VAC, 1-phase, 60 Hz) SWCC Summary Report Manufacturer: Wind Turbine: Certification Number: Pika Energy Inc. T701 (240 VAC, 1-phase, 60 Hz) SWCC-13-03 The above-identified Small Wind Turbine is certified by the Small Wind Certification

More information

Hedeager Aarhus N Denmark

Hedeager Aarhus N Denmark Certificate No. This certificate is issued to for the wind turbine wind turbine class (class, standard, year) Vestas Wind Systems A/S Hedeager 42 8200 Aarhus N Denmark Vestas V126-3.45 MW / WT class S,

More information

Hedeager Aarhus N Denmark. Vestas V MW / V MW

Hedeager Aarhus N Denmark. Vestas V MW / V MW Certificate No. This certificate is issued to for the wind turbine wind turbine class (class, standard, year) Vestas Wind Systems A/S Hedeager 42 8200 Aarhus N Denmark Vestas V136-3.45 MW / V136-3.60 MW

More information

ACTIVE STATOR - A MORE EFFICIENT DRIVE TRAIN CONCEPT FOR A WIND TURBINE. Dr. Makhlouf Benatmane - Director Business Development

ACTIVE STATOR - A MORE EFFICIENT DRIVE TRAIN CONCEPT FOR A WIND TURBINE. Dr. Makhlouf Benatmane - Director Business Development ACTIVE STATOR - A MORE EFFICIENT DRIVE TRAIN Dr. Makhlouf Benatmane - Director Business Development The Renewables power train Introduction The active Stator TM Concept DC - AC Architecture Conclusion

More information

Technology Requirements for Cold and Tropical Wind-Diesel Applications. Chris McKay Product Manager Northwind 100 Ottawa 2009

Technology Requirements for Cold and Tropical Wind-Diesel Applications. Chris McKay Product Manager Northwind 100 Ottawa 2009 Technology Requirements for Cold and Tropical Wind-Diesel Applications Chris McKay Product Manager Northwind 100 Ottawa 2009 Wind-Diesel Technology Needs Low maintenance High reliability Diesel grid friendly

More information

OPERATING MANUAL. Wind / Solar Hybrid - Charge Controller 24V 1000w. i/hcc Charge Controller

OPERATING MANUAL. Wind / Solar Hybrid - Charge Controller 24V 1000w. i/hcc Charge Controller OPERATING MANUAL Wind / Solar Hybrid - Charge Controller 24V 1000w i/hcc-1000- Charge Controller Introduction The function of the charge controller is to monitor the battery voltage, and once it reaches

More information

SWT Turning moderate wind into maximum results

SWT Turning moderate wind into maximum results SWT - 2.3-113 Turning moderate wind into maximum results At the leading edge of evolution The new Siemens SWT-2.3-113 wind turbine is the ultimate choice for low to moderate wind conditions. The revolutionary

More information

Avda. Ciudad de la Innovación Sarriguren (Navarra) Spain

Avda. Ciudad de la Innovación Sarriguren (Navarra) Spain Certificate No. This certificate is issued to for the wind turbine wind turbine class (class, standard, year) Renewable Energy Innovation & Technology Avda. Ciudad de la Innovación 2 31621 Sarriguren (Navarra)

More information

Modeling, Simulation & Control of Induction Generators Used in Wind Energy Conversion

Modeling, Simulation & Control of Induction Generators Used in Wind Energy Conversion Chapter-3 Principles of Electrical Energy Conversion 3. 1 Introduction Several forms of energy can be converted into electrical energy basically by two methods known as direct or indirect conversion. In

More information

Module 3: Types of Wind Energy Systems

Module 3: Types of Wind Energy Systems Module 3: Types of Wind Energy Systems Mohamed A. El-Sharkawi Department of Electrical Engineering University of Washington Seattle, WA 98195 http://smartenergylab.com Email: elsharkawi@ee.washington.edu

More information

GOLDWIND 2.5MW PERMANENT MAGNET DIRECT-DRIVE (PMDD) WIND TURBINE

GOLDWIND 2.5MW PERMANENT MAGNET DIRECT-DRIVE (PMDD) WIND TURBINE Rotor Blade Rotor/Generator Bearing Cast Hub Auxiliary Crane Wind Measurement Equipment Pitch System Heat Exchanger Yaw System Base Frame PMDD Generator GOLDWIND 2.5MW PERMANENT MAGNET DIRECT-DRIVE (PMDD)

More information

BENEFITS. Maximum output at minimum cost per kwh for medium wind sites. - Class IIA.

BENEFITS. Maximum output at minimum cost per kwh for medium wind sites. - Class IIA. GAMESA G83-2.0 MW BENEFITS Maximum output at minimum cost per kwh for medium wind sites - Class IIA. - Pitch and variable speed technology to maximize energy production. - Production of lighter blades

More information

APPENDIX J V90 3.0MW Turbine Specifications

APPENDIX J V90 3.0MW Turbine Specifications APPENDIX J V90 3.0MW Turbine Specifications V90-3.0 MW An efficient way to more power Innovations in blade technology 3 44 meters of leading edge In our quest to boost the efficiency of the V90, we made

More information

HY30-AD12.5 WIND TURBINE HY20-AD11.0 WIND TURBINE

HY30-AD12.5 WIND TURBINE HY20-AD11.0 WIND TURBINE Product Introduction HY30-AD12.5 WIND TURBINE HY20-AD11.0 WIND TURBINE Version 1.0 Huaying Wind Power All Rights Reserved 2013.3 Manufacture Background HY30-AD12.5 and HY20-AD11.0 share the same design

More information

Avda. Ciudad de la Innovación Sarriguren (Navarra) Spain

Avda. Ciudad de la Innovación Sarriguren (Navarra) Spain Certificate No. This certificate is issued to for the wind turbine Renewable Energy Innovation & Technology SL Avda. Ciudad de la Innovación 9-11 31621 Sarriguren (Navarra) Spain SG 3.4-132 50/60Hz Rated

More information

SEI Overview - Wind Power

SEI Overview - Wind Power SEI Overview - Wind Power Carbondale/Paonia Colorado www.solarenergy.org WHY WIND (renewables)? Gain energy independence from fossil fuels Ease demand on the power grid Reduce vulnerability to volatile

More information

GOLDWIND S48/750 (50Hz) Technical Specifications

GOLDWIND S48/750 (50Hz) Technical Specifications GOLDWIND S48/750 (50Hz) Technical Specifications Content 1. GOLDWIND S48/750 General Overview page 3-5 2. Nacelle - Major Components Overview page 6 8 3. Gearbox & Main Shaft page 9-10 4. Brake System

More information

BENEFITS. Maximum unit power with excellent performance for high winds. - Class IA/WZII/WZIII.

BENEFITS. Maximum unit power with excellent performance for high winds. - Class IA/WZII/WZIII. GAMESA G80-2.0 MW BENEFITS Maximum unit power with excellent performance for high winds - Class IA/WZII/WZIII. - Pitch and variable speed technology to maximize energy production. - Production of lighter

More information

ENERCON GmbH Dreekamp Aurich Germany ENERCON E-82 E4 2.35MW ENERCON E-82 E4 3.0MW. IIA, IEC : Amd1:2010

ENERCON GmbH Dreekamp Aurich Germany ENERCON E-82 E4 2.35MW ENERCON E-82 E4 3.0MW. IIA, IEC : Amd1:2010 Certificate No. Wind Turbine This certificate is issued to for the wind turbines wind turbine class (class, standard, year) GmbH Dreekamp 5 26605 Aurich Germany E-82 E4 2.35MW E-82 E4 3.0MW IIA, IEC 61400-1:2005

More information

9kW Multi Wind-Lens Turbine Specification (3kW WL turbine x 3 units)

9kW Multi Wind-Lens Turbine Specification (3kW WL turbine x 3 units) 9kW Multi Wind-Lens Turbine Specification (3kW WL turbine x 3 units) * WL : Wind-Lens Type name: RW9K-M-JA-04 Destination: For authentication testing at Hibiki-nada Contents (1) Contents P1 (2) General

More information

WindLab TM Wind Turbine Power System Sample Laboratory Procedure Manual

WindLab TM Wind Turbine Power System Sample Laboratory Procedure Manual WindLab TM Wind Turbine Power System Sample Laboratory Procedure Manual WindLab TM is a scaled Wind Turbine Electrical Generation System, designed to function like a full-sized wind turbine system. It

More information

Wind Turbine Testing

Wind Turbine Testing Wind Turbine Testing Why Test? Limited number of machines suitable for polar applications Identify the good and bad machines Identify the good and bad manufacturers Gain familiarity with the systems Decrease

More information

V MW An efficient way to more power

V MW An efficient way to more power V90-3.0 MW An efficient way to more power Innovations in blade technology 3 44 metres of leading edge In our quest to boost the efficiency of the V90, we made sweeping improvements to two aspects of our

More information

Domestic Wind Turbines and Componets

Domestic Wind Turbines and Componets Domestic Wind Turbines and Componets Attila Sáfár BMF-KVK-SZGTI, H-8000, Székesfehérvár, Budai út 45., safar.attila@szgti.bmf.hu Abstract: The following study introduce the componets and opreration of

More information

Power Control of a PMSG based Wind Turbine System Above Rated Wind Speed

Power Control of a PMSG based Wind Turbine System Above Rated Wind Speed International Renewable Energy Congress November 5-7, 010 Sousse, Tunisia Power Control of a PMSG based Wind Turbine System Above Rated Wind Speed M. Kesraoui 1, O. Bencherouda and Z. Mesbahi 1 Laboratory

More information

Company Profile. 1) Company Name RIAMWIND Co., Ltd. 2) Date Established April 1st, 2012

Company Profile. 1) Company Name RIAMWIND Co., Ltd. 2) Date Established April 1st, 2012 Company Profile July 1, 2018 1) Company Name RIAMWIND Co., Ltd. 2) Date Established April 1st, 2012 ) Headquarter Office Postal code 814-0006 -10-19, Momochi, Sawara-ku, Fukuoka-shi, Fukuoka 4) Contact

More information

wind turbine system For New Design

wind turbine system For New Design INSTRUCTION MANUAL WIND TURBINE 600W 1KW, 2KW, 3KW -10KW wind turbine system For New Design CONTENTS 1. SUMMARIZE... 2 2. TECHNICAL PARAMETER... 2 3. STRUCTURE COMPONENTS... 3 4. PACKING LIST... 4 5.

More information

ABB Wind Power Solution

ABB Wind Power Solution Feng Li, Wind ISI, CNABB, November, 2016 ABB Wind Power Solution November 13, 2016 Slide 1 ABB deliveries from A to Z into the wind industry Wind power generation, transmission and integration, control

More information

Wind Turbine Machine Head Evaluation Page 1 of 32 Appendix I. Sketch of 1.5XLE (from GE literature).

Wind Turbine Machine Head Evaluation Page 1 of 32 Appendix I. Sketch of 1.5XLE (from GE literature). Wind Turbine Machine Head Evaluation Page 1 of 32 Figure 1 Sketch of 1.5XLE (from GE literature). Figure 2 Sketch of 1.5XLE (from GE literature). Wind Turbine Machine Head Evaluation Page 2 of 32 Figure

More information

BENEFITS. Maximum output at minimum cost per kwh for low wind sites. - Class IIIA/WZII.

BENEFITS. Maximum output at minimum cost per kwh for low wind sites. - Class IIIA/WZII. GAMESA G90-2.0 MW BENEFITS Maximum output at minimum cost per kwh for low wind sites - Class IIIA/WZII. - Pitch and variable speed technology to maximize energy production. - Production of lighter blades

More information

G87-ingles 14/12/06 17:44 Página 2 GAMESA G MW

G87-ingles 14/12/06 17:44 Página 2 GAMESA G MW G87-ingles 14/12/06 17:44 Página 2 GAMESA G87-2.0 MW G87-ingles 06/12/14 15:47 Página 3 BENEFITS Maximum output at minimum cost per kwh for medium wind sites - Class IIA/WZII. - Pitch and variable speed

More information

Within the 300 GW total, the Energy Department estimates that 54 GW will be required from offshore wind to feed the large coastal demand centers.

Within the 300 GW total, the Energy Department estimates that 54 GW will be required from offshore wind to feed the large coastal demand centers. THE MOST ADVANCED WIND- ENERGY TESTING CENTER COMING TO SOUTH CAROLINA In a one- of- a- kind testing facility under construction at the Clemson University Restoration Institute, offshore wind turbine manufacturers

More information

V MW The future for low wind sites

V MW The future for low wind sites V0-2.75 MW The future for low wind sites Knowing which way the wind blows The V0-2.75 MW turbine know which way the wind blows, and is designed to follow it. A significant advance in wind turbine efficiency,

More information

EFFECT OF SURFACE ROUGHNESS ON PERFORMANCE OF WIND TURBINE

EFFECT OF SURFACE ROUGHNESS ON PERFORMANCE OF WIND TURBINE Chapter-5 EFFECT OF SURFACE ROUGHNESS ON PERFORMANCE OF WIND TURBINE 5.1 Introduction The development of modern airfoil, for their use in wind turbines was initiated in the year 1980. The requirements

More information

Mainshaft Bearings: Bearing Arrangements, Damage Modes and Technology Advancements. Presented by Richard Brooks AWEA O&M Conference 2017

Mainshaft Bearings: Bearing Arrangements, Damage Modes and Technology Advancements. Presented by Richard Brooks AWEA O&M Conference 2017 Mainshaft Bearings: Bearing Arrangements, Damage Modes and Technology Advancements Presented by Richard Brooks AWEA O&M Conference 2017 1 BEARING TYPE COMPARISON Spherical Roller Bearing Radial Internal

More information

Maxwell Technologies GmbH Brucker Strasse 21 D Gilching Germany Phone: +49 (0) Fax: +49 (0)

Maxwell Technologies GmbH Brucker Strasse 21 D Gilching Germany Phone: +49 (0) Fax: +49 (0) WHITE PAPER ULTRACAPACITORS IMPROVE RELIABILITY FOR WIND TURBINE PITCH SYSTEMS Adrian Schneuwly Introduction Today s advanced wind turbines are three-bladed, variable speed turbines. The rotor blades are

More information

2,600W Wind/Solar Hybrid System HY-W2S6

2,600W Wind/Solar Hybrid System HY-W2S6 2,600W Wind/Solar Hybrid System HY-W2S6 Performance: 160-400 AC Kilowatt-hours (kwh's) per month (depending on wind and solar resources) Recommended for: Typical off-grid homes, schools, clinics, etc.

More information

GOLDWIND S48/ kW Industrial Wind Turbine (50Hz) World Wide Shipping. Immediate Availability. Installation Services.

GOLDWIND S48/ kW Industrial Wind Turbine (50Hz) World Wide Shipping. Immediate Availability. Installation Services. 750kW Industrial Wind Turbine (50Hz) Includes: Tower, Nacelle, Hub, Rotor, Blades and Controller Complete systems starting from only $410,000.00 - FOB Technical Specifications: Rated Power:750kW Rotor

More information

Test Summary Report for the Solid Wind Power SWP25-14TG20 Small Wind Turbine

Test Summary Report for the Solid Wind Power SWP25-14TG20 Small Wind Turbine Cleeve Road, Leatherhead Surrey, KT22 7SB UK Telephone: +44 (0) 1372 370900 Facsimile: +44 (0) 1372 370999 www.intertek.com Test Summary Report for the Solid Wind Power SWP25-14TG20 Small Wind Turbine

More information

V MW & 2.0 MW Built on experience

V MW & 2.0 MW Built on experience V90-1.8 MW & 2.0 MW Built on experience Innovations in blade technology Optimal efficiency The OptiSpeed * generators in the V90-1.8 MW and the V90-2.0 MW have been adapted from those in Vestas highly

More information

Certification and Shop Approval for Repair Work on Rotor Blades

Certification and Shop Approval for Repair Work on Rotor Blades ENERGY Certification and Shop Approval for Repair Work on Rotor Blades DNV GL Renewables Certification Markus Selinka 1 SAFER, SMARTER, GREENER AGENDA 01 New standard and new service specification 02 Certification

More information

Hedeager Aarhus N Denmark

Hedeager Aarhus N Denmark Certificate No. This certificate is issued to for the wind turbine wind turbine class (class, standard, year) Vestas Wind Systems A/S Hedeager 42 8200 Aarhus N Denmark Vestas V100-2 MW 60 Hz VCSS Mk 10

More information

H4.6-3kW/H6.4-5kW/H8.0-10kW/H9.0-20kW. Technical Overview ANHUI HUMMER DYNAMO CO., LTD.

H4.6-3kW/H6.4-5kW/H8.0-10kW/H9.0-20kW. Technical Overview ANHUI HUMMER DYNAMO CO., LTD. H4.6-3kW/H6.4-5kW/H8.0-10kW/H9.0-20kW Technical Overview H4.6-3kW/H6.4-5kW/H8.0-10kW/H9.0-20kW Wind Turbine System - Medium Model Project - Hummer is the manufacture specialized in small-to-medium wind

More information

brighter future take charge of your family s energy future harvest power year-round, night and day with a wind+solar hybrid system from Pika.

brighter future take charge of your family s energy future harvest power year-round, night and day with a wind+solar hybrid system from Pika. smarter power for a brighter future harvest power year-round, night and day w h i s p e r- q u i e t take charge of your family s energy future with a wind+solar hybrid system from Pika. (207) 887-9105

More information

Hedeager Aarhus N Denmark

Hedeager Aarhus N Denmark Certificate No. This certificate is issued to for the wind turbine wind turbine class (class, standard, year) Vestas Wind Systems A/S Hedeager 42 8200 Aarhus N Denmark Vestas V110-2 MW 60 Hz VCSS Mk 10

More information

Ogin Inc. Shrouded Wind Turbine, installed, Kern County, Califomia (Rosamond area)

Ogin Inc. Shrouded Wind Turbine, installed, Kern County, Califomia (Rosamond area) Ogin Inc. Shrouded Wind Turbine, installed, Kern County, Califomia (Rosamond area) Deer Island, Boston Harbor, MA, front/upwind side Google overhead view of Deer Island installation Google Map and Street

More information

NIAGARA REGION WIND FARM PROJECT DESCRIPTION REPORT. Appendix C. Turbine Specifications

NIAGARA REGION WIND FARM PROJECT DESCRIPTION REPORT. Appendix C. Turbine Specifications NIAGARA REGION WIND FARM PROJECT DESCRIPTION REPORT Appendix C Turbine Specifications Calculated power curve [kw] Power coefficient Cp [-],000 kw,000,00,000 0.0 0.0 0.0 Technical specifications E-0 Rated

More information

Hedeager Aarhus N Denmark. Vestas V110-2 MW 50 Hz VCS Mk 10

Hedeager Aarhus N Denmark. Vestas V110-2 MW 50 Hz VCS Mk 10 Certificate No. This certificate is issued to for the wind turbine wind turbine class (class, standard, year) Vestas Wind Systems A/S Hedeager 42 8200 Aarhus N Denmark Vestas V110-2 MW 50 Hz VCS Mk 10

More information

VENSYS. Vensys 62 The next Generation of Gearless Wind Turbines goes into Production

VENSYS. Vensys 62 The next Generation of Gearless Wind Turbines goes into Production Vensys 62 The next Generation of Gearless Wind Turbines goes into Production F. Klinger, INNOWIND GmbH J. Rinck, Vensys GmbH S. Balzert, FG Windenergie S. Jöckel, INNOWIND GmbH S. Jöckel: Vensys 62 Next

More information

Avda. Ciudad de la Innovación Sarriguren (Navarra) Spain

Avda. Ciudad de la Innovación Sarriguren (Navarra) Spain Certificate No. This certificate is issued to Renewable Energy Innovation & Technology SL Avda. Ciudad de la Innovación 9-11 31621 Sarriguren (Navarra) Spain for the wind turbines wind turbine class (class,

More information

One Earth Opp. Magarpatta City Pune, India. Suzlon S120 DFIG 2.1MW (50 Hz)

One Earth Opp. Magarpatta City Pune, India. Suzlon S120 DFIG 2.1MW (50 Hz) Certificate No. This certificate is issued to for the wind turbine wind turbine class (class, standard, year) One Earth Opp. Magarpatta City Pune, 411028 India Suzlon S120 DFIG 2.1MW (50 Hz) S, IEC 61400-1

More information

EE5940: Wind Essen.als. Materials and Structural Reliability Sue Mantell Mechanical Engineering

EE5940: Wind Essen.als. Materials and Structural Reliability Sue Mantell Mechanical Engineering EE5940: Wind Essen.als Materials and Structural Reliability Sue Mantell Mechanical Engineering Focus on Rotor Blades Overview the most complex structural component of a wind turbine Quick overview of Loads

More information

New dimensions. Siemens Wind Turbine SWT Answers for energy.

New dimensions. Siemens Wind Turbine SWT Answers for energy. New dimensions Siemens Wind Turbine SWT-3.6-107 Answers for energy. 2 New dimensions The SWT-3.6-107 wind turbine is the largest model in the Siemens Wind Po wer product portfolio. It was specifically

More information

Real-time hybrid testing of a braceless semisubmersible

Real-time hybrid testing of a braceless semisubmersible Real-time hybrid testing of a braceless semisubmersible wind turbine Erin Bachynski, MARINTEK Valentin Chabaud, NTNU Maxime Thys, MARINTEK Norsk Marinteknisk Forskningsinstitutt Outline How to Perform

More information