Improvement of Traction Through mmpc in Linear Vehicle Dynamics Based on Electrohydraulic Dry-Clutch

Size: px
Start display at page:

Download "Improvement of Traction Through mmpc in Linear Vehicle Dynamics Based on Electrohydraulic Dry-Clutch"

Transcription

1 Intell Ind Syst (2015) 1: DOI /s ORIGINAL PAPER Improvement of Traction Through mmpc in Linear Vehicle Dynamics Based on Electrohydraulic Dry-Clutch Mario Pisaturo 1 Adolfo Senatore 1 Received: 14 April 2015 / Revised: 9 June 2015 / Accepted: 12 June 2015 / Published online: 14 July 2015 Springer Science+Business Media Singapore 2015 Abstract Today s several algorithms are currently managed by the control units in passenger cars to deliver higher comfort level to vehicle driver and passengers. One route to smoother longitudinal dynamics as well as deliver higher safety is provided by the engine torque limiters and traction control. The drawback of such filters is that they bring in time delays which may give to the driver the feeling that the vehicle engine does not respond in a prompt way to her/his demand [1]. On the other hand, recent highly-supercharged engines suffer for inadequate engine torque rise when setting the vehicle in motion from stationary with fast accelerator request: this behaviour is related to fueling response, fuel-air ratio control, soot emissions regulation, etc. The goal of this paper is to design a feedback controller based on multiple model predictive controller (mmpc) to manage the clutch opening/closing operations in a dry-clutch automated manual transmission architecture. The controller aims at ensuring a comfortable vehicle launch by assuring a reduced engagement time and by maintaining the wheel slip at a desired value to have the maximum traction force. The simulations have been carried out by considering the engine dynamics as well as the delay ensuing engine torque build-up together to an imposed wheel slip in fast launch manoeuvre to prove the effectiveness of the proposed clutch control strategy and encourage the development of real-time routines for the testing in real-time environment. B Mario Pisaturo mpisaturo@unisa.it Adolfo Senatore a.senatore@unisa.it 1 Department of Industrial Engineering, University of Salerno, Fisciano, SA, Italy Keywords Model predictive control Dry clutch Engine torque build-up Engagement speed-tracking Introduction The ever increasing use of automatic transmissions in modern passenger cars along with the development of advanced sensors, actuators and control unit functions could provide a more effective electronically-managed solution through the design of proper control strategies [2 4]. For market sectors such as large-series and ecological cars, the automated manual transmissions (AMTs) show all the advantages ensuing lower weight and higher efficiency with respect to other typologies of automatic transmissions [5]. In both the shifting conditions semi-automatic, based on the driver s command, or fully automatic the transmission control unit manages the shifting steps, through suitable signals to the engine, the clutch assembly and the gearbox, according to current engine regime, driving conditions and setup program (economy, sport, winter profiles, etc.). In addition, an AMT is directly derived from a manual one through the integration of actuators; then, development and production costs are generally lower than other automatic transmissions, while the reliability and durability are at highest level. For high class sport cars, vehicle dynamic performances and driving quality can be strongly improved with respect to automatic transmissions [6]. Unfortunately, the higher is the power potential of a highly-supercharged engine the higher is the discrepancy between driver s expectations and vehicle response in quick start-up manoeuvres. In this paper a high order dynamic model of the powertrain system which encompass the electro-hydraulic actuator behaviour has been analysed to design a feedback controller. It is based on multiple model predictive controller (mmpc)

2 154 Intell Ind Syst (2015) 1: ϑ gw = gw = g w (9) Fig. 1 Driveline scheme: 5 DoF to manage the clutch opening/closing and gearbox shifting operations in a dry-clutch AMT architecture [2,7,8]. The mmpc is developed to comply with constraints both on the inputs and outputs. The controller aims at ensuring a comfortable vehicle launch by assuring a reduced engagement time and by maintaining the wheel slip at a desired value to have the maximum traction force. The engine dynamics as well as the delay ensuing engine torque build-up in fast launch manoeuvre has been modelled to prove the effectiveness of the proposed clutch control strategy and encourage the development of real-time routines for the testing in realtime environment. Vehicle Longitudinal Dynamics This section describes a model for simulating the driveline and the vehicle longitudinal dynamics. In Fig. 1 the driveline scheme is shown, where the subscripts e, f, c, g, w indicate engine, flywheel, clutch disc, (primary shaft of) gearbox, and wheels, respectively. A dynamic model of the driveline can be obtained by applying the torque equilibrium at the different nodes of the driveline scheme, where T indicates the torques, J the inertias and ϑ the angles. The equations which describe the driveline model are: J e e = T e ( e ) b e e T ef ϑef, ef (1) J f f = T ef ϑef, ef T fc (y) (2) J c c = T fc (y) T cg ϑcg, cg (3) J g (r) g = T cg ϑcg, cg bg g 1 r T gw ϑgw, gw (4) J w w = T gw ϑgw, gw Tw (5) where T e is the engine torque (assumed to be a control input of the model), T fc is the torque transmitted by the clutch (the second control input), y is the throwout bearing position, and T w is the equivalent load torque at the wheels (a measured disturbance). The gear ratio is r (which here includes also the final conversion ratio), and J c is an equivalent inertia, which includes the masses of the clutch disc, friction pads and the cushion spring. Furthermore the following equations also hold: J g (r) = J g1 + J g2 r 2 (10) T ef ϑef, ef = kef ϑ ef + b ef ef (11) T cg ϑcg, cg = kcg ϑ cg + b cg cg (12) T gw ϑgw, gw = kgw ϑ gw + b gw gw (13) T w = F x R l + F zf x (14) where k are torsional stiffness coefficients, b viscous dampings, F x is the traction force in longitudinal direction, R l is the rolling radius which could be assumed as 92 % of the wheel radius for radial tires [9], F zf is the normal load applied on the front wheels and x is the offset shown in Fig. 1. These equations represent the driveline system during the slipping phase. The only non-linearities in these equations are the plant inputs: the engine torque T e ( e ), clutch torque T fc (y) and the wheel load torque T w (measured disturbance), [10,11]. During the engaged phase, the flywheel angular speed f and the clutch angular speed c are the same: thus the Eqs. (2) and (3) can be summed each other, which yields: Jc + J f c = T ef ϑef, ef Tcg ϑcg, cg (15) The driveline parameters used for the simulation are typical for a mid-size car and can be found in literature. In the scheme of Fig. 2 is depicted the vehicle longitudinal motion by considering a front-wheel drive car. The vehicle has been considered as a rigid body and the difference between the left and the right tires have been ignored (the so called single-track model). The lateral, yaw, pitch and roll dynamics have also been neglected. The equations which describe the vehicle longitudinal motion are: and the angular speeds dynamics are: ϑ e = e (6) ϑ ef = ef = e f (7) ϑ cg = cg = c g (8) Fig. 2 Vehicle longitudinal dynamics in acceleration

3 Intell Ind Syst (2015) 1: m v x = F x F R (16) F x = μ (s) F zf (17) 1 F R = mgf roll + c d 2 ρ a Avx 2 (18) where m is the vehicle mass, v x is the longitudinal speed of the vehicle center gravity, μ (s) is the Pacejka s tire model coefficient, F R is the force resistance which includes both the roll resistance and the air resistance as explained in (18), g is the acceleration gravity, f roll is the rolling resistance coefficient, ρ a the air density, A the front surface vehicle area, c d the air resistance coefficient. The traction force has been assumed as function of the normal load and the slip ratio. The normal force has been assumed as a static force by ignoring the influence of the suspension. This method provides an accurate estimation of the normal force, particularly when the road surface is not bumpy [12]. The longitudinal slip s for a wheel is defined as the relative difference between a driven wheel angular speed and the vehicle absolute speed: s = R w w v x R w w R w w >v x, w = 0 acceleration R w w v x v x R w w <v x, v x = 0 braking (19) The traction force F x in the longitudinal direction is a non-linear function of the longitudinal slip s, of the normal force applied on the drive wheels F zf and of the peak road adhesion coefficient μ p which depends from the road conditions. Smaller values of μ p correspond to more slippery road conditions. The tire-road friction model used in this paper is the so-called Magic-Formula developed by Pacejka and co-workers [13]. μ (s) = D sin (C arctan (Bs E (Bs arctan (Bs)))) (20) where BCD is the slope of the curve at zero-slip, B is the stiffness factor, C is the curve factor, E is the shape factor and D is the peak value. If the shape factor E < 1 and the curve factor 1 < C 2 the curve has one relative maximum and if E = 0 its value is: s max = tan π 2C (21) B It is worth noting that at s max corresponds μ p i.e., the peak road adhesion coefficient and beyond of this value the road adhesion is lost. In Fig. 3 the relationship between the traction longitudinal force F x and the slip s for a given normal load F z is depicted. Fig. 3 Traction longitudinal force versus slip The driveline parameters used for the simulation are typical for a mid-size passenger car and can be found in literature [14]. A mathematical representation of the driveline useful for the model predictive control (MPC) approach is the State- Space representation. In the continuous domain the driveline model can be written as follows: ẋ (t) = [ A sl d + A eng (1 d) ] x (t) + [ B sl d + B eng (1 d) ] u (t) (22) y (t) = Cx (t) where the state, input and output vectors are respectively: x = { } T e ϑ e f ϑ f c ϑ c g ϑ g w ϑ w u = { T e T fc T w } T y = { e c } T and d is a switching variable equal to 1 when the system is in the slipping phase and 0 otherwise. The subscripts sl and eng indicate the slipping and the engaged system matrices, respectively, and the matrices can be simply deduced from the Eqs. (1) (15). Instead, the longitudinal vehicle motion represented by Eqs. (16) (18) has been implemented regardless of the State-Space model i.e., it has not been taken into account in the MPC design. The MPC has been designed with the discrete time version of the driveline model (22) obtained by using the zero-order hold method with a sampling time of 0.01 s. This value is compatible for automotive applications. In fact, as reported in [15] the computational cycle adopted for these applications is set as 5 10 ms. Engine Static Model This section deals with the description of the engine dynamics implemented in the Simulink model used for the simulations. In particular the engine behaviour has been simulated

4 156 Intell Ind Syst (2015) 1: Fig. 4 Engine static map by using a static map with the engine torque depending on the accelerator pedal (first MPC output) and the measured engine speed (plant output), see Fig. 4. As stated before, the engine torque build-up has been considered for the simulations. In details, the torque build-up phenomenon is related, in the modern automotive and truck diesel engine, to the match between turbocharger and engine usually optimized for steady-state conditions and for low specific consumption. Thus, the turbocharger size is determined for high torque output, which usually leads to high moment of inertia and consequently slow air-charge response. This slow air-flow response cannot match the required fast fueling commands during transients and so it causes poor response and black smoke emissions. The key reason is the turbocharger inertia, which is responsible for the biggest part of the delay concerned. This turbocharger lag is more pronounced with the increase in engine rating or degree of turbocharging, which explains why it has become more prominent during recent years [1]. The engine torque build-up has been introduced in the simulation algorithm by using a rate limiter (with a limitation only on the rising rate of 200 Nm/s). radius of the contact surface and F fc is the cushion spring reaction. From the Eq. (23) it is clear that the cushion spring compression δ f and the corresponding force F fc (δ f ) determine the torque transmissibility as function of the throwout bearing position y [16]. Details on more complex model of the torque transmitted by a dry clutch can be found in literature [8,16,18]. Moreover, as previously explained the aim of the actuator is to control the throwout bearing position and consequently, the torque transmitted from the engine to the wheels. The actuator is mainly composed by a hydraulic piston connected to the clutch diaphragm spring; for a passively closed architecture, the clutch is engaged when no pressure is applied to the piston. The piston chamber is connected to a servovalve by means of pipeline. The other two-ways of the servovalve are connected to a supply circuit and to a discharge circuit, see Fig. 5 for details. The position of the spool valve, which is controlled by an electromagnetic circuit, switches the states of the hydraulic circuit in filling phase or in dumping phase. The servovalve connects the piston chamber to the discharging circuit in order to disengage the clutch. The springs push the piston back and the oil flows to the tank. Conversely, to engage the clutch the servovalve connects the piston chamber to the supply circuit in this way the piston force overcomes the springs reactions. The servovalve displacement is controlled in current and to keep the clutch at a certain position an offset current is needed to hold the spool in its neutral point, that corresponds to no oil flowing in the circuit. For currents greater than this offset value, the actuator is connected to the high pressure power supply, while for currents smaller than the offset value, the actuator is connected to the low-pressure circuit [17]. A regulator PI has been designed on a linearised model of the actuator. For the sake of brevity Clutch and Actuator Models In this section the model of the hydraulic actuator system coupled to the clutch is described. The torque transmitted by a dry clutch is generated by the friction phenomenon between the friction pads on the two sides of the clutch disk and the flywheel on one side and pressure plate on the other side. In [16] a model of dry clutch torque transmissibility has been proposed. It explains the role of clutch springs and their influence on the torque transmissibility. The connection between torque transmissibility and cushion spring force obtained in [16]isgivenbyEq.(23). T fc (y) = nμr eq F fc (δ f (y)) (23) where n (n = 2 in this case) is the number of contact pairs, μ is the dynamic friction coefficient, R eq is the equivalent Fig. 5 Clutch actuator and its position at clutch disengaged or open

5 Intell Ind Syst (2015) 1: Fig. 6 Control scheme details about the mathematical model and the design of the PI regulator have been omitted but they can be found in [3]. Controller Design Two closed loops have been designed in order to manage the engagement phase. The outer closed loop manages the driveline dynamics and a mmpc strategy has been implemented with the aim of generating the reference signals for the engine and the clutch subsystems. The inner loop manages the actuator dynamics and a PI controller has been designed by neglecting the sensor dynamics. In Fig. 6 the closed loop scheme is reported. The clutch torque characteristic as function of throwout bearing position and cushion spring compression is implemented in the Clutch torque map block [18,19]. In the latter block the map of the dynamic friction coefficient has been included as from [20] in which the Authors explored the tribological behaviour of the clutch facings and listed the experimental results together with predictions of the performance through artificial neural-network algorithm. Multiple Model Predictive Control The MPC approach has been developed to manage the engine and clutch operations during vehicle launch since it provides numerous advantages over the conventional control algorithms. Indeed, it naturally handles multivariable control problem, it can take account of actuator limitations, it allows the system to operate closer to constraints than conventional control, and control update rates are relatively low in these applications; so that there is plenty of time for the necessary on-line computations [21]. As explained above, the clutch operates in two different working conditions: the slipping phase and the engaged phase. Two different controllers have been designed for each one of the latter phases as explained in detail in [8]. A switching parameter selects the controller by considering the absolute value of the difference between the engine and the clutch angular speed. In particular, the switching condition from the first controller to the second one is attained when sl = e c 1 rad/s. It is important to emphasize that in no way the two controllers can work simultaneously and so any conflict between them is avoided a priori. The MPC has been designed with the discrete time version of the driveline model (22) obtained by using the zero-order hold method with a sampling time of 0.01 s. As explained above, this value is compatible with automotive applications. Constraints The solution here proposed is based on the design of a multiple controller working in sequence according to the powertrain operating conditions. These controllers are designed to comply with some constraints, both on the plant inputs and on the plant outputs, which allow the comfort to be improved during the engagement process and increase the safety of the system. In particular, the plant inputs saturation constraints have been imposed on both the manipulated variables, the accelerator pedal and the clutch torque: [ α α min,α max] (24) [ ] T fc T fc min, T fc max (25) where α min = 5 % is the minimum accelerator pedal value to avoid the engine stall, α max = 100 % is the maximum admissible accelerator pedal value, T fc min = 0 Nm is the minimum torque value transmitted by the clutch, T fc max = 400 Nm is the maximum torque value that the clutch can transmit. Instead, on the plant outputs, engine and clutch angular speeds, the following constraints hold: [ ] e e kill,e max (26) c c min (27) where e kill = 60 rad/s represents the so-called no-kill condition [14], e max = 600 rad/s is the maximum value of the engine speed before attaining critical conditions and = 0 rad/s is the minimum value of clutch speed during min c

6 158 Intell Ind Syst (2015) 1: Table 1 MPC1 parameters, slipping phase Symbol Description Value 1 2 W u Input weight W u Input rate weight W y Output weight P Prediction horizon 20 m Control horizon 5 ρ ɛ Overall penalty weight 0.8 Table 2 MPC2 parameters, engaged phase Symbol Description Value 1 2 W u Input weight W u Input rate weight W y Output weight P Prediction horizon 40 m Control horizon 15 ρ ɛ Overall penalty weight 0.8 the vehicle launch. It is worth noting that it is not necessary to constrain the clutch angular speed upper bound, because it is equal to the engine angular speed during the engaged phase and it can only decrease for passive resistance during the opening phase. Tuning The parameters have been tuned by trial and error procedure by using the MPC Toolbox implemented in SIMULINK. The driving criteria adopted to select these parameters have been a trade-off between fast engagement and comfortable lock-up. For the sake of brevity, details on their meanings and influence on the plant response are deeply described in [8]. The parameters used during the simulations are listed in Tables 1 and 2. During the engaged phase, i.e., when the engine is synchronized with the transmission, the clutch torque value (second input) does not influence the plant [8]. Indeed, in these conditions the driveline has one degree of freedom less than the slipping state and the plant model is represented by Eq. (15) which has been obtained by adding the Eqs. (2) and (3). In particular, when the clutch is engaged the engine angular speed (first plant output) and the clutch angular speed (second plant output) are the same and the system has one degree of freedom less than the slipping phase. In Table 2 opportune values have been used to avoid singularity problem on Hessian matrix. A lower value of the weight means that the first plant input accounts for weaker influence on the behaviour of the overall performance. Simulation Results This section describes the result of the simulations of two different fast launch manoeuvres by using MATLAB/ SIMULINK environment. In order to have the maximum traction force it has been selected a tire-road slip s near its peak s max on the linear segment of the curve shown in Fig. 3. This means that the tire-road adhesion conditions never exceeds the value beyond which the traction control acts. The role of the MPC is to manage the clutch during the engagement phase by avoiding to exceed the tire-road adhesion coefficient μ p (s max ). The switch between the slipping phase and the lock-up phase is managed by a Finite-State Machine. In particular, the clutch is considered to be engaged when the value of the slip speed is lower than 1 rad/s. Once the clutch is engaged, the throwout bearing position is rapidly increased to its maximum value by the control algorithm. Manoeuvre 1 The following figures show the results for a fast launch manoeuvre. In Fig. 7 are depicted the plots of the engine and the clutch angular speeds, respectively. The solid lines represent the set point trajectories e sp and c sp, instead the dashed lines represent the output of the plant e and c. The engagement condition is achieved earlier than the same occurrence of the reference signals. This is due to the faster increase of the clutch angular speed respect to its reference trajectory and this leads to a shorter engagement time. After that the engagement is attained, the MPC switches to the second controller which manages the driveline with one degree of freedom less. The response delay of the clutch actuator (Fig. 8) is due to the actuator dynamics and to the differences between the simpler friction map implemented in the transmission control unit and the real system. This results also in difference between the reference clutch torque (output of the mmpc) and the actual clutch torque (output of the clutch torque map), Fig. 9. It is worth highlighting that a good choice of the parameters of the PI regulator gives a fast actuator response and the wind up does not arise. This means that the throwout bearing position never exceeds its limit making the saturation unnecessary [3]. In Fig. 10, the reference engine torque (output of the engine static map) together with the engine torque response which presents a lag due to the torque build-up phenomenon are displayed. The torque build-up weakly appears in the first second. Indeed, the mmpc in order to track the reference engine speed produces an accelerator pedal signal (Fig. 11) which results in a reference engine torque which cannot

7 Intell Ind Syst (2015) 1: Fig. 7 Engine and clutch speeds Fig. 10 Engine torque Fig. 8 Bearing position Fig. 11 Accelerator pedal signal be adequately tracked because of the delayed response of the turbocharger occurs. Manoeuvre 2 Fig. 9 Clutch Torque The following figures show the results for a second fast launch manoeuvre. Such a manoeuvre is faster than previous one. In Fig. 12 the plots of the engine and the clutch angular speeds are depicted, respectively. Also in this case the engagement time is slightly shorter than the set point trajectories. Once more time this is due to the faster increase of the clutch speed with respect to its reference trajectory. After that the engagement is attained the MPC switches on the second controller. The effect of the response delay of the clutch actuator (Fig. 13) is added to the differences between the simplified clutch frictional torque characteristic implemented in the transmission control unit and the real system. This results in sensible difference between the reference clutch torque

8 160 Intell Ind Syst (2015) 1: Fig. 12 Engine and clutch speeds Fig. 14 Clutch Torque Fig. 13 Bearing position Fig. 15 Engine torque (output of the mmpc) and the actual clutch torque (output of the clutch torque map), Fig. 14. In Fig. 15, the reference engine torque (output of the engine static map) and the response delay of the engine torque due to the build-up phenomenon are displayed. This phenomenon heavily appears in the first half second because of the abrupt torque request. In fact, the engine torque request is higher than the previous manoeuvre; thus, the mmpc produces a high accelerator pedal signal (Fig. 16). In this case the lag response of the engine is more evident, Fig. 15. Moreover, in Figs. 10 and 15 it is possible to note that after the engagement the engine torque request is higher because in this condition all the road load weighs on the engine. The result is a marked build-up phenomenon. Finally in Fig. 17, the vehicle speed for both the manoeuvres is plotted. The graphs show that the vehicle in the second Fig. 16 Accelerator pedal signal

9 Intell Ind Syst (2015) 1: Fig. 17 Vehicle speed for the first v x,1 and the second v x,2 manoeuvre manoeuvre, labelled with v x,2, is faster than the first one, v x,1, for the reasons explained above. Concluding Remarks A multiple model predictive controller for dry clutch engagement to manage passenger car launch delay even in presence of engine torque build-up has been proposed. The controller aims at ensuring a comfortable vehicle launch by assuring a reduced engagement time with wheel slip at desired value to achieve the maximum traction force. Two controllers, the first for the slipping phase and the second for the engaged phase, have been designed to deliver a good trade-off between fast engagements and comfortable manoeuvres by complying with the constraints both on the input and the output variables. Two fast launch manoeuvres have been simulated to prove the effectiveness of the proposed control method. The simulation results showed the good performances of the MPC especially during the first start-up manoeuvre where the torque build-up phenomenon during the engagement is limited. On the other hand, in the second manoeuvre, in which the engine torque request is higher than the first one, the lag of the engine response is more evident. Nevertheless the mmpc allows a good tracking of the reference speeds by ensuring the maximum traction force during the vehicle start-up. References 1. Rakopoulos, C.D., Giakoumis, E.G.: Diesel Engine Transient Operation. Springer, New York (2009) 2. Bemporad, A., Borrelli, F., Glielmo, L., Vasca, F.: Hybrid control of dry clutch engagement. In: European Control Conference, pp Porto, Portugal (2001) 3. Pisaturo, M., Senatore, A., D Agostino, V., Cappetti, N.: Model predictive control for electro-hydraulic actuated dry clutch in AMT transmissions. In: The 14th Mechatronics Forum International Conference, Karlstad, Sweden (2014) 4. Schmidt, A.: Simulation of collective load data for integrated design and testing of vehicle transmissions. In: 3rd International Conference Dynamic Simulation in Vehicle Engineering, St. Valentin, Austria (2014) 5. Senatore, A.: Advances in the automotive systems: an overview of dual-clutch transmissions. Recent Pat. Mech. Eng. 2, (2009) 6. Lucente, G., Montanari, M., Rossi, C.: Modelling of an automated manual transmission system. Mechatronics 17(2 3), (2007) 7. Amari, R., Alamir, M., Tona, P.: Unified MPC strategy for idle speed control, vehicle start-up and gearing applied to an automated manual transmission. In: 17th IFAC World Congress, Seoul, South Korea (2008) 8. Pisaturo, M., Cirrincione, M., Senatore, A.: Multiple constrained mpc design for automotive dry clutch engagement. IEEE/ASME Trans. Mechatron. 20(1), (2015) 9. van Eldik Thieme, H., Pacejka, H.: The tire as a vehicle component. Delft University of Technology, Delft (1971) 10. Baffet, G., Charara, A., Lechner, D.: Estimation of vehicle sideslip, tire force and wheel cornering stiffness. Control Eng. Pract. 17(11), (2009) 11. Grip, H., Imsland, L., Johansen, T., Kalkkuhl, J., Suissa, A.: Vehicle sideslip estimation. IEEE Control Syst. 29(5), (2009) 12. Amodeo, M., Ferrara, A., Terzaghi, R., Vecchio, C.: Wheel slip control via second-order sliding-mode generation. IEEE Trans. Intell. Transp. Syst. 11(1), (2010) 13. Bakker, E., Pacejka, H., Lidner, L.: A new tire model with an application in vehicle dynamics studies. SAE Trans 98(6), (1989) 14. Glielmo, L., Iannelli, L., Vacca, V., Vasca, F.: Gearshift control for automated manual transmissions. IEEE/ASME Trans. Mechatron. 11(1), (2006b) 15. Quanan, H., Jian, S., Lei, L.: Research on rapid testing platform for TCU of automated manual transmission. In: Proceedings of the 2011 Third International Conference on Measuring Technology and Mechatronics Automation - Volume 03, IEEE Computer Society, Washington, DC, USA, ICMTMA 11, pp (2011) 16. Vasca, F., Iannelli, L., Senatore, A., Reale, G.: Torque transmissibility assessment for automotive dry-clutch engagement. IEEE/ASME Trans. Mechatron. 16(3), (2011) 17. Montanari, M., Ronchi, F., Rossi, C., Tilli, A., Tonielli, A.: Control and performance evaluation of a clutch servo system with hydraulic actuation. Control Eng. Pract. 12(11), (2004) 18. Cappetti, N., Pisaturo, M., Senatore, A.: Modelling the cushion spring characteristic to enhance the automated dry-clutch performance: the temperature effect. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 226(11), (2012) 19. D Agostino, V., Cappetti, N., Pisaturo, M., Senatore, A.: Improving the engagement smoothness through multi-variable frictional map in automated dry clutch control. In: Proceedings of the ASME2012 International Mechanical Engineering Congress & Exposition, Houston, Texas, USA, vol. 11, pp (2012) 20. Senatore, A., D Agostino, V., Di Giuda, R., Petrone, V.: Experimental investigation and neural network prediction of brakes and clutch material frictional behaviour considering the sliding acceleration influence. Tribol. Int. 44(10), (2011) 21. Glielmo, L., Gutman, P.O., Iannelli, L., Vasca, F.: Robust smooth engagement of an automotive dry clutch. In: Proceedings of 4th IFAC Symposium on Mechatronics Systems, vol. 4, pp (2006a)

CUSHION SPRING SENSITIVITY TO THE TEMPERATURE RISE IN AUTOMOTIVE DRY CLUTCH AND EFFECTS ON THE FRICTIONAL TORQUE CHARACTERISTIC

CUSHION SPRING SENSITIVITY TO THE TEMPERATURE RISE IN AUTOMOTIVE DRY CLUTCH AND EFFECTS ON THE FRICTIONAL TORQUE CHARACTERISTIC Mechanical Testing and Diagnosis ISSN 2247 9635, 2012 (II), Volume 3, 28-38 CUSHION SPRING SENSITIVITY TO THE TEMPERATURE RISE IN AUTOMOTIVE DRY CLUTCH AND EFFECTS ON THE FRICTIONAL TORQUE CHARACTERISTIC

More information

Development of a Clutch Control System for a Hybrid Electric Vehicle with One Motor and Two Clutches

Development of a Clutch Control System for a Hybrid Electric Vehicle with One Motor and Two Clutches Development of a Clutch Control System for a Hybrid Electric Vehicle with One Motor and Two Clutches Kazutaka Adachi*, Hiroyuki Ashizawa**, Sachiyo Nomura***, Yoshimasa Ochi**** *Nissan Motor Co., Ltd.,

More information

Active Systems Design: Hardware-In-the-Loop Simulation

Active Systems Design: Hardware-In-the-Loop Simulation Active Systems Design: Hardware-In-the-Loop Simulation Eng. Aldo Sorniotti Eng. Gianfrancesco Maria Repici Departments of Mechanics and Aerospace Politecnico di Torino C.so Duca degli Abruzzi - 10129 Torino

More information

Estimation and Control of Vehicle Dynamics for Active Safety

Estimation and Control of Vehicle Dynamics for Active Safety Special Issue Estimation and Control of Vehicle Dynamics for Active Safety Estimation and Control of Vehicle Dynamics for Active Safety Review Eiichi Ono Abstract One of the most fundamental approaches

More information

The research on gearshift control strategies of a plug-in parallel hybrid electric vehicle equipped with EMT

The research on gearshift control strategies of a plug-in parallel hybrid electric vehicle equipped with EMT Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(6):1647-1652 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 The research on gearshift control strategies of

More information

Estimation of Friction Force Characteristics between Tire and Road Using Wheel Velocity and Application to Braking Control

Estimation of Friction Force Characteristics between Tire and Road Using Wheel Velocity and Application to Braking Control Estimation of Friction Force Characteristics between Tire and Road Using Wheel Velocity and Application to Braking Control Mamoru SAWADA Eiichi ONO Shoji ITO Masaki YAMAMOTO Katsuhiro ASANO Yoshiyuki YASUI

More information

Vehicle Dynamics and Drive Control for Adaptive Cruise Vehicles

Vehicle Dynamics and Drive Control for Adaptive Cruise Vehicles Vehicle Dynamics and Drive Control for Adaptive Cruise Vehicles Dileep K 1, Sreepriya S 2, Sreedeep Krishnan 3 1,3 Assistant Professor, Dept. of AE&I, ASIET Kalady, Kerala, India 2Associate Professor,

More information

Simulation and Analysis of Vehicle Suspension System for Different Road Profile

Simulation and Analysis of Vehicle Suspension System for Different Road Profile Simulation and Analysis of Vehicle Suspension System for Different Road Profile P.Senthil kumar 1 K.Sivakumar 2 R.Kalidas 3 1 Assistant professor, 2 Professor & Head, 3 Student Department of Mechanical

More information

a) Calculate the overall aerodynamic coefficient for the same temperature at altitude of 1000 m.

a) Calculate the overall aerodynamic coefficient for the same temperature at altitude of 1000 m. Problem 3.1 The rolling resistance force is reduced on a slope by a cosine factor ( cos ). On the other hand, on a slope the gravitational force is added to the resistive forces. Assume a constant rolling

More information

Improvement of Vehicle Dynamics by Right-and-Left Torque Vectoring System in Various Drivetrains x

Improvement of Vehicle Dynamics by Right-and-Left Torque Vectoring System in Various Drivetrains x Improvement of Vehicle Dynamics by Right-and-Left Torque Vectoring System in Various Drivetrains x Kaoru SAWASE* Yuichi USHIRODA* Abstract This paper describes the verification by calculation of vehicle

More information

Collaborative vehicle steering and braking control system research Jiuchao Li, Yu Cui, Guohua Zang

Collaborative vehicle steering and braking control system research Jiuchao Li, Yu Cui, Guohua Zang 4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering (ICMMCCE 2015) Collaborative vehicle steering and braking control system research Jiuchao Li, Yu Cui, Guohua

More information

Development of Engine Clutch Control for Parallel Hybrid

Development of Engine Clutch Control for Parallel Hybrid EVS27 Barcelona, Spain, November 17-20, 2013 Development of Engine Clutch Control for Parallel Hybrid Vehicles Joonyoung Park 1 1 Hyundai Motor Company, 772-1, Jangduk, Hwaseong, Gyeonggi, 445-706, Korea,

More information

A Methodology to Investigate the Dynamic Characteristics of ESP Hydraulic Units - Part II: Hardware-In-the-Loop Tests

A Methodology to Investigate the Dynamic Characteristics of ESP Hydraulic Units - Part II: Hardware-In-the-Loop Tests A Methodology to Investigate the Dynamic Characteristics of ESP Hydraulic Units - Part II: Hardware-In-the-Loop Tests Aldo Sorniotti Politecnico di Torino, Department of Mechanics Corso Duca degli Abruzzi

More information

Bus Handling Validation and Analysis Using ADAMS/Car

Bus Handling Validation and Analysis Using ADAMS/Car Bus Handling Validation and Analysis Using ADAMS/Car Marcelo Prado, Rodivaldo H. Cunha, Álvaro C. Neto debis humaitá ITServices Ltda. Argemiro Costa Pirelli Pneus S.A. José E. D Elboux DaimlerChrysler

More information

MOTOR VEHICLE HANDLING AND STABILITY PREDICTION

MOTOR VEHICLE HANDLING AND STABILITY PREDICTION MOTOR VEHICLE HANDLING AND STABILITY PREDICTION Stan A. Lukowski ACKNOWLEDGEMENT This report was prepared in fulfillment of the Scholarly Activity Improvement Fund for the 2007-2008 academic year funded

More information

Research on Skid Control of Small Electric Vehicle (Effect of Velocity Prediction by Observer System)

Research on Skid Control of Small Electric Vehicle (Effect of Velocity Prediction by Observer System) Proc. Schl. Eng. Tokai Univ., Ser. E (17) 15-1 Proc. Schl. Eng. Tokai Univ., Ser. E (17) - Research on Skid Control of Small Electric Vehicle (Effect of Prediction by Observer System) by Sean RITHY *1

More information

TRANSMISSION COMPUTATIONAL MODEL IN SIMULINK

TRANSMISSION COMPUTATIONAL MODEL IN SIMULINK TRANSMISSION COMPUTATIONAL MODEL IN SIMULINK Pavel Kučera 1, Václav Píštěk 2 Summary: The article describes the creation of a transmission and a clutch computational model. These parts of the powertrain

More information

Full Vehicle Simulation Model

Full Vehicle Simulation Model Chapter 3 Full Vehicle Simulation Model Two different versions of the full vehicle simulation model of the test vehicle will now be described. The models are validated against experimental results. A unique

More information

Modeling, Design and Simulation of Active Suspension System Frequency Response Controller using Automated Tuning Technique

Modeling, Design and Simulation of Active Suspension System Frequency Response Controller using Automated Tuning Technique Modeling, Design and Simulation of Active Suspension System Frequency Response Controller using Automated Tuning Technique Omorodion Ikponwosa Ignatius Obinabo C.E Evbogbai M.J.E. Abstract Car suspension

More information

Dynamic Behavior Analysis of Hydraulic Power Steering Systems

Dynamic Behavior Analysis of Hydraulic Power Steering Systems Dynamic Behavior Analysis of Hydraulic Power Steering Systems Y. TOKUMOTO * *Research & Development Center, Control Devices Development Department Research regarding dynamic modeling of hydraulic power

More information

Simulation of Influence of Crosswind Gusts on a Four Wheeler using Matlab Simulink

Simulation of Influence of Crosswind Gusts on a Four Wheeler using Matlab Simulink Simulation of Influence of Crosswind Gusts on a Four Wheeler using Matlab Simulink Dr. V. Ganesh 1, K. Aswin Dhananjai 2, M. Raj Kumar 3 1, 2, 3 Department of Automobile Engineering 1, 2, 3 Sri Venkateswara

More information

Modeling and Simulation of AMT with MWorks

Modeling and Simulation of AMT with MWorks Modeling and Simulation of MT with MWorks Ming Jiang, Jiangang Zhou, Wei Chen, Yunqing Zhang, Liping Chen CD Center, Huazhong University of Science and Technology, China zhangyq@hust.edu.cn bstract This

More information

Boombot: Low Friction Coefficient Stair Climbing Robot Using Rotating Boom and Weight Redistribution

Boombot: Low Friction Coefficient Stair Climbing Robot Using Rotating Boom and Weight Redistribution Boombot: Low Friction Coefficient Stair Climbing Robot Using Rotating Boom and Weight Redistribution Sartaj Singh and Ramachandra K Abstract Boombot comprising four wheels and a rotating boom in the middle

More information

INDUCTION motors are widely used in various industries

INDUCTION motors are widely used in various industries IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 44, NO. 6, DECEMBER 1997 809 Minimum-Time Minimum-Loss Speed Control of Induction Motors Under Field-Oriented Control Jae Ho Chang and Byung Kook Kim,

More information

International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2016)

International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2016) International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2016) Comparison on Hysteresis Movement in Accordance with the Frictional Coefficient and Initial Angle of Clutch Diaphragm

More information

Experimental Investigation of Effects of Shock Absorber Mounting Angle on Damping Characterstics

Experimental Investigation of Effects of Shock Absorber Mounting Angle on Damping Characterstics Experimental Investigation of Effects of Shock Absorber Mounting Angle on Damping Characterstics Tanmay P. Dobhada Tushar S. Dhaspatil Prof. S S Hirmukhe Mauli P. Khapale Abstract: A shock absorber is

More information

Driving Performance Improvement of Independently Operated Electric Vehicle

Driving Performance Improvement of Independently Operated Electric Vehicle EVS27 Barcelona, Spain, November 17-20, 2013 Driving Performance Improvement of Independently Operated Electric Vehicle Jinhyun Park 1, Hyeonwoo Song 1, Yongkwan Lee 1, Sung-Ho Hwang 1 1 School of Mechanical

More information

Mathematical modeling of the electric drive train of the sports car

Mathematical modeling of the electric drive train of the sports car 1 Portál pre odborné publikovanie ISSN 1338-0087 Mathematical modeling of the electric drive train of the sports car Madarás Juraj Elektrotechnika 17.09.2012 The present electric vehicles are using for

More information

A Simple Approach for Hybrid Transmissions Efficiency

A Simple Approach for Hybrid Transmissions Efficiency A Simple Approach for Hybrid Transmissions Efficiency FRANCESCO BOTTIGLIONE Dipartimento di Meccanica, Matematica e Management Politecnico di Bari Viale Japigia 182, Bari ITALY f.bottiglione@poliba.it

More information

Friction Characteristics Analysis for Clamping Force Setup in Metal V-belt Type CVTs

Friction Characteristics Analysis for Clamping Force Setup in Metal V-belt Type CVTs 14 Special Issue Basic Analysis Towards Further Development of Continuously Variable Transmissions Research Report Friction Characteristics Analysis for Clamping Force Setup in Metal V-belt Type CVTs Hiroyuki

More information

Integrated Control Strategy for Torque Vectoring and Electronic Stability Control for in wheel motor EV

Integrated Control Strategy for Torque Vectoring and Electronic Stability Control for in wheel motor EV EVS27 Barcelona, Spain, November 17-20, 2013 Integrated Control Strategy for Torque Vectoring and Electronic Stability Control for in wheel motor EV Haksun Kim 1, Jiin Park 2, Kwangki Jeon 2, Sungjin Choi

More information

ME 466 PERFORMANCE OF ROAD VEHICLES 2016 Spring Homework 3 Assigned on Due date:

ME 466 PERFORMANCE OF ROAD VEHICLES 2016 Spring Homework 3 Assigned on Due date: PROBLEM 1 For the vehicle with the attached specifications and road test results a) Draw the tractive effort [N] versus velocity [kph] for each gear on the same plot. b) Draw the variation of total resistance

More information

Active Suspensions For Tracked Vehicles

Active Suspensions For Tracked Vehicles Active Suspensions For Tracked Vehicles Y.G.Srinivasa, P. V. Manivannan 1, Rajesh K 2 and Sanjay goyal 2 Precision Engineering and Instrumentation Lab Indian Institute of Technology Madras Chennai 1 PEIL

More information

FEASIBILITY STYDY OF CHAIN DRIVE IN WATER HYDRAULIC ROTARY JOINT

FEASIBILITY STYDY OF CHAIN DRIVE IN WATER HYDRAULIC ROTARY JOINT FEASIBILITY STYDY OF CHAIN DRIVE IN WATER HYDRAULIC ROTARY JOINT Antti MAKELA, Jouni MATTILA, Mikko SIUKO, Matti VILENIUS Institute of Hydraulics and Automation, Tampere University of Technology P.O.Box

More information

The Synaptic Damping Control System:

The Synaptic Damping Control System: The Synaptic Damping Control System: increasing the drivers feeling and perception by means of controlled dampers Giordano Greco Magneti Marelli SDC Vehicle control strategies From passive to controlled

More information

University Of California, Berkeley Department of Mechanical Engineering. ME 131 Vehicle Dynamics & Control (4 units)

University Of California, Berkeley Department of Mechanical Engineering. ME 131 Vehicle Dynamics & Control (4 units) CATALOG DESCRIPTION University Of California, Berkeley Department of Mechanical Engineering ME 131 Vehicle Dynamics & Control (4 units) Undergraduate Elective Syllabus Physical understanding of automotive

More information

SLIP CONTROL AT SMALL SLIP VALUES FOR ROAD VEHICLE BRAKE SYSTEMS

SLIP CONTROL AT SMALL SLIP VALUES FOR ROAD VEHICLE BRAKE SYSTEMS PERIODICA POLYTECHNICA SER MECH ENG VOL 44, NO 1, PP 23 30 (2000) SLIP CONTROL AT SMALL SLIP VALUES FOR ROAD VEHICLE BRAKE SYSTEMS Péter FRANK Knorr-Bremse Research & Development Institute, Budapest Department

More information

Comparison of Braking Performance by Electro-Hydraulic ABS and Motor Torque Control for In-wheel Electric Vehicle

Comparison of Braking Performance by Electro-Hydraulic ABS and Motor Torque Control for In-wheel Electric Vehicle ES27 Barcelona, Spain, November 7-2, 23 Comparison of Braking Performance by Electro-Hydraulic ABS and Motor Torque Control for In-wheel Electric ehicle Sungyeon Ko, Chulho Song, Jeongman Park, Jiweon

More information

TRACTION CONTROL OF AN ELECTRIC FORMULA STUDENT RACING CAR

TRACTION CONTROL OF AN ELECTRIC FORMULA STUDENT RACING CAR F24-IVC-92 TRACTION CONTROL OF AN ELECTRIC FORMULA STUDENT RACING CAR Loof, Jan * ; Besselink, Igo; Nijmeijer, Henk Department of Mechanical Engineering, Eindhoven, University of Technology, KEYWORDS Traction-control,

More information

Fuzzy based Adaptive Control of Antilock Braking System

Fuzzy based Adaptive Control of Antilock Braking System Fuzzy based Adaptive Control of Antilock Braking System Ujwal. P Krishna. S M.Tech Mechatronics, Asst. Professor, Mechatronics VIT University, Vellore, India VIT university, Vellore, India Abstract-ABS

More information

Simplified Vehicle Models

Simplified Vehicle Models Chapter 1 Modeling of the vehicle dynamics has been extensively studied in the last twenty years. We extract from the existing rich literature [25], [44] the vehicle dynamic models needed in this thesis

More information

Reduction of Self Induced Vibration in Rotary Stirling Cycle Coolers

Reduction of Self Induced Vibration in Rotary Stirling Cycle Coolers Reduction of Self Induced Vibration in Rotary Stirling Cycle Coolers U. Bin-Nun FLIR Systems Inc. Boston, MA 01862 ABSTRACT Cryocooler self induced vibration is a major consideration in the design of IR

More information

Special edition paper

Special edition paper Efforts for Greater Ride Comfort Koji Asano* Yasushi Kajitani* Aiming to improve of ride comfort, we have worked to overcome issues increasing Shinkansen speed including control of vertical and lateral

More information

837. Dynamics of hybrid PM/EM electromagnetic valve in SI engines

837. Dynamics of hybrid PM/EM electromagnetic valve in SI engines 837. Dynamics of hybrid PM/EM electromagnetic valve in SI engines Yaojung Shiao 1, Ly Vinh Dat 2 Department of Vehicle Engineering, National Taipei University of Technology, Taipei, Taiwan, R. O. C. E-mail:

More information

Chapter 2 Dynamic Analysis of a Heavy Vehicle Using Lumped Parameter Model

Chapter 2 Dynamic Analysis of a Heavy Vehicle Using Lumped Parameter Model Chapter 2 Dynamic Analysis of a Heavy Vehicle Using Lumped Parameter Model The interaction between a vehicle and the road is a very complicated dynamic process, which involves many fields such as vehicle

More information

Modeling and Vibration Analysis of a Drum type Washing Machine

Modeling and Vibration Analysis of a Drum type Washing Machine Modeling and Vibration Analysis of a Drum type Washing Machine Takayuki KOIZUMI, Nobutaka TSUJIUCHI, Yutaka NISHIMURA Department of Engineering, Doshisha University, 1-3, Tataramiyakodani, Kyotanabe, Kyoto,

More information

Optimal Gearshift Control for a Novel Hybrid Electric Drivetrain

Optimal Gearshift Control for a Novel Hybrid Electric Drivetrain Optimal Gearshift Control for a Novel Hybrid Electric Drivetrain Arash M. Gavgani 1, Aldo Sorniotti 1,*, John Doherty 1, Carlo Cavallino 2 1 University of Surrey, United Kingdom 2 Oerlikon Graziano SpA,

More information

Mathematical Modelling and Simulation Of Semi- Active Suspension System For An 8 8 Armoured Wheeled Vehicle With 11 DOF

Mathematical Modelling and Simulation Of Semi- Active Suspension System For An 8 8 Armoured Wheeled Vehicle With 11 DOF Mathematical Modelling and Simulation Of Semi- Active Suspension System For An 8 8 Armoured Wheeled Vehicle With 11 DOF Sujithkumar M Sc C, V V Jagirdar Sc D and MW Trikande Sc G VRDE, Ahmednagar Maharashtra-414006,

More information

Modeling, Design and Simulation of Active Suspension System Root Locus Controller using Automated Tuning Technique.

Modeling, Design and Simulation of Active Suspension System Root Locus Controller using Automated Tuning Technique. Modeling, Design and Simulation of Active Suspension System Root Locus Controller using Automated Tuning Technique. Omorodion Ikponwosa Ignatius Obinabo C.E Abstract Evbogbai M.J.E. Car suspension system

More information

DEVELOPMENT OF A LAP-TIME SIMULATOR FOR A FSAE RACE CAR USING MULTI-BODY DYNAMIC SIMULATION APPROACH

DEVELOPMENT OF A LAP-TIME SIMULATOR FOR A FSAE RACE CAR USING MULTI-BODY DYNAMIC SIMULATION APPROACH International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 7, July 2018, pp. 409 421, Article ID: IJMET_09_07_045 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=7

More information

Switching Control for Smooth Mode Changes in Hybrid Electric Vehicles

Switching Control for Smooth Mode Changes in Hybrid Electric Vehicles Switching Control for Smooth Mode Changes in Hybrid Electric Vehicles Kerem Koprubasi (1), Eric Westervelt (2), Giorgio Rizzoni (3) (1) PhD Student, (2) Assistant Professor, (3) Professor Department of

More information

Enhancing the Energy Efficiency of Fully Electric Vehicles via the Minimization of Motor Power Losses

Enhancing the Energy Efficiency of Fully Electric Vehicles via the Minimization of Motor Power Losses Enhancing the Energy Efficiency of Fully Electric Vehicles via the Minimization of Motor Power Losses A. Pennycott 1, L. De Novellis 1, P. Gruber 1, A. Sorniotti 1 and T. Goggia 1, 2 1 Dept. of Mechanical

More information

The MathWorks Crossover to Model-Based Design

The MathWorks Crossover to Model-Based Design The MathWorks Crossover to Model-Based Design The Ohio State University Kerem Koprubasi, Ph.D. Candidate Mechanical Engineering The 2008 Challenge X Competition Benefits of MathWorks Tools Model-based

More information

Research Article Drivability Improvement Control for Vehicle Start-Up Applied to an Automated Manual Transmission

Research Article Drivability Improvement Control for Vehicle Start-Up Applied to an Automated Manual Transmission Hindawi Shock and Vibration Volume 217, Article ID 5783527, 12 pages https://doi.org/1.1155/217/5783527 Research Article Drivability Improvement Control for Vehicle Start-Up Applied to an Automated Manual

More information

A Novel Chassis Structure for Advanced EV Motion Control Using Caster Wheels with Disturbance Observer and Independent Driving Motors

A Novel Chassis Structure for Advanced EV Motion Control Using Caster Wheels with Disturbance Observer and Independent Driving Motors A Novel Chassis Structure for Advanced EV Motion Control Using Caster Wheels with Disturbance Observer and Independent Driving Motors Yunha Kim a, Kanghyun Nam a, Hiroshi Fujimoto b, and Yoichi Hori b

More information

Identification of tyre lateral force characteristic from handling data and functional suspension model

Identification of tyre lateral force characteristic from handling data and functional suspension model Identification of tyre lateral force characteristic from handling data and functional suspension model Marco Pesce, Isabella Camuffo Centro Ricerche Fiat Vehicle Dynamics & Fuel Economy Christian Girardin

More information

TRACTOR MFWD BRAKING DECELERATION RESEARCH BETWEEN DIFFERENT WHEEL DRIVE

TRACTOR MFWD BRAKING DECELERATION RESEARCH BETWEEN DIFFERENT WHEEL DRIVE TRACTOR MFWD BRAKING DECELERATION RESEARCH BETWEEN DIFFERENT WHEEL DRIVE Povilas Gurevicius, Algirdas Janulevicius Aleksandras Stulginskis University, Lithuania povilasgurevicius@asu.lt, algirdas.janulevicius@asu.lt

More information

Perodua Myvi engine fuel consumption map and fuel economy vehicle simulation on the drive cycles based on Malaysian roads

Perodua Myvi engine fuel consumption map and fuel economy vehicle simulation on the drive cycles based on Malaysian roads Perodua Myvi engine fuel consumption map and fuel economy vehicle simulation on the drive cycles based on Malaysian roads Muhammad Iftishah Ramdan 1,* 1 School of Mechanical Engineering, Universiti Sains

More information

MULTIBODY ANALYSIS OF THE M-346 PILOTS INCEPTORS MECHANICAL CIRCUITS INTRODUCTION

MULTIBODY ANALYSIS OF THE M-346 PILOTS INCEPTORS MECHANICAL CIRCUITS INTRODUCTION MULTIBODY ANALYSIS OF THE M-346 PILOTS INCEPTORS MECHANICAL CIRCUITS Emanuele LEONI AERMACCHI Italy SAMCEF environment has been used to model and analyse the Pilots Inceptors (Stick/Pedals) mechanical

More information

Semi-Active Suspension for an Automobile

Semi-Active Suspension for an Automobile Semi-Active Suspension for an Automobile Pavan Kumar.G 1 Mechanical Engineering PESIT Bangalore, India M. Sambasiva Rao 2 Mechanical Engineering PESIT Bangalore, India Abstract Handling characteristics

More information

Technology, Xi an , China

Technology, Xi an , China Applied Mechanics and Materials Vol. 251 (2013) pp 221-225 Online available since 2012/Dec/13 at www.scientific.net (2013) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amm.251.221

More information

CLUTCH TRANSIENT HEAT TRANSFER SIMULATION FOR HILL START VEHICLE TEST CONDITION

CLUTCH TRANSIENT HEAT TRANSFER SIMULATION FOR HILL START VEHICLE TEST CONDITION CLUTCH TRANSIENT HEAT TRANSFER SIMULATION FOR HILL START VEHICLE TEST CONDITION Çakmak T.*, Kılıç M.** *Author for correspondence *Valeo Automotive Industry and Trade Co., Bursa, Turkey **Uludağ University,

More information

Preliminary Study on Quantitative Analysis of Steering System Using Hardware-in-the-Loop (HIL) Simulator

Preliminary Study on Quantitative Analysis of Steering System Using Hardware-in-the-Loop (HIL) Simulator TECHNICAL PAPER Preliminary Study on Quantitative Analysis of Steering System Using Hardware-in-the-Loop (HIL) Simulator M. SEGAWA M. HIGASHI One of the objectives in developing simulation methods is to

More information

Modelling of electronic throttle body for position control system development

Modelling of electronic throttle body for position control system development Chapter 4 Modelling of electronic throttle body for position control system development 4.1. INTRODUCTION Based on the driver and other system requirements, the estimated throttle opening angle has to

More information

Design and Analysis of Electromagnetic Tubular Linear Actuator for Higher Performance of Active Accelerate Pedal

Design and Analysis of Electromagnetic Tubular Linear Actuator for Higher Performance of Active Accelerate Pedal Journal of Magnetics 14(4), 175-18 (9) DOI: 1.483/JMAG.9.14.4.175 Design and Analysis of Electromagnetic Tubular Linear Actuator for Higher Performance of Active Accelerate Pedal Jae-Yong Lee, Jin-Ho Kim-,

More information

Research in hydraulic brake components and operational factors influencing the hysteresis losses

Research in hydraulic brake components and operational factors influencing the hysteresis losses Research in hydraulic brake components and operational factors influencing the hysteresis losses Shreyash Balapure, Shashank James, Prof.Abhijit Getem ¹Student, B.E. Mechanical, GHRCE Nagpur, India, ¹Student,

More information

Gear Shift Quality Improvement In Manual Transmissions Using Dynamic Modelling

Gear Shift Quality Improvement In Manual Transmissions Using Dynamic Modelling Seoul 2000 FISITA World Automotive Congress June 12-15, 2000, Seoul, Korea F2000A126 Gear Shift Quality Improvement In Manual Transmissions Using Dynamic Modelling David Kelly Christopher Kent Ricardo

More information

Vehicle Dynamics and Control

Vehicle Dynamics and Control Rajesh Rajamani Vehicle Dynamics and Control Springer Contents Dedication Preface Acknowledgments v ix xxv 1. INTRODUCTION 1 1.1 Driver Assistance Systems 2 1.2 Active Stabiüty Control Systems 2 1.3 RideQuality

More information

Environmental Envelope Control

Environmental Envelope Control Environmental Envelope Control May 26 th, 2014 Stanford University Mechanical Engineering Dept. Dynamic Design Lab Stephen Erlien Avinash Balachandran J. Christian Gerdes Motivation New technologies are

More information

Vehicle functional design from PSA in-house software to AMESim standard library with increased modularity

Vehicle functional design from PSA in-house software to AMESim standard library with increased modularity Vehicle functional design from PSA in-house software to AMESim standard library with increased modularity Benoit PARMENTIER, Frederic MONNERIE (PSA) Marc ALIRAND, Julien LAGNIER (LMS) Vehicle Dynamics

More information

College of Mechanical & Power Engineering Of China Three Gorges University, Yichang, Hubei Province, China

College of Mechanical & Power Engineering Of China Three Gorges University, Yichang, Hubei Province, China International Conference on Intelligent Systems Research and Mechatronics Engineering (ISRME 215) Hydraulic Hitch Systems of 9t Tyre Hosting Girder Machine Modeling and Simulation Analysis Based On SIMULINK/ADAMS

More information

Development and Control of a Prototype Hydraulic Active Suspension System for Road Vehicles

Development and Control of a Prototype Hydraulic Active Suspension System for Road Vehicles Development and Control of a Prototype Hydraulic Active Suspension System for Road Vehicles Suresh A. Patil 1, Dr. Shridhar G. Joshi 2 1 Associate Professor, Dept. of Mechanical Engineering, A.D.C.E.T.,

More information

Control of Dry Clutch Engagement for Vehicle Launches via a Shaft Torque Observer

Control of Dry Clutch Engagement for Vehicle Launches via a Shaft Torque Observer 1 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3-July, 1 WeA19.5 Control of Dry Clutch Engagement for Vehicle Launches via a Shaft Torque Observer Jinsung Kim and Seibum B.

More information

Sizing of Ultracapacitors and Batteries for a High Performance Electric Vehicle

Sizing of Ultracapacitors and Batteries for a High Performance Electric Vehicle 2012 IEEE International Electric Vehicle Conference (IEVC) Sizing of Ultracapacitors and Batteries for a High Performance Electric Vehicle Wilmar Martinez, Member National University Bogota, Colombia whmartinezm@unal.edu.co

More information

An Adaptive Nonlinear Filter Approach to Vehicle Velocity Estimation for ABS

An Adaptive Nonlinear Filter Approach to Vehicle Velocity Estimation for ABS An Adaptive Nonlinear Filter Approach to Vehicle Velocity Estimation for ABS Fangjun Jiang, Zhiqiang Gao Applied Control Research Lab. Cleveland State University Abstract A novel approach to vehicle velocity

More information

China. Keywords: Electronically controled Braking System, Proportional Relay Valve, Simulation, HIL Test

China. Keywords: Electronically controled Braking System, Proportional Relay Valve, Simulation, HIL Test Applied Mechanics and Materials Online: 2013-10-11 ISSN: 1662-7482, Vol. 437, pp 418-422 doi:10.4028/www.scientific.net/amm.437.418 2013 Trans Tech Publications, Switzerland Simulation and HIL Test for

More information

Distributed control of a car suspension system

Distributed control of a car suspension system Distributed control of a car suspension system Mohamed El Mongi Ben Gaid, Arben Çela, Rémy Kocik COSI - ESIEE - Cité Descartes - BP 99-2 Bd Blaise Pascal - F93162 Noisy-Le-Grand Cedex {bengaidm,celaa,r.kocik}@esiee.fr

More information

Vibration Measurement and Noise Control in Planetary Gear Train

Vibration Measurement and Noise Control in Planetary Gear Train Vibration Measurement and Noise Control in Planetary Gear Train A.R.Mokate 1, R.R.Navthar 2 P.G. Student, Department of Mechanical Engineering, PDVVP COE, A. Nagar, Maharashtra, India 1 Assistance Professor,

More information

The Application of Simulink for Vibration Simulation of Suspension Dual-mass System

The Application of Simulink for Vibration Simulation of Suspension Dual-mass System Sensors & Transducers 204 by IFSA Publishing, S. L. http://www.sensorsportal.com The Application of Simulink for Vibration Simulation of Suspension Dual-mass System Gao Fei, 2 Qu Xiao Fei, 2 Zheng Pei

More information

SELF-ENERGIZING CLUTCH ACTUATOR SYSTEM: BASIC CONCEPT AND DESIGN

SELF-ENERGIZING CLUTCH ACTUATOR SYSTEM: BASIC CONCEPT AND DESIGN FISITA2010-SC-P-23 SELF-ENERGIZING CLUTCH ACTUATOR SYSTEM: BASIC CONCEPT AND DESIGN Jinsung Kim *, Seibum B. Choi Department of Mechanical Engineering, KAIST, Korea KEYWORDS Clutch, Actuator, Drivetrain

More information

ISSN: SIMULATION AND ANALYSIS OF PASSIVE SUSPENSION SYSTEM FOR DIFFERENT ROAD PROFILES WITH VARIABLE DAMPING AND STIFFNESS PARAMETERS S.

ISSN: SIMULATION AND ANALYSIS OF PASSIVE SUSPENSION SYSTEM FOR DIFFERENT ROAD PROFILES WITH VARIABLE DAMPING AND STIFFNESS PARAMETERS S. Journal of Chemical and Pharmaceutical Sciences www.jchps.com ISSN: 974-2115 SIMULATION AND ANALYSIS OF PASSIVE SUSPENSION SYSTEM FOR DIFFERENT ROAD PROFILES WITH VARIABLE DAMPING AND STIFFNESS PARAMETERS

More information

EDDY CURRENT DAMPER SIMULATION AND MODELING. Scott Starin, Jeff Neumeister

EDDY CURRENT DAMPER SIMULATION AND MODELING. Scott Starin, Jeff Neumeister EDDY CURRENT DAMPER SIMULATION AND MODELING Scott Starin, Jeff Neumeister CDA InterCorp 450 Goolsby Boulevard, Deerfield, Florida 33442-3019, USA Telephone: (+001) 954.698.6000 / Fax: (+001) 954.698.6011

More information

Pitch Motion Control without Braking Distance Extension considering Load Transfer for Electric Vehicles with In-Wheel Motors

Pitch Motion Control without Braking Distance Extension considering Load Transfer for Electric Vehicles with In-Wheel Motors IIC-1-14 Pitch Motion Control without Braking Distance Extension considering Load Transfer for Electric Vehicles with In-Wheel Motors Ting Qu, Hiroshi Fujimoto, Yoichi Hori (The University of Tokyo) Abstract:

More information

Simulation and Control of slip in a Continuously Variable Transmission

Simulation and Control of slip in a Continuously Variable Transmission Simulation and Control of slip in a Continuously Variable Transmission B. Bonsen, C. de Metsenaere, T.W.G.L. Klaassen K.G.O. van de Meerakker, M. Steinbuch, P.A. Veenhuizen Eindhoven University of Technology

More information

Modelling, Simulation and Control of an Automotive Clutch System

Modelling, Simulation and Control of an Automotive Clutch System Modelling, Simulation and Control of an Automotive Clutch System Abstract In this paper it is intended to optimize the performance of the automotive clutch system. The modeling and Simulation of an automotive

More information

Control and Simulation of Semi-Active Suspension System using PID Controller for Automobiles under LABVIEW Simulink

Control and Simulation of Semi-Active Suspension System using PID Controller for Automobiles under LABVIEW Simulink International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2017 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Control

More information

SPEED AND TORQUE CONTROL OF AN INDUCTION MOTOR WITH ANN BASED DTC

SPEED AND TORQUE CONTROL OF AN INDUCTION MOTOR WITH ANN BASED DTC SPEED AND TORQUE CONTROL OF AN INDUCTION MOTOR WITH ANN BASED DTC Fatih Korkmaz Department of Electric-Electronic Engineering, Çankırı Karatekin University, Uluyazı Kampüsü, Çankırı, Turkey ABSTRACT Due

More information

EFFECTIVENESS OF THE ACTIVE PNEUMATIC SUSPENSION OF THE OPERATOR S SEAT OF THE MOBILE MACHINE IN DEPEND OF THE VIBRATION REDUCTION STRATEGIES

EFFECTIVENESS OF THE ACTIVE PNEUMATIC SUSPENSION OF THE OPERATOR S SEAT OF THE MOBILE MACHINE IN DEPEND OF THE VIBRATION REDUCTION STRATEGIES Journal of KONES Powertrain and Transport, Vol. 25, No. 3 2018 EFFECTIVENESS OF THE ACTIVE PNEUMATIC SUSPENSION OF THE OPERATOR S SEAT OF THE MOBILE MACHINE IN DEPEND OF THE VIBRATION REDUCTION STRATEGIES

More information

Active launch systems. For passenger cars up to 1,000 Nm

Active launch systems. For passenger cars up to 1,000 Nm Active launch systems For passenger cars up to 1,000 Nm 2 3 Powertrain components and systems for passenger cars and LCV Performance comfort environmental protection. Powertrain components and systems

More information

MATHEMATICAL MODEL OF A SPECIAL VEHICLE CLUTCH SERVOMECHANISM

MATHEMATICAL MODEL OF A SPECIAL VEHICLE CLUTCH SERVOMECHANISM 3 rd International Conference Research & Innovation in Engineering COMAT 2014 16-17 October 2014, Braşov, Romania MATHEMATICAL MODEL OF A SPECIAL VEHICLE CLUTCH SERVOMECHANISM Vilău Radu 1,A *, Alexa Octavian

More information

Mohit Law. Keywords: Machine tools, Active vibration isolation, Electro-hydraulic actuator, Design guidelines, Sensitivity analysis

Mohit Law. Keywords: Machine tools, Active vibration isolation, Electro-hydraulic actuator, Design guidelines, Sensitivity analysis College of Engineering., Pune, Maharashtra, INDIA. Design Guidelines for an Electro-Hydraulic Actuator to Isolate Machines from Vibrations Mohit Law Department of Mechanical Engineering Indian Institute

More information

Analysis and evaluation of a tyre model through test data obtained using the IMMa tyre test bench

Analysis and evaluation of a tyre model through test data obtained using the IMMa tyre test bench Vehicle System Dynamics Vol. 43, Supplement, 2005, 241 252 Analysis and evaluation of a tyre model through test data obtained using the IMMa tyre test bench A. ORTIZ*, J.A. CABRERA, J. CASTILLO and A.

More information

A Simulation Model of the Automotive Power System Based on the Finite State Machine

A Simulation Model of the Automotive Power System Based on the Finite State Machine Send Orders for Reprints to reprints@benthamscience.net The Open Mechanical Engineering Journal, 2014, 8, 101-106 101 Open Access A Simulation Model of the Automotive Power System Based on the Finite State

More information

Modelling and Simulation Specialists

Modelling and Simulation Specialists Modelling and Simulation Specialists Multi-Domain Simulation of Hybrid Vehicles Multiphysics Simulation for Autosport / Motorsport Applications Seminar UK Magnetics Society Claytex Services Limited Software,

More information

Proper Modeling of Integrated Vehicle Systems

Proper Modeling of Integrated Vehicle Systems Proper Modeling of Integrated Vehicle Systems Geoff Rideout Graduate Student Research Assistant Automated Modeling Laboratory University of Michigan Modeling of Integrated Vehicle Powertrain Systems 1

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Ship propulsion control system design as a way of torque transient restriction Z. Domachowski, W. Prochnicki Department ofship Automation and Turbine Propulsion, Faculty ofship Technology and Ocean Engineering,

More information

Aspects Concerning Modeling and Simulation of a Car Suspension with Multi-Body Dynamics and Finite Element Analysis Software Packages

Aspects Concerning Modeling and Simulation of a Car Suspension with Multi-Body Dynamics and Finite Element Analysis Software Packages Aspects Concerning Modeling and Simulation of a Car Suspension with Multi-Body Dynamics and Finite Element Analysis Software Packages Andrei Dumitru, Ion Preda, and Gheorghe Mogan Transilvania University

More information

A Practical Solution to the String Stability Problem in Autonomous Vehicle Following

A Practical Solution to the String Stability Problem in Autonomous Vehicle Following A Practical Solution to the String Stability Problem in Autonomous Vehicle Following Guang Lu and Masayoshi Tomizuka Department of Mechanical Engineering, University of California at Berkeley, Berkeley,

More information

MODELING SUSPENSION DAMPER MODULES USING LS-DYNA

MODELING SUSPENSION DAMPER MODULES USING LS-DYNA MODELING SUSPENSION DAMPER MODULES USING LS-DYNA Jason J. Tao Delphi Automotive Systems Energy & Chassis Systems Division 435 Cincinnati Street Dayton, OH 4548 Telephone: (937) 455-6298 E-mail: Jason.J.Tao@Delphiauto.com

More information

Steering Actuator for Autonomous Driving and Platooning *1

Steering Actuator for Autonomous Driving and Platooning *1 TECHNICAL PAPER Steering Actuator for Autonomous Driving and Platooning *1 A. ISHIHARA Y. KUROUMARU M. NAKA The New Energy and Industrial Technology Development Organization (NEDO) is running a "Development

More information