TEST ON DC MOTORS. EE 2092 Laboratory Practice III

Size: px
Start display at page:

Download "TEST ON DC MOTORS. EE 2092 Laboratory Practice III"

Transcription

1 TEST ON DC MOTORS EE 2092 Laboratory Practice III

2 CALCULATIONS Absorption Dynamometer Considering radius of pulley as r ; 2 r=11.618cm= m Armatur4e resistance (R a ) =4.1Ω, series field resistance (R s ) =3.3Ω Sample Calculation Considering first observation, Weight (W) = x 28lb=12.701kg & Weight (w)= x 14lb=6.350kg Speed (rad s -1 ) = 2 x л x Nr/60= 2 x л x 926/60=96.97rads -1 Electrical Input Power = V x I = 202 x 14.4=2.909k W Torque produced (T) = (W-w).g.r = ( ) kg x 9.81ms -2 x m = Nm Mechanical Output Power = N rad/s.t = x 7.238= W Efficiency= = 100=24.13% Copper loss= I 2 R=14.4A 2 x ( )Ω= W Mech. loss= Elec. Input Mech. output Copper loss=( )w= w W(kg) w (kg) Observations Speed(N r) rp m rad/s Separately Excited DC Motor Armature Resistance (R a ) = 4.7 Ω Sample Calculation Considering first observation, Volt age (V) Curr ent (A) Elec.i nput Powe r (kw) Torque (Nm) Speed (rad s -1 ) = 2 x л x Nr/60= 2 x л x /60=156.22rads -1 Electrical Input Power(P in ) = V 2 x I 2 = 210 x 1=210W Mech.outp ut Power (W) Calculations Efficenc y copper loss(w) Mech.a loss(w) % % % % % % % % % % % %

3 Copper loss= I 2 2.R a = 1 2 *(4.7) = 20.1W Mechanical loss= P 2 (0) = V 2 (0).I 2 (0) - I 2 2 (0).R a =212x *4.7= Mechanical Output Power(P out ) = P 2 P 2 (0) = Mech. Power developed Mech. Loss Torque produced (T)= = = Nm = (Elec. input power Armature copper loss) Mech. Loss = (P in - I 2 2.R a ) - P 2 (0) =[( *4.7) ]= Observation Calculations I 2 (A) V 2 (V) Speed(Nr) rpm rad/s I 2 (0)(A) V 2 (0)(V) P in (W) Copper loss (W) Mech. Loss (W) P out (W) Torque(Nm)

4 speed(rad/s) 1) Series DC motor (i) Speed Vs Torque speed(rad/s) Torque(Nm) Torque(Nm)

5 Torque(Nm) (ii) Torque Vs Armature current Torque(Nm) Armature current(a) Armature current(a)

6 Speed(rad/s) (iii) Speed Vs Armature Current speed (rad/s) Armature current(a) Armature current(a)

7 Efficency (iv) Efficiency Vs Armature current Efficiency Armature current(a) % 37.0% 35.0% 33.0% 31.0% 29.0% 27.0% 25.0% 23.0% Armature current(a)

8 copper loss (v) Copper loss Vs Armature current Copper loss(w) Armature current(a) Armature current(a)

9 Mechanical loss(w) (vi) Mechanical loss Vs Speed Mechanical loss(w) Speed(rad/s) Speed(rad/s)

10 Speed(rad/s) 2) Separately excited DC motor (vii) Speed Vs Torque sep. ex. DC motor series DC motor Speed(rad/s) Torque(Nm) Speed(rad/s) Torque(Nm) Sep. ex Dc motor Series DC motor Torque(Nm)

11 Speed(rad/s) (viii) Speed Vs Armature current sep. ex. DC motor series DC motor speed(rad/s) Armature current(a) Speed(rad/s) Armature current(a) sep. ex DC motor Series DC motor Amature current(a)

12 Pin(W) (ix) P in Vs P out sep. ex. DC motor series DC motor Pin(W) Pout(W) Pin(W) Pout(W) sep. ex DC motor Series DC motor Pout(W)

13 DISCUSSION (1) Types of materials employed in construction High grade steel: -Mainly there two advantages of using high graded steel. One is to keep hysteresis loss low, which is due to cyclic change of magnetization caused by rotation of the core in the magnetic field and the other one is to reduce the eddy currents in the core which are induced by the rotation of the core in the magnetic field Cupper (Cu): -Cu is used to make Field windings and Armature windings Carbon/Carbon graphite/ Graphite/Metal graphite: -Those are used to make brushes due to its reluctance for deterioration Insulating Material: -Insulating materials are used to provide electrical insulation between parts at different potentials. An insulating material should have high resistivity, high dielectric strength, low dielectric loss, good heat conductivity, sufficient mechanical strength to withstand vibrations etc. These materials begin to deteriorate at relatively small temperatures. For reliable operation, it is essential that the temperature rise in electrical machines and equipment do not exceed the permissible temperature of the insulating materials used therein.some of the most important insulating materials used for insulation in electrical machines and apparatus are mica, cotton, asbestos, paper and glass Cast iron/cast steel/fabricated steel: -Cast iron yokes are preferred in smaller machines; because of its cheapness but yoke fabricated steel yokes are preferred in larger machines due to its high permeability. Because weights of large machines are the main considerable fact. As the permeability of cast steel is nearly twice of cast iron, the weight of cast steel required will be only half of the cast iron if used for the same reluctance. Pole cores are usually not laminated and made of cast steel. (2) Part of the DC machine Armature: -This is the rotating part of a DC motor and is built up in a cylindrical shape. The purpose of the armature is to rotate the conductor in the uniform magnetic field. It consists of coils of insulated wires wound around an iron and so arranged that electric currents are induced in these wires when the armature is rotated in a magnetic field. It provide a path of very low reluctance to the magnetic flux. The armature core is made from high permeability silicon-steel stampings, each stamping, being separated from its neighbouring one by thin paper or thin coating of varnish as insulation. Due to this the eddy currents in the core induced by the rotation of the core in the magnetic field, is cut into several. The laminations should be perpendicular to the paths of eddy currents and parallel to the flux. Stator: -The stator is the stationary part of a rotor system. It mainly consists with stator poles pole shoes field windings (winding that produces main magnetic flux.), etc. Shaft: -The shaft is made of mild steel with a maximum breaking strength. The shaft is used to transfer mechanical power from or to the machine. The rotating parts such as armature core, commutator, cooling fan etc. are keyed to the shaft.

14 Brushes: -The brushes are rectangular in shape and rest on the commutator.the function of brushes is to collect current from the commutator and supply it to the external load circuit (the armature of the machine being connected to the external load circuit via the commutator and brushes). The brushes are rectangular in shape and rest on the commutator. Brushes are manufacture in a variety of compositions and degrees of hardness to suit the commutation requirements. Commutator: -The commutator is a cylindrical structure and is built up of wedge shaped segments of high conductivity hard drawn copper and the segments are insulated from each other. Commutator provides the electrical connections between the rotating armature coils and the stationary external circuit, keeps the rotor or the armature mmf stationary in space, when the rotor rotates perform switching action reversing the electrical connections between the external circuit and each armature coil in turn so that the armature coil voltage add together and result in a DC output voltage. So this is a main part of motor. (3) Types of armature windings and their applications There are several types of armature windings called Lap winding, wave winding, Non lap winding. The difference between lap winding and wave winding is different arrangement of the end connections at the front or commutator end of armature. Each winding can be arranged progressively or retrogressively and connected in simplex, duplex and triplex. Commonly for windings these things should be considered The number of commutator segments is equal to the number of slots or coils because the front ends of conductors are joined to the segments in pairs. The winding must close upon itself Both pitches should be odd, otherwise it would be difficult to place the coils properly on the armature. As windings should be full-pitched the front and back pitch are each approximately equal to the pole-pitch. This results in increased e.m.f round the coils Lap Winding In the case of lap winding, the end of a wire conductor is connected to the commutator, and then the other wire end is connected to the beginning of the next coil segment. This winding configuration refers to the fact that the wire "laps over" each segment as the winding structure reaches its terminus.

15 Wave Winding With wave winding, one wire conductor is wrapped under one pole, and then connected to the back of the next pole. In this case, the series of wire conductors do not directly overlap, but when it's completed, the structure looks like a series of copper "waves" wrapped around the commutator. Non-Lapped Winding Non-lapped winding refers to a wire process that does not employ overlapping at any point across the commutator but employs a linear side-by-side configuration from the front to the rear of the structure. (4) Performance characteristics of the DC Series Motor Rated load EFFICIENCY IN PERCENTAGE ARMATURE CURRENT IN A SPEED IN rpm TORQUE IN Nm In the above figure, four important characteristics of a DC series motor, namely torque, speed, current and efficiency, each plotted against useful output power, are shown. Components of a series motor include the armature and the field. The same current is impressed upon the armature and the series field. The coils in the series field are made of a few turns of large gauge wire, to facilitate large current flow. This provides high starting torque, approximately 2 ¼ times the rated load torque. Series motor armatures are usually lap wound. Lap

16 windings are good for high current, low voltage applications because they have additional parallel paths for current flow. Series motors have very poor speed control, running slowly with heavy loads and quickly with light loads. A series motor should never drive machines with a belt. If the belt breaks, the load would be removed and cause the motor to over speed and destroy itself in a matter of seconds. Common uses of the series motor include crane hoists, where large heavy loads will be raised and lowered and bridge and trolley drives on large overhead cranes. The series motor provides the starting torque required for moving large loads. Traction motors used to drive trains are series motors that provide the required torque and horsepower to get massive amounts of weight moving. On the coldest days of winter the series motor that starts a car overcomes the extreme cold temperatures and thick lubricant to get the car going. (5) Performance characteristics of the separately excited DC motor Mainly there are two methods to control the speed in safe operate region which are called armature control and field control. In armature control there is a constant torque while constant power in the field control Т Armature control Field Control ω The separately excited DC motor is probably the most common dc motor used in industry today. Components of the separately excited DC motors are the armature and the field. The coils in the shunt field are composed of many turns of small wire, resulting in low shunt field current and moderate armature current. This motor provides starting torque that varies with the load applied and good speed regulation by controlling the shunt field voltage. If the separately excited DC motor loses its field it will accelerate slightly until EMF rises to a value sufficient to shut off the torque producing current. In other words, the shunt motor will not destroy itself if it loses its field, but it won t have the torque required to do the job it was designed for. Some of the common uses of the shunt motor are machine shop lathes, and industry process lines where speed and tension control are critical.

17 When comparing the advantages of the series and separately excited DC motor, the series motor has greater torque capabilities while the separately excited DC motor has more constant and controllable speed over various loads. (6) Difference between performance characteristics of series DC motor and separately excited DC motor. Torque Series DC motor Separately excited DC motor Speed (ω) When you increase the load, Speed of Separately excited DC Motors will nearly remain constant where as speed of series DC Motors will drastically decrease. Therefore shunt DC Motors is more suitable for traction applications. Separately excited DC meter has good speed controllability, safe no load speed and good speed controllability. In series DC motor it can give high torque at starting without demanding similar high power. Series DC motor has high torque capability and reasonable good power cushioning ability. But Unlike Separately excited DC motors, series DC motors can produce high starting torques. Therefore series DC motors are more suitable for starter applications. (7) Applications of motors with limitations 1. Shunt excited dc motors These have fairly constant speeds against a varying load or torque. Therefore applications include situations where a constant speed is required. (E.g. Lathes, Conveyors, Fans, Machine tool drives ) 2. Compound excited dc motors These have Combine characteristics of both shunt and series wound motors. The series winding gives good starting torque and shunt winding ensures a comparatively constant speed. (E.g. Planers, Shears, Guillotines, Printer machines, Power presses which needs peak loads at certain instances) 3. Permanent magnet motors These are used for low power applications. (E.g. Automobiles, Starter motors, Wiper motors, Lowering windows, Toys, Electric tooth brushes)

18 4. Adjustable speed DC shunt motor Starting torque should be medium. Usually limited to 250% by a starting resistance but may be increased. Maximum momentary operating torque-usually limited to about 200% by commutation. Speed regulation-10-15%. Speed control-6:1 range by field control, lowered below normal speed by armature voltage control. Used for constant speed applications which require medium starting torque & which require adjustable speed control, either constant torque or constant output. 5. Differential compound wound DC motor with relatively weak series field It has almost constant torque, constant speed and tendency towards speed instability with a possibility of motor running away and strong possibility of motor starting in wrong direction. Applications are mainly for experimental and research work REFERENCES Electrical Machines and Drive Systems, by C.B.Gray Electrical Machines, by Draper Machine Elements in Mechanical Design, by Robert L. Mott.

Principles of Electrical Engineering

Principles of Electrical Engineering D.C GENERATORS Principle of operation of D.C machines, types of D.C Generators, e.m.f equation of D.C Generator, O.C.C of a D.C Shunt Generator, Load characteristics of D.C.Generators GENERATOR PRINCIPLE:

More information

SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL ELECTRICAL MACHINES

SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL ELECTRICAL MACHINES 1 SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL 28-B/7, Jia Sarai, Near IIT, Hauz Khas, New Delhi-110016. Ph. 011-26514888. www.engineersinstitute.com 2 CONTENT 1. : DC MACHINE,

More information

DC MOTOR. Prashant Ambadekar

DC MOTOR. Prashant Ambadekar DC MOTOR Prashant Ambadekar Electric Motor: The input is electrical energy (from the supply source), and the output is mechanical energy (to the load). Electric Generator: The Input is mechanical energy

More information

DESIGN OF DC MACHINE

DESIGN OF DC MACHINE DESIGN OF DC MACHINE 1 OUTPUT EQUATION P a = power developed by armature in kw P = rating of machine in kw E = generated emf, volts; V = terminal voltage, volts p = number of poles; I a = armaure current,

More information

2006 MINI Cooper S GENINFO Starting - Overview - MINI

2006 MINI Cooper S GENINFO Starting - Overview - MINI MINI STARTING SYSTEM * PLEASE READ THIS FIRST * 2002-07 GENINFO Starting - Overview - MINI For information on starter removal and installation, see the following articles. For Cooper, see STARTER WITH

More information

ECEg439:-Electrical Machine II

ECEg439:-Electrical Machine II ECEg439:-Electrical Machine II 2.2 Main Structural Elements of DC Machine Construction of DC Machines A DC machine consists of two main parts 1. Stationary Part (Stator):-It is designed mainly for producing

More information

INTRODUCTION Principle

INTRODUCTION Principle DC Generators INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. Principle Whenever a conductor is moved within a

More information

Historical Development

Historical Development TOPIC 3 DC MACHINES DC Machines 2 Historical Development Direct current (DC) motor is one of the first machines devised to convert electrical power into mechanical power. Its origin can be traced to the

More information

CHAPTER THREE DC MOTOR OVERVIEW AND MATHEMATICAL MODEL

CHAPTER THREE DC MOTOR OVERVIEW AND MATHEMATICAL MODEL CHAPTER THREE DC MOTOR OVERVIEW AND MATHEMATICAL MODEL 3.1 Introduction Almost every mechanical movement that we see around us is accomplished by an electric motor. Electric machines are a means of converting

More information

D.C. Generators. Chapter (1) Introduction. 1.1 Generator Principle. 1.2 Simple Loop Generator

D.C. Generators. Chapter (1) Introduction. 1.1 Generator Principle. 1.2 Simple Loop Generator Chapter (1) D.C. Generators Introduction Although a far greater percentage of the electrical machines in service are a.c. machines, the d.c. machines are of considerable industrial importance. The principal

More information

EEE3441 Electrical Machines Department of Electrical Engineering. Lecture. Introduction to Electrical Machines

EEE3441 Electrical Machines Department of Electrical Engineering. Lecture. Introduction to Electrical Machines Department of Electrical Engineering Lecture Introduction to Electrical Machines 1 In this Lecture Induction motors and synchronous machines are introduced Production of rotating magnetic field Three-phase

More information

Operation Construction Classification Applications. DC Motors

Operation Construction Classification Applications. DC Motors Operation Construction Classification Applications DC Motors A DC Motor converts electrical energy into mechanical energy. Special applications where dc motors are used include: in steel mills, mines

More information

UNIT I D.C. MACHINES PART A. 3. What are factors on which hysteresis loss? It depends on magnetic flux density, frequency & volume of the material.

UNIT I D.C. MACHINES PART A. 3. What are factors on which hysteresis loss? It depends on magnetic flux density, frequency & volume of the material. EE6352-ELECTRICAL ENGINEERING AND INSTRUMENTATION UNIT I D.C. MACHINES PART A 1. What is prime mover? The basic source of mechanical power which drives the armature of the generator is called prime mover.

More information

Basic Motor Theory. Introduction

Basic Motor Theory. Introduction Basic Motor Theory Introduction It has been said that if the Ancient Romans, with their advanced civilization and knowledge of the sciences, had been able to develop a steam motor, the course of history

More information

EE6352-ELECTRICAL ENGINEERING AND INSTRUMENTATION UNIT I D.C. MACHINES PART A

EE6352-ELECTRICAL ENGINEERING AND INSTRUMENTATION UNIT I D.C. MACHINES PART A EE6352-ELECTRICAL ENGINEERING AND INSTRUMENTATION 1. What is prime mover? UNIT I D.C. MACHINES PART A The basic source of mechanical power which drives the armature of the generator is called prime mover.

More information

UNIT 2. INTRODUCTION TO DC GENERATOR (Part 1) OBJECTIVES. General Objective

UNIT 2. INTRODUCTION TO DC GENERATOR (Part 1) OBJECTIVES. General Objective DC GENERATOR (Part 1) E2063/ Unit 2/ 1 UNIT 2 INTRODUCTION TO DC GENERATOR (Part 1) OBJECTIVES General Objective : To apply the basic principle of DC generator, construction principle and types of DC generator.

More information

2014 ELECTRICAL TECHNOLOGY

2014 ELECTRICAL TECHNOLOGY SET - 1 II B. Tech I Semester Regular Examinations, March 2014 ELECTRICAL TECHNOLOGY (Com. to ECE, EIE, BME) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~~~

More information

Motor Basics AGSM 325 Motors vs Engines

Motor Basics AGSM 325 Motors vs Engines Motor Basics AGSM 325 Motors vs Engines Motors convert electrical energy to mechanical energy. Engines convert chemical energy to mechanical energy. 1 Motors Advantages Low Initial Cost - $/Hp Simple &

More information

Chapter 4 DC Machines

Chapter 4 DC Machines Principles of Electric Machines and Power Electronics Chapter 4 DC Machines Third Edition P. C. Sen Chapter 4 DC machine Electric machine Type: rotating machine Applications: generator (electric source)

More information

DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1

DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1 It is the mark of an educated mind to be able to entertain a thought without accepting it. DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1 1. Explain the Basic concepts of rotating machine. 2. With help

More information

Power Losses. b. Field winding copper losses Losses due to the shunt field (i sh 2 R sh. ) or series field winding (i s 2 R s

Power Losses. b. Field winding copper losses Losses due to the shunt field (i sh 2 R sh. ) or series field winding (i s 2 R s Power Losses The various losses inside a generator can be subdivided according to: 1. copper losses a. armature copper losses = i a 2 R a Where R is the resistance of the armature, interpoles and series

More information

Institute of Technology, Nirma University B. Tech. Sem. V: Electrical Engineering 2EE305: ELECTRICAL MACHINES II. Handout: AC Commutator Motors

Institute of Technology, Nirma University B. Tech. Sem. V: Electrical Engineering 2EE305: ELECTRICAL MACHINES II. Handout: AC Commutator Motors Institute of Technology, Nirma University B. Tech. Sem. V: Electrical Engineering 2EE305: ELECTRICAL MACHINES II Handout: AC Commutator Motors Prepared by: Prof. T. H. Panchal Learning Objective: Introduction

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Question Bank EE6401 ELECTRICAL MACHINES I UNIT I: MAGNETIC CIRCUITS AND MAGNETIC

More information

Electrical Machines-I (EE-241) For S.E (EE)

Electrical Machines-I (EE-241) For S.E (EE) PRACTICAL WORK BOOK For Academic Session 2013 Electrical Machines-I (EE-241) For S.E (EE) Name: Roll Number: Class: Batch: Department : Semester/Term: NED University of Engineer ing & Technology Electrical

More information

SIMULINK Based Model for Determination of Different Design Parameters of a Three Phase Delta Connected Squirrel Cage Induction Motor

SIMULINK Based Model for Determination of Different Design Parameters of a Three Phase Delta Connected Squirrel Cage Induction Motor IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 7, Issue 4 (Sep. - Oct. 2013), PP 25-32 SIMULINK Based Model for Determination of Different

More information

Electrical Machines -II

Electrical Machines -II Objective Type Questions: 1. Basically induction machine was invented by (a) Thomas Alva Edison (b) Fleming (c) Nikola Tesla (d) Michel Faraday Electrical Machines -II 2. What will be the amplitude and

More information

Handout Activity: HA773

Handout Activity: HA773 Charging system HA773-2 Handout Activity: HA773 Charging system The charging system allows for a means to recharge the battery and allow for electrical usage of components in the vehicle. The charging

More information

EE6401 ELECTRICAL MACHINES I UNIT I: MAGNETIC CIRCUITS AND MAGNETIC MATERIALS PART: A 1. Define EMF and MMF. 2. Name the main magnetic quantities with their symbols having the following units: Webers,

More information

2 Principles of d.c. machines

2 Principles of d.c. machines 2 Principles of d.c. machines D.C. machines are the electro mechanical energy converters which work from a d.c. source and generate mechanical power or convert mechanical power into a d.c. power. These

More information

CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS

CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS Objective Describe the necessary conditions for motor and generator operation. Calculate the force on a conductor carrying current in the presence of the

More information

DC MOTORS DC Motors DC Motor is a Machine which converts Electrical energy into Mechanical energy. Dc motors are used in steel plants, paper mills, textile mills, cranes, printing presses, Electrical locomotives

More information

Part- A Objective Questions (10X1=10 Marks)

Part- A Objective Questions (10X1=10 Marks) Dr. Mahalingam College of Engineering and Technology, Pollachi-3 (An Autonomous Institution) CCET 3(2016Regulation) Name of Programme: B.E. (EEE) Course Code&Course Title: 16EET41 & Synchronous & Induction

More information

BELT-DRIVEN ALTERNATORS

BELT-DRIVEN ALTERNATORS CHAPTER 13 BELT-DRIVEN ALTERNATORS INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy using the principle of magnetic induction. This principle is based on the

More information

Just what is an alternator?

Just what is an alternator? Just what is an alternator? An alternator is the device used to produce the electricity the car needs to run and to keep the battery charged. The battery is the heart of your electrical system. But you

More information

Direct Current Motors

Direct Current Motors Direct Current Motors Introduction and Working Principle A dc motor is used to converts the dc electrical power into mechanical power. These motors are used in Airplanes, Computers, robots, toys and mining

More information

APGENCO/APTRANSCO Assistant Engineer Electrical Previous Question Papers Q.1 The two windings of a transformer is conductively linked. inductively linked. not linked at all. electrically linked. Q.2 A

More information

EE6401 ELECTRICAL MACHINES I UNIT I: MAGNETIC CIRCUITS AND MAGNETIC MATERIALS PART: A 1. Define EMF and MMF. 2. Name the main magnetic quantities

EE6401 ELECTRICAL MACHINES I UNIT I: MAGNETIC CIRCUITS AND MAGNETIC MATERIALS PART: A 1. Define EMF and MMF. 2. Name the main magnetic quantities EE6401 ELECTRICAL MACHINES I UNIT I: MAGNETIC CIRCUITS AND MAGNETIC MATERIALS PART: A 1. Define EMF and MMF. 2. Name the main magnetic quantities with their symbols having the following units: Webers,

More information

INDUCTION MOTOR. There is no physical electrical connection to the secondary winding, its current is induced

INDUCTION MOTOR. There is no physical electrical connection to the secondary winding, its current is induced INDUCTION MOTOR INTRODUCTION An induction motor is an alternating current motor in which the primary winding on one member (usually the stator) is connected to the power source and a secondary winding

More information

AC Motors vs DC Motors. DC Motors. DC Motor Classification ... Prof. Dr. M. Zahurul Haq

AC Motors vs DC Motors. DC Motors. DC Motor Classification ... Prof. Dr. M. Zahurul Haq AC Motors vs DC Motors DC Motors Prof. Dr. M. Zahurul Haq http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 6401: Advanced Mechatronics

More information

D.C. CONTENTS CONTENTS. Learning Objectives. Generator converts mechanical energy into electrical energy using electromagnetic induction

D.C. CONTENTS CONTENTS. Learning Objectives. Generator converts mechanical energy into electrical energy using electromagnetic induction CONTENTS C H A P T E R26 Learning Objectives es Generator Principal Simple Loop Generator Practical Generator Yoke Pole Cores and Pole Shoes Pole Coils Armature Core Armature Windings Bushes and Bearings

More information

Chapter.2 DESIGN OF DC MACHINES. Details to be specified while ordering a DC machine or consumer s specification

Chapter.2 DESIGN OF DC MACHINES. Details to be specified while ordering a DC machine or consumer s specification Chapter.2 DESIGN OF DC MACHINES Details to be specified while ordering a DC machine or consumer s specification 1. Output : kw (for generators), kw or Hp (for motors) 2. Voltage : V volt 3. Speed : N rpm

More information

Pretest Module 21 Unit 4 Single-Phase Motors

Pretest Module 21 Unit 4 Single-Phase Motors Pretest Module 21 Unit 4 Single-Phase Motors 1. What are the four main components of a single-phase motor? Rotor, stator, centrifugal switch, end bells and bearings 2. How is a rotating field created in

More information

Practical Manual Lab: Electrical Technology

Practical Manual Lab: Electrical Technology Practical Manual Lab: Electrical Technology 1 st yr (CSE/EE/ME/CV/ECE) Electronics &Communication Engg. (ECE) RAO PAHALD SINGH GROUP OF INSTITUTIONS BALANA(MOHINDER GARH)123029 Prepared By. Mr.NAVEEN CHAUHAN

More information

ST.ANNE S COLLEGE OF ENGINEERING AND TECHNOLOGY ANGUCHETTYPALAYAM, PANRUTI

ST.ANNE S COLLEGE OF ENGINEERING AND TECHNOLOGY ANGUCHETTYPALAYAM, PANRUTI ST.ANNE S COLLEGE OF ENGINEERING AND TECHNOLOGY ANGUCHETTYPALAYAM, PANRUTI 607106. QUESTION BANK DECEMBER 2017 - JUNE 2018 / EVEN SEMESTER BRANCH: EEE YR/SEM: II/IV BATCH: 2016-2020 SUB CODE/NAME: EE6401

More information

Renewable Energy Systems 13

Renewable Energy Systems 13 Renewable Energy Systems 13 Buchla, Kissell, Floyd Chapter Outline Generators 13 Buchla, Kissell, Floyd 13-1 MAGNETISM AND ELECTROMAGNETISM 13-2 DC GENERATORS 13-3 AC SYNCHRONOUS GENERATORS 13-4 AC INDUCTION

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043 MECHANICAL ENGINEERING ASSIGNMENT Name : Electrical and Electronics Engineering Code : A40203 Class : II B. Tech I Semester Branch :

More information

EE6351 ELECTRIC DRIVES AND CONTROL UNIT-1 INTRODUTION

EE6351 ELECTRIC DRIVES AND CONTROL UNIT-1 INTRODUTION EE6351 ELECTRIC DRIVES AND CONTROL UNIT-1 INTRODUTION 1. What is meant by drive and electric drive? Machines employed for motion control are called drives and may employ any one of the prime movers for

More information

CHAPTER 4 HARDWARE DEVELOPMENT OF DUAL ROTOR RADIAL FLUX PERMANENT MAGNET GENERATOR FOR STAND-ALONE WIND ENERGY SYSTEMS

CHAPTER 4 HARDWARE DEVELOPMENT OF DUAL ROTOR RADIAL FLUX PERMANENT MAGNET GENERATOR FOR STAND-ALONE WIND ENERGY SYSTEMS 66 CHAPTER 4 HARDWARE DEVELOPMENT OF DUAL ROTOR RADIAL FLUX PERMANENT MAGNET GENERATOR FOR STAND-ALONE WIND ENERGY SYSTEMS 4.1 INTRODUCTION In this chapter, the prototype hardware development of proposed

More information

A Practical Guide to Free Energy Devices

A Practical Guide to Free Energy Devices A Practical Guide to Free Energy Devices Part PatD11: Last updated: 3rd February 2006 Author: Patrick J. Kelly Electrical power is frequently generated by spinning the shaft of a generator which has some

More information

SYLLABUS. osmania university UNIT - I UNIT - II UNIT - III UNIT - IV CHAPTER - 1 : PRINCIPLES OF ELECTRO-MECHANICAL ENERGY CONVERSION CHAPTER - 2 :

SYLLABUS. osmania university UNIT - I UNIT - II UNIT - III UNIT - IV CHAPTER - 1 : PRINCIPLES OF ELECTRO-MECHANICAL ENERGY CONVERSION CHAPTER - 2 : i UNIT - I SYLLABUS osmania university UNIT - II CHAPTER - 1 : PRINCIPLES OF ELECTRO-MECHANICAL ENERGY CONVERSION Energy in Magnetic System, Field Energy and Mechanical Force, Direction of Mechanical Force

More information

Electrical Machines I Week 1: Overview, Construction and EMF equation

Electrical Machines I Week 1: Overview, Construction and EMF equation Electrical Machines I Week 1: Overview, Construction and EMF equation Course Contents Definition of the magnetic terms, magnetic materials and the B-H curve. Magnetic circuits principles. Electromechanical

More information

CHAPTER 3 DESIGN OF THE LIMITED ANGLE BRUSHLESS TORQUE MOTOR

CHAPTER 3 DESIGN OF THE LIMITED ANGLE BRUSHLESS TORQUE MOTOR 33 CHAPTER 3 DESIGN OF THE LIMITED ANGLE BRUSHLESS TORQUE MOTOR 3.1 INTRODUCTION This chapter presents the design of frameless Limited Angle Brushless Torque motor. The armature is wound with toroidal

More information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING III SEMESTER EE6352-ELECTRICAL ENGINEERING AND INSTRUMENTATION

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING III SEMESTER EE6352-ELECTRICAL ENGINEERING AND INSTRUMENTATION DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING III SEMESTER EE6352-ELECTRICAL ENGINEERING AND INSTRUMENTATION UNIT I - D.C. MACHINES PART A 1. Define electric motor. The electric motor is a machine

More information

Comprehensive Technical Training

Comprehensive Technical Training Comprehensive Technical Training For Sugar Mills Staff on Operation & Maintenance of Baggase Based HP Cogeneration System Schedule: 10 th July to 13 th July, 2017 A.C. GENERATOR Topics Covered. Introduction.

More information

The Wound-Rotor Induction Motor Part I

The Wound-Rotor Induction Motor Part I Experiment 1 The Wound-Rotor Induction Motor Part I OBJECTIVE To examine the construction of the three-phase wound-rotor induction motor. To understand exciting current, synchronous speed and slip in a

More information

2. Draw the speed-torque characteristics of dc shunt motor and series motor. (May2013) (May 2014)

2. Draw the speed-torque characteristics of dc shunt motor and series motor. (May2013) (May 2014) UNIT 2 - DRIVE MOTOR CHARACTERISTICS PART A 1. What is meant by mechanical characteristics? A curve is drawn between speed-torque. This characteristic is called mechanical characteristics. 2. Draw the

More information

Starting Systems & Traction Motor Systems. ATASA 5 th. ATASA 5 TH Study Guide Chapter 18 Pages Starting & Traction Motor Systems 62 Points

Starting Systems & Traction Motor Systems. ATASA 5 th. ATASA 5 TH Study Guide Chapter 18 Pages Starting & Traction Motor Systems 62 Points ATASA 5 TH Study Guide Chapter 18 Pages 537 570 Starting & Traction Motor Systems 62 Points Please Read The Summary 1. Electric are used to start the engine & in hybrids are used to move the vehicle. Motors

More information

ECET 211 Electric Machines & Controls Lecture 5-1 Electric Motors. Lecture 5-1 Electric Motors

ECET 211 Electric Machines & Controls Lecture 5-1 Electric Motors. Lecture 5-1 Electric Motors ECET 211 Electric Machines & Controls Lecture 5-1 Electric Motors (1 of 4) Text Book: Chapter 5 Electric Motors, Electric Motors and Control Systems, by Frank D. Petruzella, published by McGraw Hill, 2015.

More information

Pretest Module 21 Units 1-4 AC Generators & Three-Phase Motors

Pretest Module 21 Units 1-4 AC Generators & Three-Phase Motors Pretest Module 21 Units 1-4 AC Generators & Three-Phase Motors 1. What are the two main parts of a three-phase motor? Stator and Rotor 2. Which part of a three-phase squirrel-cage induction motor is a

More information

Physics12 Unit 8/9 Electromagnetism

Physics12 Unit 8/9 Electromagnetism Name: Physics12 Unit 8/9 Electromagnetism 1. An electron, travelling with a constant velocity, enters a region of uniform magnetic field. Which of the following is not a possible pathway? 2. A bar magnet

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : ET(16EE212) Year & Sem: II-B.Tech & II-Sem UNIT I DC GENERATORS Course

More information

Sub:EE6604/DESIGN OF ELECTRICAL MACHINES Unit V SYNCHRONOUS MACHINES. 2. What are the two type of poles used in salient pole machines?

Sub:EE6604/DESIGN OF ELECTRICAL MACHINES Unit V SYNCHRONOUS MACHINES. 2. What are the two type of poles used in salient pole machines? SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF EEEE QUESTION BANK Sub:EE6604/DESIGN OF ELECTRICAL MACHINES Unit V SYNCHRONOUS MACHINES 1. Name the two types of synchronous machines. 1. Salient

More information

14 Single- Phase A.C. Motors I

14 Single- Phase A.C. Motors I Lectures 14-15, Page 1 14 Single- Phase A.C. Motors I There exists a very large market for single-phase, fractional horsepower motors (up to about 1 kw) particularly for domestic use. Like many large volume

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : EMT(15A01301) Year & Sem: II-B.Tech & I-Sem Course & Branch: B.Tech-CE

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK 16EET41 SYNCHRONOUS AND INDUCTION MACHINES UNIT I SYNCHRONOUS GENERATOR 1. Why the stator core is laminated? 2. Define voltage regulation

More information

UNIT - 4 TESTING OF DC MACHINES

UNIT - 4 TESTING OF DC MACHINES UNIT - 4 TESTING OF DC MACHINES Testing of DC machines can be broadly classified as i) Direct method of Testing ii) Indirect method of testing DIRECT METHOD OF TESTING: In this method, the DC machine is

More information

Page 1. Design meeting 18/03/2008. By Mohamed KOUJILI

Page 1. Design meeting 18/03/2008. By Mohamed KOUJILI Page 1 Design meeting 18/03/2008 By Mohamed KOUJILI I. INTRODUCTION II. III. IV. CONSTRUCTION AND OPERATING PRINCIPLE 1. Stator 2. Rotor 3. Hall sensor 4. Theory of operation TORQUE/SPEED CHARACTERISTICS

More information

9/7/2010. Chapter , The McGraw-Hill Companies, Inc. MOTOR CLASSIFICATION. 2010, The McGraw-Hill Companies, Inc.

9/7/2010. Chapter , The McGraw-Hill Companies, Inc. MOTOR CLASSIFICATION. 2010, The McGraw-Hill Companies, Inc. Chapter 2 MOTOR CLASSIFICATION 1 In general, motors are classified according to the type of power used (AC or DC) and the motor's principle of operation. AC DC Motor Family Tree 2 DC MOTOR CONNECTIONS

More information

VIII. Three-phase Induction Machines (Asynchronous Machines) Induction Machines

VIII. Three-phase Induction Machines (Asynchronous Machines) Induction Machines VIII. Three-phase Induction Machines (Asynchronous Machines) Induction Machines 1 Introduction Three-phase induction motors are the most common and frequently encountered machines in industry simple design,

More information

SERVICE SHOP NOTES. Use ohmmeter to check the resistance between the leads.

SERVICE SHOP NOTES. Use ohmmeter to check the resistance between the leads. SERVICE SHOP NOTES LIMA MAC SELF VOLTAGE REGULATED GENERATORS Troubleshooting Tips Symptom: Engine bogs down or stalls even at no load. Problem: Main stator has one or more taps wound or connected incorrectly.

More information

Chapter 22: Electric motors and electromagnetic induction

Chapter 22: Electric motors and electromagnetic induction Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on

More information

Universal computer aided design for electrical machines

Universal computer aided design for electrical machines Neonode Inc From the SelectedWorks of Dr. Rozita Teymourzadeh, CEng. 2012 Universal computer aided design for electrical machines Aravind CV Grace I Rozita Teymourzadeh Rajkumar R Raj R, et al. Available

More information

Electromagnetic Induction

Electromagnetic Induction Electromagnetic Induction Question Paper Level ubject Exam oard Unit Topic ooklet O Level Physics ambridge International Examinations Electricity and Magnetism Electromagnetic Induction Question Paper

More information

Single Phase Induction Motors

Single Phase Induction Motors Single Phase Induction Motors Prof. T. H. Panchal Asst. Professor Department of Electrical Engineering Institute of Technology Nirma University, Ahmedabad Introduction As the name suggests, these motors

More information

ELECTRICAL MACHINES. Theory and Practice. M.N. Bandyopadhyay

ELECTRICAL MACHINES. Theory and Practice. M.N. Bandyopadhyay ELECTRICAL MACHINES Theory and Practice M.N. Bandyopadhyay ELECTRICAL MACHINES Theory and Practice M.N. Bandyopadhyay Director National Institute of Technology Kurukshetra Delhi-110092 2014 ELECTRICAL

More information

Date: Name: ID: LABORATORY EXPERIMENT NO. 8 INDUCTION MOTOR/GENERATOR 8-1

Date: Name: ID: LABORATORY EXPERIMENT NO. 8 INDUCTION MOTOR/GENERATOR 8-1 Date: Name: ID: LABORATORY EXPERIMENT NO. 8 INDUCTION MOTOR/GENERATOR 8-1 OBJECT 1. To determine the general performance of a squirrel motors 2. To observe the characteristics of induction generators.

More information

DC CIRCUITS ELECTROMAGNETISM

DC CIRCUITS ELECTROMAGNETISM DC CIRCUITS 1. State and Explain Ohm s Law. Write in brief about the limitations of Ohm s Law. 2. State and explain Kirchhoff s laws. 3. Write in brief about disadvantages of series circuit and advantages

More information

Unit 32 Three-Phase Alternators

Unit 32 Three-Phase Alternators Unit 32 Three-Phase Alternators Objectives: Discuss the operation of a three-phase alternator. Explain the effect of rotation speed on frequency. Explain the effect of field excitation on output voltage.

More information

ELECTRO MAGNETIC INDUCTION

ELECTRO MAGNETIC INDUCTION 6 ELECTRO MAGNETIC INDUCTION 06.01 Electromagnetic induction When the magnetic flux linked with a coil or conductor changes, an emf is developed in it. This phenomenon is known as electromagnetic induction.

More information

Technical Developments in the Measurement of Commutator Profiles. Carbone of America. WMEA Tucson AZ. Roy Douglas Technical Manager

Technical Developments in the Measurement of Commutator Profiles. Carbone of America. WMEA Tucson AZ. Roy Douglas Technical Manager Carbone of America Technical Developments in the Measurement of Commutator Profiles WMEA Tucson AZ. Roy Douglas Technical Manager Content 2 1. Tools and Methods of Measuring Commutator Profiles (9) 2.

More information

AC MOTOR TYPES. DESCRIBE how torque is produced in a single-phase AC motor. EXPLAIN why an AC synchronous motor does not have starting torque.

AC MOTOR TYPES. DESCRIBE how torque is produced in a single-phase AC motor. EXPLAIN why an AC synchronous motor does not have starting torque. Various types of AC motors are used for specific applications. By matching the type of motor to the appropriate application, increased equipment performance can be obtained. EO 1.5 EO 1.6 EO 1.7 EO 1.8

More information

Prepared By: Ahmad Firdaus Bin Ahmad Zaidi

Prepared By: Ahmad Firdaus Bin Ahmad Zaidi Prepared By: Ahmad Firdaus Bin Ahmad Zaidi A stepper motor is an electromechanical device which converts electrical pulses into discrete mechanical rotational movements. Stepper motor mainly used when

More information

Mechatronics Chapter 10 Actuators 10-3

Mechatronics Chapter 10 Actuators 10-3 MEMS1049 Mechatronics Chapter 10 Actuators 10-3 Electric Motor DC Motor DC Motor DC Motor DC Motor DC Motor Motor terminology Motor field current interaction Motor commutator It consists of a ring of

More information

High Performance Machine Design Considerations

High Performance Machine Design Considerations High Performance Machine Design Considerations High Performance Machine Design Considerations Abstract From Formula One race cars to consumer vehicles, the demand for high performing, energy efficient

More information

Synchronous Generators I. EE 340 Spring 2011

Synchronous Generators I. EE 340 Spring 2011 Synchronous Generators I EE 340 Spring 2011 Construction of synchronous machines In a synchronous generator, a DC current is applied to the rotor winding producing a rotor magnetic field. The rotor is

More information

DC Series Motors by Thomas E. Kissell Industrial Electronics, Second Edition, Prentice Hall PTR

DC Series Motors by Thomas E. Kissell Industrial Electronics, Second Edition, Prentice Hall PTR Site Help Search NI Developer Zone DC Series Motors by Thomas E. Kissell Industrial Electronics, Second Edition, Prentice Hall PTR Back to Document Table of Contents: Series Motor Diagram Series Motor

More information

Lower-Loss Technology

Lower-Loss Technology Lower-Loss Technology FOR A STEPPING MOTOR Yasuo Sato (From the Fall 28 Technical Conference of the SMMA. Reprinted with permission of the Small Motor & Motion Association.) Management Summary The demand

More information

Single-Phase AC Induction Squirrel Cage Motors. Permanent Magnet Series Wound Shunt Wound Compound Wound Squirrel Cage. Induction.

Single-Phase AC Induction Squirrel Cage Motors. Permanent Magnet Series Wound Shunt Wound Compound Wound Squirrel Cage. Induction. FAN ENGINEERING Information and Recommendations for the Engineer Twin City Fan FE-1100 Single-Phase AC Induction Squirrel Cage Motors Introduction It is with the electric motor where a method of converting

More information

CLAW-POLE ALTERNATOR AND AUTOMOTIVE ELECTRICAL SYSTEM

CLAW-POLE ALTERNATOR AND AUTOMOTIVE ELECTRICAL SYSTEM Chapter- 2 CLAW-POLE ALTERNATOR AND AUTOMOTIVE ELECTRICAL SYSTEM 2.1 Introduction The claw pole alternator is a special kind of synchronous machine. This chapter discusses the constructional features of

More information

PHYS 1444 Section 004. Lecture #19. DC Generator Transformer. Generalized Faraday s Law Mutual Inductance Self Inductance. Wednesday, Apr.

PHYS 1444 Section 004. Lecture #19. DC Generator Transformer. Generalized Faraday s Law Mutual Inductance Self Inductance. Wednesday, Apr. PHYS 1444 Section 004 DC Generator Transformer Lecture #19 Wednesday, April 11, 2012 Dr. Generalized Faraday s Law Mutual Inductance Self Inductance 1 Announcements Term exam #2 Non-comprehensive Date

More information

Synchronous Generators I. Spring 2013

Synchronous Generators I. Spring 2013 Synchronous Generators I Spring 2013 Construction of synchronous machines In a synchronous generator, a DC current is applied to the rotor winding producing a rotor magnetic field. The rotor is then turned

More information

CHAPTER 3 BRUSHLESS DC MOTOR

CHAPTER 3 BRUSHLESS DC MOTOR 53 CHAPTER 3 BRUSHLESS DC MOTOR 3.1 INTRODUCTION The application of motors has spread to all kinds of fields. In order to adopt different applications, various types of motors such as DC motors, induction

More information

Induction type Energy meter Construction

Induction type Energy meter Construction Induction type Energy meter Construction The four main parts of an energy meter are: Driving system Moving system Braking system and Registering system The construction is as shown below: Fig. Construction

More information

ESO 210 Introduction to Electrical Engineering

ESO 210 Introduction to Electrical Engineering ESO 210 Introduction to Electrical Engineering Lectures-37 Polyphase (3-phase) Induction Motor 2 Determination of Induction Machine Parameters Three tests are needed to determine the parameters in an induction

More information

Experiment 3. The Direct Current Motor Part II OBJECTIVE. To locate the neutral brush position. To learn the basic motor wiring connections.

Experiment 3. The Direct Current Motor Part II OBJECTIVE. To locate the neutral brush position. To learn the basic motor wiring connections. Experiment 3 The Direct Current Motor Part II OBJECTIVE To locate the neutral brush position. To learn the basic motor wiring connections. To observe the operating characteristics of series and shunt connected

More information

SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS UNIT OBJECTIVES UNIT OBJECTIVES 3/21/2012

SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS UNIT OBJECTIVES UNIT OBJECTIVES 3/21/2012 SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS UNIT OBJECTIVES After studying this unit, the reader should be able to Describe the different types of open single-phase motors used to drive

More information

chapter6 Electrical machines and motors Unit 1 outcome 6

chapter6 Electrical machines and motors Unit 1 outcome 6 Electrical machines and motors chapter6 Unit 1 outcome 6 The principles of magnetism are central to many of the tasks you will carry out as an electrician. Magnetism, like gravity, is a fundamental force.

More information

UNIT-1 Drive Characteristics

UNIT-1 Drive Characteristics UNIT-1 Drive Characteristics DEFINITION: Systems employed for motion control are called as DRIVES Drives may employ any of the prime movers such as diesel or petrol engine, gas or steam turbines, steam

More information

The Starter motor. Student booklet

The Starter motor. Student booklet The Starter motor Student booklet The Starter motor - INDEX - 2006-04-07-13:20 The Starter motor The starter motor is an electrical motor and the electric motor is all about magnets and magnetism: A motor

More information

Al-Saudia Virtual Academy Online Tuition Pakistan Pakistan Online Tutor Magnet and Electromagnetism

Al-Saudia Virtual Academy Online Tuition Pakistan Pakistan Online Tutor Magnet and Electromagnetism Al-Saudia Virtual Academy Online Tuition Pakistan Pakistan Online Tutor Magnet and Electromagnetism DEFINITION: A substance having ability to attract magnetic materials is called magnet. The properties

More information