DESIGN AND ANALYSIS OF COMPOSITE DRIVE SHAFT

Size: px
Start display at page:

Download "DESIGN AND ANALYSIS OF COMPOSITE DRIVE SHAFT"

Transcription

1 DESIGN AND ANALYSIS OF COMPOSITE DRIVE SHAFT KETHAVATH RAJESH Mr.A.RAMESH(M.Tech) Asst.Professor SDEPARTMENT OF MECHANICAL ENGINEERING MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS) (An Autonomous Institution approved by UGC and affiliated to JNTUH, Approved by AICTE, Accredited by NAAC with A Grade and NBA & Recipient of World Bank Assistance under TEQIP Phase- II S.C.1.1) Maisammaguda, Dhulapally (Post. Via.Kompally), Secunderabad Abstract Drive shaft is the most important component to any power transmission application; automotive drive Shaft is one of this. A drive shaft, also known as a propeller shaft or Cardan shaft, it is a mechanical part that transmits the torque generated by a vehicle's engine into usable motive force to propel the vehicle. Substituting composite structures for conventional metallic structures has many advantages because of higher specific stiffness and strength of composite materials. This work deals with the replacement of conventional two-piece steel drive shafts with a single-piece aluminum silicon carbide composite drive shaft for an automotive application. The design parameters were optimized with the objective of minimizing the weight of composite drive shaft. The CAD model is designed in SOLID WORKS PREMIUM 2014 SOFTWARE. To obtain the stress and deformation values solid works simulation software was used. By comparing the results proper material for drive shaft can be selected. Introduction to drive shaft: A drive shaft, driveshaft, driving shaft, propeller shaft (prop shaft), or Cardan shaft is a mechanical component for transmitting torque and rotation, usually used to connect other components of a drive train that cannot be connected directly because of distance or the need to allow for relative movement between them.

2 As torque carriers, drive shafts are subject to torsion and shear stress, equivalent to the difference between the input torque and the load. They must therefore be strong enough to bear the stress, whilst avoiding too much additional weight as that would in turn increase their inertia. To allow for variations in the alignment and distance between the driving and driven components, drive shafts frequently incorporate one or more universal joints, jaw couplings, or rag joints, and sometimes a splined joint or prismatic. Drive Shaft description: As mentioned above, recent developments in the applications of composite materials have shown that a composite material structural member used in power transmission can be of a great assistance in overcoming a few of the problems faced with conventional drive shafts. The assessment of the extent of this fact is the essence of this work. Therefore a good understanding of the drive shaft would be a prerequisite and is discussed in the following section. A drive shaft, propeller shaft (prop shaft), or Cardan shaft is a mechanical component for transmitting torque and rotation, usually used to connect other components of a drive train that cannot be connected directly because of distance or the need to allow for relative movement between them. Drive shafts are carriers of torque. They are subject to torsion and shear stress, equivalent to the difference between the input torque and the load. They must therefore be strong enough to bear the stress, whilst avoiding too much additional weight as that would in turn increase their inertia. Therefore a drive shaft is expected to function, as follows. It must transmit torque from the transmission to the differential gear box. The drive shaft must also be capable of rotating at very high speeds as required by the vehicle. The drive shaft must also operate through constantly changing angles between the transmission, the differential and the axels. The length of the drive shaft must also be capable of changing while transmitting torque. o Thus the design of a drive shaft presents itself as a case of torsion problem. Further, with regard to the conventional drive shafts

3 following shortcomings were observed some of which could be addressed better with a composite shaft. o They have less specific modulus and strength o Increased weight o Conventional steel drive shafts are usually manufactured in two pieces to increase the fundamental bending natural frequency because the bending natural frequency of a shaft is inversely proportional to the square of beam length and proportional to the square root of specific modulus. Therefore the steel drive shaft is made in two sections connected by a support structure, bearings and U- joints and hence overall weight of assembly will be more. o Its corrosion resistance is less as compared with composite materials. o Steel drive shafts have less damping capacity. Since a drive shaft is a case of torsion problem an understanding of the methodology of solving such a problem in structural mechanics is necessary. Drive Shaft The drive shaft, or cardan shaft as it is sometimes called, is a cylindrical piece of metal, which plays a crucial role in the operation of a motor vehicle. Main drive shafts are tubular and are usually constructed from steel. They will generally be of a large diameter and hollow because weight plays a large part in the efficiency of their performance. It is for this very reason that some have aluminum incorporated in their makeup. There are also short drive shafts, which are used to connect the main drive shaft to the wheels themselves. In these cases, and in front-wheel drive vehicles where the engine and wheels are in close proximity, these short drive shafts are not hollow but solid pieces of metal. Drive shaft working While the importance of an engine to the running of an automobile is well known, it can be argued that the drive shaft plays an equally vital role. The drive shaft acts as a medium for transferring the power generated by the engine to the wheels, enabling them to turn. This in turn puts the vehicle in motion.

4 The force that is transmitted by the drive shaft is referred to as torque. Torque is basically the technical term to describe the force associated with a twisting or spinning motion. Because drive shafts have to endure conditions that could cause them to bend or break they are made to be flexible. Flexible in this sense does not mean the ability to bend. What it speaks to is an allowance for some small degree of movement at the points where the drive shafts are connected. This is accomplished via what are known as universal joints, or u-joints. It is necessary for drive shafts to be straight and balanced. If this is not so vibrating will result. This can lead to damage to the components that are connected to the drive shaft. One example is the engine, which is turning at high speed. The importance of the drive shaft is best appreciated in circumstances where it bridges the gap between inconveniently located components. This inconvenience can arise because of the component s long distance apart, or their awkward positioning/alignment. Fig: drive shaft Purpose of the Drive Shaft (or Propeller Shaft): The torque that is produced from the engine and transmission must be transferred to the rear wheels to push the vehicle forward and reverse. The drive shaft must provide a smooth, uninterrupted flow of power to the axles. The drive shaft and differential are used to transfer this torque. Functions of the Drive Shaft: First, it must transmit torque from the transmission to the differential gear box. During the operation, it is necessary to transmit maximum low-gear torque developed by the engine.

5 The drive shafts must also be capable of rotating at the very fast speeds required by the vehicle. The drive shaft must also operate through constantly changing angles between the transmission, the differential and the axles. As the rear wheels roll over bumps in the road, the differential and axles move up and down. This movement changes the angle between the transmission and the differential. The length of the drive shaft must also be capable of changing while transmitting torque. Length changes are caused by axle movement due to torque reaction, road deflections, braking loads and so on. A slip joint is used to compensate for this motion. The slip joint is usually made of an internal and external spline. It is located on the front end of the drive shaft and is connected to the transmission. Literature Survey: Composites have high specific modulus, strength and less weight. The fundamental natural frequency of carbon fiber drive shaft can be twice as that of the steel or aluminum, because the carbon fiber composite material has more than 4 times the specific stiffness, which makes it possible to manufacture the drive shaft of passenger cars in one piece. A one piece composite shaft can be manufactured so as to satisfy the vibration requirements. This eliminates all the assembly, connecting the two piece steel shaft and thus minimizes the overall weight, vibrations and cost. Due to weight reduction fuel consumption will be reduced. They have high damping capacity and hence they produce less vibrations and noise. They have good corrosion resistance, greater torque capacity, longer fatigue life than steel and aluminum. Mechanical characterization of Al- SiC composite done in previous work by Behera et al. [2013], Wang et al [2008], Pathak et al. [2006] The hardness, impact strength, and material toughness were evaluated. The improved value of coefficient of thermal expansion for Aluminum composites is one of the reasons they are widely used in electronics industry as studied by Martin et al. [2011], Dunia Abdul Saheb[2011], Occhionero et al.[2010], Wang et al.[2006]. Composite drive shafts Introduction:

6 Composite materials have been widely used to improve the performance of various types of structures. Compared to conventional materials, the main advantages of composites are their superior stiffness to mass ratio as well as high strength to weight ratio. Because of these advantages, composites have been increasingly incorporated in structural components in various industrial fields. Some examples are helicopter rotor blades, aircraft wings in aerospace engineering, and bridge structures in civil engineering applications. Some of the basic concepts of composite materials are discussed in the following section to better acquaint ourselves with the behaviour of composites. Basic Concepts of Composite Materials: Composite materials are basically hybrid materials formed of multiple materials in order to utilize their individual structural advantages in a single structural material. The constituents are combined at a macroscopic level and are not soluble in each other. The key is the macroscopic examination of a material where in the components can be identified by the naked eye. Different materials can be combined on a microscopic scale, such as in alloying of metals, but the resulting material is, for all practical purposes, macroscopically homogeneous, i.e. the components cannot be distinguished by the naked eye and essentially acts together. The advantage of composite materials is that, if well designed, they usually exhibit the best qualities of their components or constituents and often some qualities that neither constituent possesses. Some of the properties that can be improved by forming a composite material are strength, fatigue life, stiffness, temperature-dependent behaviour, corrosion resistance, thermal insulation, wear resistance, thermal conductivity, attractiveness, acoustical insulation and weight. Naturally, not all of these properties are improved at the same time nor is there usually any requirement to do so. In fact, some of the properties are in conflict with one another, e.g., thermal insulation versus thermal conductivity. The objective is merely to create a material that has only the characteristics needed to perform the designed task. There are two building blocks that constitute the structure of composite materials. One constituent is called the reinforcing phase and the one in which it is embedded is called the matrix. The reinforcing phase material may be in the form of fibers, particulates, flakes. The matrix phase materials are generally

7 continuous. Examples of composite systems include concrete reinforced with steel, epoxy reinforced with graphite fibers, etc. Classification of Composites: Composite Material: A material composed of 2 or more constituents is called composite material. Composites consist of two or more materials or material phases that are combined to produce a material that has superior properties to those of its individual constituents. The constituents are combined at a macroscopic level and or not soluble in each other. The main difference between composite and an alloy are constituent materials which are insoluble in each other and the individual constituents retain those properties in the case of composites, whereas in alloys, constituent materials are soluble in each other and forms a new material which has different properties from their constituents. Material properties of aluminum silicon carbide: Baseline 3.0µm SiC- 0.7µm SiC- 3.0µm SiC- 0.7µm SiC- Alloy 18% vol % 18% vol % 25% vol % 25% vol % Property 2124 (T4) 2124/SiC/18p 2124/SiC/18p 2124/SiC/25p 2124/SiC/25p comparison as-compacted as-compacted as-compacted as-compacted billet (T4) billet (T4) billet (T4) billet (T4) Density (g/cc) Tensile modulus (Gpa) Strain to Failure (%) % Yield stress (Mpa) Ultimate Tensile strength (Mpa) Introductions to Solid Works: Solid works mechanical design automation software is a featurebased, parametric solid modeling design tool which advantage of the easy to learn windows TM graphical user interface. We can create fully associate 3-D solid models with or without while utilizing automatic or user defined relations to capture design intent. Parameters refer to constraints whose values determine the shape or geometry of the model or assembly. Parameters can be either numeric parameters, such as line lengths or circle diameters, or geometric parameters, such as tangent, parallel, concentric, horizontal or vertical, etc. Numeric parameters can be associated with each other through the use of relations, which allow them to capture design intent. Basic Concepts of Analysis: The software uses the Finite Element Method (FEM). FEM is a numerical technique for analyzing engineering designs. FEM is accepted as the standard analysis method due to its generality and suitability for computer implementation. FEM divides the model into many small pieces of simple shapes called elements effectively replacing

8 a complex problem by many simple problems that need to be solved simultaneously. Elements share common points called nodes. The process of dividing the model into small pieces is called meshing. Von misses failure criteria The von Mises yield criterion suggests that the yielding of materials begins when the second deviatoric stress Invariant reaches a critical value. It is part of a plasticity theory that applies best to ductile materials, such as metals. Prior to yield, material response is assumed to be elastic. In materials science and engineering the von Mises yield criterion can be also formulated in terms of the von Mises stress or equivalent tensile stress, a scalar stress value that can be computed from the Cauchy stress tensor. In this case, a material is said to start yielding when its von Mises stress reaches a critical value known as the yield strength, The von Mises stress is used to predict yielding of materials under any loading condition from results of simple uniaxial tensile tests. The von Mises stress satisfies the property that two stress states with equal distortion energy have equal von Mises stress. von misses Fig: von missses S F. S = σ + σ + σ (σ σ + σ σ + σ σ ) Modeling of Drive Shaft: Drive shaft is modeled with proper dimensions in solid works. The design of composite drive shaft is as follows Draw the sketch with dimensions as shown below Revolve the sketch with base axix:

9 By using the extrude cut and mirror features we finally get the drive shaft model Finite Element Analysis Introduction calculating the strength and behaviour of engineering structures. It can be used to calculate deflection, stress, vibration, buckling behaviour and many other phenomena. It also can be used to analyze either small or large scale deflection under loading or applied displacement. It uses a numerical technique called the finite element method (FEM). In finite element method, the actual continuum is represented by the finite elements. These elements are considered to be joined at specified joints called nodes or nodal points. As the actual variation of the field variable (like displacement, temperature and pressure or velocity) inside the continuum is not known, the variation of the field variable inside a finite element is approximated by a simple function. The approximating functions are also called as interpolation models and are defined in terms of field variable at the nodes. When the equilibrium equations for the whole continuum are known, the unknowns will be the nodal values of the field variable. Simulation on Composite Drive Shaft: Meshing: Finite Element Analysis (FEA) is a computer-based numerical technique for

10 Maximum von-misses stress Analysis results Material: aluminum silicon carbide. Total deformation Maximum von misses stress Maximum strain Maximum strain Total Deformation Buckling analysis Material: steel Buckling analysis results at different modes Material: steel

11 Material: composite aluminum silicon carbide

12 Aluminum silicon carbide has shown less weight when compared with steel shaft References Conclusion: Composite drive shaft is modeled and analyzed by using solid works 2014 Material properties and uses of composite materials are studied Composite drive shaft is modeled in solid works by using required commands Then analysis is done on drive shaft by using different materials such as steel and aluminum silicon carbide Stress, strain and deformations are found out for two materials (i.e; steel and aluminum silicon carbide) Results of stress, strain and deformations are tabulated 1. Jones,R.M., 1990, Mechanics of Composite Materials, 2e, McGrawHill Book Company, New York. 2. AurtarK.Kaw, 1997, Mechanics of Composite Materials, CRC Press, New York..Belingardi.G, Calderale.P.M. and Rosetto.M.,1990, Design Of Composite Material Drive Shafts For Vehicular Applications, Int.J.ofVehicle Design, Vol.11,No.6,pp Jin Kook Kim.DaiGilLee, and Durk Hyun Cho, 2001, Investigation of Adhesively Bonded Joints for Composite Propeller shafts, Journalof CompositeMaterials, Vol.35, No.11, pp Dai Gil Lee, et.al, 2004, Design and Manufacture of an Automotive Hybrid Aluminum/Composite Drive Shaft, Journal of CompositeStructures, Vol.63, pp Agarwal B. D. and Broutman L. J., 1990, "Analysis and performanceof

13 KETHAVATH RAJESH A.RAMESH M.Tech, Machine Design,Dept. of Mechanical Engineering,MallaReddy Engineering College. id: Assistant professor, Dept. of Mechanical Engineering, Malla Reddy Engineering College. id:

FAILURE ANALYSIS AND EVALUATION OF A COMPOSITE MATERIAL AUTOMOTIVE DRIVESHAFT BY USING FEM A REVIEW

FAILURE ANALYSIS AND EVALUATION OF A COMPOSITE MATERIAL AUTOMOTIVE DRIVESHAFT BY USING FEM A REVIEW Int. J. Mech. Eng. & Rob. Res. 2014 Amol B Rindhe and S R Wagh, 2014 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 3, No. 2, April 2014 2014 IJMERR. All Rights Reserved FAILURE ANALYSIS AND EVALUATION

More information

FEM Analysis of Combined Paired Effect on Piston & Connecting Rod using ANSYS

FEM Analysis of Combined Paired Effect on Piston & Connecting Rod using ANSYS FEM Analysis of Combined Paired Effect on Piston & Connecting Rod using ANSYS Kunal Saurabh Assistant Professor, Mechanical Department IEC Group of Institutions, Greater Noida - India kunalsaurabh.me@ieccollege.com

More information

STATIC, MODAL AND BUCKLING ANALYSIS OF AUTOMOTIVE COMPOSITE DRIVE SAHFT Kishor Ghatage 1, Narayanrao Hargude 2

STATIC, MODAL AND BUCKLING ANALYSIS OF AUTOMOTIVE COMPOSITE DRIVE SAHFT Kishor Ghatage 1, Narayanrao Hargude 2 IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 2278-1684, PP: 32-42 www.iosrjournals.org STATIC, MODAL AND BUCKLING ANALYSIS OF AUTOMOTIVE COMPOSITE DRIVE SAHFT Kishor Ghatage 1, Narayanrao

More information

DESIGN AND OPTIMIZATION OF HTV FUEL TANK ASSEMBLY BY FINITE ELEMENT ANALYSIS

DESIGN AND OPTIMIZATION OF HTV FUEL TANK ASSEMBLY BY FINITE ELEMENT ANALYSIS DESIGN AND OPTIMIZATION OF HTV FUEL TANK ASSEMBLY BY FINITE ELEMENT ANALYSIS GAJENDRA G 1, PRAKASHA A M 2, DR NOOR AHMED R 3, DR.K.S.BADRINARAYAN 4 1PG Scholar, Mechanical department, M S Engineering College,

More information

Load Analysis and Multi Body Dynamics Analysis of Connecting Rod in Single Cylinder 4 Stroke Engine

Load Analysis and Multi Body Dynamics Analysis of Connecting Rod in Single Cylinder 4 Stroke Engine IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 08, 2015 ISSN (online): 2321-0613 Load Analysis and Multi Body Dynamics Analysis of Connecting Rod in Single Cylinder 4

More information

DESIGN AND ANALYSIS OF LEAF SPRING

DESIGN AND ANALYSIS OF LEAF SPRING DESIGN AND ANALYSIS OF LEAF SPRING 1 Mr. RAJA MANAS MACHERLA, 2 Mr. SRIKANTH BAJAJ 1 Bachelor of technology, Department of MECH, Mahatma Gandhi Institute of Technology, Gandipet Main Road, Kokapet, Hyderabad,

More information

STATIC AND FATIGUE ANALYSIS OF LEAF SPRING-AS A REVIEW

STATIC AND FATIGUE ANALYSIS OF LEAF SPRING-AS A REVIEW STATIC AND FATIGUE ANALYSIS OF LEAF SPRING-AS A REVIEW Vishal Gavali 1, Mahesh Jadhav 2, Digambar Zoman 3 1,2, 3 Mechanical Engineering Department, LGNSCOE Anjaneri Nashik,(India) ABSTRACT In engineering

More information

Design and Analysis of Front Lower Control Arm by Using Topology Optimization

Design and Analysis of Front Lower Control Arm by Using Topology Optimization Design and Analysis of Front Lower Control Arm by Using Topology Optimization Prashant Gunjan 1, Amit Sarda 2 12 Department of Mechanical Engineering, Christian College of Engineering and Technology, Bhilai

More information

ANALYSIS AND OPTIMIZATION OF CONNECTING ROD USING ALFASiC COMPOSITES

ANALYSIS AND OPTIMIZATION OF CONNECTING ROD USING ALFASiC COMPOSITES ANALYSIS AND OPTIMIZATION OF CONNECTING ROD USING ALFASiC COMPOSITES Kuldeep B 1, Arun L.R 2, Mohammed Faheem 3 P.G. Scholar, Department of Mechanical Engineering, The Oxford college of Engineering, Karnataka,

More information

FEA Based Vibration Characteristic Analysis of Conventional and Composite Material Single Piece Drive Shaft

FEA Based Vibration Characteristic Analysis of Conventional and Composite Material Single Piece Drive Shaft , July 5-7, 2017, London, U.K. FEA Based Vibration Characteristic Analysis of Conventional and Composite Material Single Piece Drive Shaft Ashwani Kumar, Neelesh Sharma, Pravin P Patil Abstract The main

More information

Design and Stress Analysis of Crankshaft for Single Cylinder 4-Stroke Diesel Engine

Design and Stress Analysis of Crankshaft for Single Cylinder 4-Stroke Diesel Engine Design and Stress Analysis of Crankshaft for Single Cylinder 4-Stroke Diesel Engine Amit Solanki #1, Jaydeepsinh Dodiya #2, # Mechanical Engg.Deptt, C.U.Shah University, Wadhwan city, Gujarat, INDIA Abstract

More information

Static Analysis of Crankcase for Single Cylinder High Speed Diesel Engine

Static Analysis of Crankcase for Single Cylinder High Speed Diesel Engine Static Analysis of Crankcase for Single Cylinder High Speed Diesel Engine G.A.Bhosale Department of Mechanical Engineering Dean Academic, Yashwantrao Bhonsale polytechnic, sawantwadi Dr. V.V. Kulkarni

More information

COMPARATIVE ANALYSIS OF CRANKSHAFT IN SINGLE CYLINDER PETROL ENGINE CRANKSHAFT BY NUMERICAL AND ANALYTICAL METHOD

COMPARATIVE ANALYSIS OF CRANKSHAFT IN SINGLE CYLINDER PETROL ENGINE CRANKSHAFT BY NUMERICAL AND ANALYTICAL METHOD COMPARATIVE ANALYSIS OF CRANKSHAFT IN SINGLE CYLINDER PETROL ENGINE CRANKSHAFT BY NUMERICAL AND ANALYTICAL METHOD Mr. Anant B. Khandkule PG Student Mechanical Engineering Department, Sinhgad Institute

More information

Structural Analysis of Pick-Up Truck Chassis using Fem

Structural Analysis of Pick-Up Truck Chassis using Fem International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.9, No.06 pp 384-391, 2016 Structural Analysis of Pick-Up Truck Chassis using Fem Rahul.V 1 *,

More information

DESIGN AND ANALYSIS OF PUSH ROD ROCKER ARM SUSPENSION USING MONO SPRING

DESIGN AND ANALYSIS OF PUSH ROD ROCKER ARM SUSPENSION USING MONO SPRING Volume 114 No. 9 2017, 465-475 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu DESIGN AND ANALYSIS OF PUSH ROD ROCKER ARM SUSPENSION USING MONO SPRING

More information

Design and Analysis of Pressure Die Casting Die for Side Differential Cover of Mini truck

Design and Analysis of Pressure Die Casting Die for Side Differential Cover of Mini truck Design and Analysis of Pressure Die Casting Die for Side Differential Cover of Mini truck 1 A Chakravarthi P.G student, Department of Mechanical Engineering,KSRM CE, kadapa-516003 2. R Rama Krishna Reddy,

More information

Stress Analysis of Piston at Different Pressure Load

Stress Analysis of Piston at Different Pressure Load Stress Analysis of Piston at Different Pressure Load 1 PG Student, Department of Mechanical Engineering, SKNSITS, Lonavala, India 2 Professor, Department of Mechanical Engineering, SKNSITS, Lonavala, India

More information

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Design Analysis and Optimization of Piston and Determination of its Thermal Stresses Using CAE Tools Deovrat Vibhandik *1, Ameya

More information

S.Sivaraj #1, A.Hazemohzammed *1, M.Yuvaraj *2, N.Karthikeyan *3, V.Murugan *4, # Assistant Prof., Dept, * U.G Students,

S.Sivaraj #1, A.Hazemohzammed *1, M.Yuvaraj *2, N.Karthikeyan *3, V.Murugan *4, # Assistant Prof., Dept, * U.G Students, Structural Analysis of Ladder Chassis Frame for car UsingAnsys S.Sivaraj #1, A.Hazemohzammed *1, M.Yuvaraj *2, N.Karthikeyan *3, V.Murugan *4, # Assistant Prof., Dept, * U.G Students, Dept of mechanical

More information

International Engineering Research Journal Analysis of HCV Chassis using FEA

International Engineering Research Journal Analysis of HCV Chassis using FEA International Engineering Research Journal Special Edition PGCON-MECH-017 International Engineering Research Journal Nikhil Tidke 1, D. H. Burande 1 PG Student, Mechanical Engineering, Sinhgad College

More information

DESIGN AND FABRICATION OF CHASSIS FOR ELECTRICAL VEHICLE

DESIGN AND FABRICATION OF CHASSIS FOR ELECTRICAL VEHICLE DESIGN AND FABRICATION OF CHASSIS FOR ELECTRICAL VEHICLE SHAIK.BALA SAIDULU 1, G.VIJAY KUMAR 2 G.DIWAKAR 3, M.V.RAMESH 4 1 M.Tech Student, Mechanical Engineering Department, Prasad V Potluri Siddhartha

More information

Vibration Analysis of Hybrid Composite Leaf Spring

Vibration Analysis of Hybrid Composite Leaf Spring Vibration Analysis of Hybrid Composite Leaf Spring S.B. Jadhav 1, Prof. A.V. Karande 2 1 DGOI, FOE, Bhigvan, Pune, Maharashtra India, 2 Prof., DGOI, FOE, Bhigvan, Pune, Maharashtra India ABSTRACT This

More information

ISSN: [Raghunandan* et al., 5(11): November, 2016] Impact Factor: 4.116

ISSN: [Raghunandan* et al., 5(11): November, 2016] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY DESIGN AND ANALYSIS OF GO-KART CHASSIS D.Raghunandan*, A.Pandiyan, Shajin Majeed * Mechanical Department, Final year, Saveetha

More information

Chapter 7: Thermal Study of Transmission Gearbox

Chapter 7: Thermal Study of Transmission Gearbox Chapter 7: Thermal Study of Transmission Gearbox 7.1 Introduction The main objective of this chapter is to investigate the performance of automobile transmission gearbox under the influence of load, rotational

More information

DESIGN AND ANALYSIS OF TUBULAR CHASSIS OF GO-KART

DESIGN AND ANALYSIS OF TUBULAR CHASSIS OF GO-KART DESIGN AND ANALYSIS OF TUBULAR CHASSIS OF GO-KART Prashant Thakare 1, Rishikesh Mishra 2, Kartik Kannav 3, Nikunj Vitalkar 4, Shreyas Patil 5, Snehal Malviya 6 1 UG Students, Department of Mechanical Engineering,

More information

VEHICLE ANTI-ROLL BAR ANALYZED USING FEA TOOL ANSYS

VEHICLE ANTI-ROLL BAR ANALYZED USING FEA TOOL ANSYS VEHICLE ANTI-ROLL BAR ANALYZED USING FEA TOOL ANSYS P. M. Bora 1, Dr. P. K. Sharma 2 1 M. Tech. Student,NIIST, Bhopal(India) 2 Professor & HOD,NIIST, Bhopal(India) ABSTRACT The aim of this paper is to

More information

Design, Analysis& Optimization of Truck chassis- Rail & Cross member

Design, Analysis& Optimization of Truck chassis- Rail & Cross member Design, Analysis& Optimization of Truck chassis- Rail & Cross member Mr. Jinto Joju Thaikkattil 1, Gayatri Patil 2 1 PGScholar, Department of Mechanical Engg., KJCOEMR, Pune, jjt7171@gmail.com 2 Assistant

More information

PIONEER RESEARCH & DEVELOPMENT GROUP

PIONEER RESEARCH & DEVELOPMENT GROUP Design and Stress Analysis of Tow Bar for Medium Sized Portable Compressors Pankaj Khannade 1, Akash Chitnis 2, Gangadhar Jagdale 3 1,2 Mechanical Department, University of Pune/ Smt. Kashibai Navale College

More information

CHAPTER 5 PARAMETRIC STUDIES AND SQUEAL REDUCTION METHODS

CHAPTER 5 PARAMETRIC STUDIES AND SQUEAL REDUCTION METHODS 17 CHAPTER 5 PARAMETRIC STUDIES AND SQUEAL REDUCTION METHODS 5.1 INTRODUCTION Generally, there are a number of methods that have been used in order to reduce squeal for the improvement of passengers comfort.

More information

Design and Vibrational Analysis of Flexible Coupling (Pin-type)

Design and Vibrational Analysis of Flexible Coupling (Pin-type) Design and Vibrational Analysis of Flexible Coupling (Pin-type) 1 S.BASKARAN, ARUN.S 1 Assistant professor Department of Mechanical Engineering, KSR Institute for Engineering and Technology, Tiruchengode,

More information

IJRASET: All Rights are Reserved

IJRASET: All Rights are Reserved Failure Analysis and Design Modification of Propeller Shaft of Bus Sweety P. Mhaske¹, Nitin P. Doshi² PG Scholar Mechanical Engg, Bapurao Deshmukh College of Engg & Technology, Sevagram, Wardha, Maharashtra,

More information

STRESS ANALYSIS OF PISTON USING PRESSURE LOAD AND THERMAL LOAD

STRESS ANALYSIS OF PISTON USING PRESSURE LOAD AND THERMAL LOAD STRESS ANALYSIS OF PISTON USING PRESSURE LOAD AND THERMAL LOAD Vaishali R. Nimbarte 1, Prof. S.D. Khamankar 2 1 Student of M.Tech (CAD/CAM), Rajiv Gandhi College Of Engineering, Research and Technology,

More information

Design and Optimization of HTV Fuel Tank Assembly by Finite Element Analysis

Design and Optimization of HTV Fuel Tank Assembly by Finite Element Analysis Design and Optimization of HTV Fuel Tank Assembly by Finite Element Analysis Ms.Baseera Banushaik PG Student, Department of Mechanical Engineering, Malla Reddy College of Engineering, Secunderabad. Ms.I.Prasanna

More information

Optimization of Four Cylinder Engine Crankshaft using FEA

Optimization of Four Cylinder Engine Crankshaft using FEA Optimization of Four Cylinder Engine Crankshaft using FEA Prasad P. Gaware 1, Prof. V.S. Aher 2 Department of Mechanical Engineering, AVCOE, Sangamner 1 Department of Mechanical Engineering, AVCOE, Sangamner

More information

Transient Dynamic Analysis and Optimization of a Piston in an Automobile Engine

Transient Dynamic Analysis and Optimization of a Piston in an Automobile Engine Transient Dynamic Analysis and Optimization of a Piston in an Automobile Engine Krupal A 1, Chandan R 2, Jayanth H 3, Ranjith V 4 1M.Tech Scholar, Mechanical Engineering, Dr. Ambedkar Institute of Technology,

More information

A STUDY ON THE PROPELLER SHAFT OF CAR USING CARBON COMPOSITE FIBER FOR LIGHT WEIGHT

A STUDY ON THE PROPELLER SHAFT OF CAR USING CARBON COMPOSITE FIBER FOR LIGHT WEIGHT International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 5, May 2018, pp. 603 611, Article ID: IJMET_09_05_066 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=5

More information

Vinayak R.Tayade 1, Prof. A. V. Patil 2. Abstract

Vinayak R.Tayade 1, Prof. A. V. Patil 2. Abstract FINITE ELEMENT ANALYSIS OF TRACTOR TROLLEY CHASSIS Abstract Vinayak R.Tayade 1, Prof. A. V. Patil 2 1 P.G.Student, Department of Mechanical Engineering, S S G B COE&T, Bhusawal, Maharashtra, (India) 2

More information

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: METHODOLOGY Design Parameter [250]

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: METHODOLOGY Design Parameter [250] IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY DESIGN AND ANALYSIS OF COMPOSITE LEAF SPRING FOR LIGHT COMMERCIAL VEHICLE (TATA ACE) Miss. Gulshad Karim Pathan*, Prof. R.K.Kawade,

More information

MULTI-PARAMETER OPTIMIZATION OF BRAKE OF PISTON

MULTI-PARAMETER OPTIMIZATION OF BRAKE OF PISTON 3 2 1 MULTI-PARAMETER OPTIMIZATION OF BRAKE OF PISTON Á. Horváth 1, I. Oldal 2, G. Kalácska 1, M. Andó 3 Institute for Mechanical Engineering Technology, Szent István University, 2100 Gödöllő, Páter Károly

More information

Weight reduction of Steering Knuckle by Optimization Method

Weight reduction of Steering Knuckle by Optimization Method Weight reduction of Steering Knuckle by Optimization Method R.P.Gaikwad #1, Prof.Y.P.Reddy *2 #1 P.G Scholar, Department of Mechanical Engineering, Sinhgad College of Engineering, Pune, India *2 Professor,

More information

Structural Analysis of Differential Gearbox

Structural Analysis of Differential Gearbox Structural Analysis of Differential Gearbox Daniel Das.A Seenivasan.S Assistant Professor Karthick.S Assistant Professor Abstract- The main aim of this paper is to focus on the mechanical design and analysis

More information

ANALYSIS OF GEAR QUALITY CRITERIA AND PERFORMANCE OF CURVED FACE WIDTH SPUR GEARS

ANALYSIS OF GEAR QUALITY CRITERIA AND PERFORMANCE OF CURVED FACE WIDTH SPUR GEARS 8 FASCICLE VIII, 8 (XIV), ISSN 11-459 Paper presented at Bucharest, Romania ANALYSIS OF GEAR QUALITY CRITERIA AND PERFORMANCE OF CURVED FACE WIDTH SPUR GEARS Laurentia ANDREI 1), Gabriel ANDREI 1) T, Douglas

More information

Modular Analysis of Main Rotor Blade of Light Helicopter using FEM

Modular Analysis of Main Rotor Blade of Light Helicopter using FEM Modular Analysis of Main Rotor Blade of Light Helicopter using FEM Mahesh N V 1, Raghu T 2 Schlor, IVth Semester M. Tech(Design Engineering), 2 Assistant Professor 1, 2 Mechanical Engineering Department

More information

Static Structural and Thermal Analysis of Aluminum Alloy Piston For Design Optimization Using FEA Kashyap Vyas 1 Milan Pandya 2

Static Structural and Thermal Analysis of Aluminum Alloy Piston For Design Optimization Using FEA Kashyap Vyas 1 Milan Pandya 2 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 03, 2014 ISSN (online): 2321-0613 Static Structural and Thermal Analysis of Aluminum Alloy Piston For Design Optimization

More information

Design And Analysis Of Two Wheeler Front Wheel Under Critical Load Conditions

Design And Analysis Of Two Wheeler Front Wheel Under Critical Load Conditions Design And Analysis Of Two Wheeler Front Wheel Under Critical Load Conditions Tejas Mulay 1, Harish Sonawane 1, Prof. P. Baskar 2 1 M. Tech. (Automotive Engineering) students, SMBS, VIT University, Vellore,

More information

DESIGN AND ANALYSIS OF THE COMPOSITE SPUR GEAR

DESIGN AND ANALYSIS OF THE COMPOSITE SPUR GEAR DESIGN AND ANALYSIS OF THE COMPOSITE SPUR GEAR Anuj Nath 1, A.R. Nayak 2 1 M.Tech Student, 2 Assistant Professor, Mechanical Engineering, Swamy Vivekananda Engineering College, Bobbili A.P (India) ABSTRACT

More information

Modeling and Analysis of Tractor Trolley Axle Using Ansys

Modeling and Analysis of Tractor Trolley Axle Using Ansys IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 6, Issue 5 (May. - Jun. 2013), PP 88-92 Modeling and Analysis of Tractor Trolley Axle Using Ansys

More information

Fatigue life evaluation of an Automobile Front axle

Fatigue life evaluation of an Automobile Front axle Fatigue life evaluation of an Automobile Front axle Prathapa.A.P (1), N. G.S. Udupa (2) 1 M.Tech Student, Mechanical Engineering, Nagarjuna College of Engineering and Technology, Bangalore, India. e-mail:

More information

Design and Analysis of Go-kart Chassis

Design and Analysis of Go-kart Chassis Design and Analysis of Go-kart Chassis Sannake Aniket S. 1, Shaikh Sameer R. 2, Khandare Shubham A. 3 Prof. S.A.Nehatrao 4 1,2,3 BE Student, mechanical Department, N.B.Navale Sinhagad College Of Engineering,

More information

Design and Analysis of Connecting Rod for High- Speed Application in I.C Engine

Design and Analysis of Connecting Rod for High- Speed Application in I.C Engine Design and Analysis of Connecting Rod for High- Speed Application in I.C Engine Mr. Kailas S. More P. G Student Department of Mechanical Engineering North Maharashtra University SSBTCOET- Jalgaon, India

More information

Static Analysis of Crankcase and Crankshaft of Single Cylinder Four Stroke Diesel Engine

Static Analysis of Crankcase and Crankshaft of Single Cylinder Four Stroke Diesel Engine Static Analysis of Crankcase and Crankshaft of Single Cylinder Four Stroke Diesel Engine Kakade Pratik 1 Post Graduate Student kakadepratik@gmail.com Pasarkar M. D. 2 Assistant Professor mdpasarkar@gmail.com

More information

The effectiveness of CFRP strengthening of steel plate girders with web opening subjected to shear

The effectiveness of CFRP strengthening of steel plate girders with web opening subjected to shear BCEE3-07 https://doi.org/.5/matecconf/086040 The effectiveness of CFRP strengthening of steel plate girders with web opening subjected to shear Mohammed Hamood,*, Wael AbdulSahib, and Ali Abdullah Building

More information

M.E. Scholar (Design and Thermal), I.E.T-DAVV, Indore, M.P., India. 2

M.E. Scholar (Design and Thermal), I.E.T-DAVV, Indore, M.P., India. 2 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY PARAMETRIC ANALYSIS OF SPUR GEAR TO DETERMINE THE EFFECT OF VARIATION OF R.P.M. AND PRESSURE ANGLE ON STRESS PRODUCED Yogendra

More information

KEYWORDS: ANSYS, Clamping effects, Leaf spring, Pro-E. International Journal of Computational Engineering Research Vol, 03 Issue, 10

KEYWORDS: ANSYS, Clamping effects, Leaf spring, Pro-E. International Journal of Computational Engineering Research Vol, 03 Issue, 10 International Journal of Computational Engineering Research Vol, 03 Issue, 10 Leaf Spring Analysis with Eyes Using FEA B.Mahesh Babu 1, D.Muralidhar Yadav 2, N.Ramanaiah 3 1 Assistant Professor, Dr.Samuel

More information

Design, Analysis & Balancing of 5 Cylinder Engine Crankshaft

Design, Analysis & Balancing of 5 Cylinder Engine Crankshaft International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Design, Analysis & Balancing of 5 Cylinder Engine Crankshaft Yogesh S. Khaladkar 1, Lalit H. Dorik 2, Gaurav M. Mahajan 3, Anil

More information

Modeling and Analysis of Two Wheeler Connecting Rod by Using Ansys

Modeling and Analysis of Two Wheeler Connecting Rod by Using Ansys IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 6, Issue 5 (May. - Jun. 2013), PP 83-87 Modeling and Analysis of Two Wheeler Connecting Rod by Using

More information

INTRODUCTION. Research & Reviews: Journal of Engineering and Technology. Research Article

INTRODUCTION. Research & Reviews: Journal of Engineering and Technology. Research Article Aircraft Fuel Manifold Design Substantiation and Additive Manufacturing Technique Assessment Using Finite Element Analysis Prasanna ND, Balasubramanya HS, Jyothilakshmi R*, J Sharana Basavaraja and Sachin

More information

Thermal and structural analysis of 4-cylinder inline engine

Thermal and structural analysis of 4-cylinder inline engine Thermal and structural analysis of 4-cylinder inline engine AKSHATHA SHARMA.T, V. SIVA RAMA KRISHNA (Asst.Professor) DEPARTMENT OF MECHANICAL ENGINEERING MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS) (An

More information

VIBRATION REDUCTION IN CONVENTIONAL VEHICLES BY INCREASING THE STIFFNESS ON THE CHASSIS FRAME

VIBRATION REDUCTION IN CONVENTIONAL VEHICLES BY INCREASING THE STIFFNESS ON THE CHASSIS FRAME VIBRATION REDUCTION IN CONVENTIONAL VEHICLES BY INCREASING THE STIFFNESS ON THE CHASSIS FRAME S. Ganesan and K. Panneerselvam Sathyabama University, Chennai, India E-Mail: ganesuma@gmail.com ABSTRACT The

More information

Design, Analysis & Development of Spur Pinion of Rotary Actuator With Different Materials

Design, Analysis & Development of Spur Pinion of Rotary Actuator With Different Materials IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X PP. 05-11 www.iosrjournals.org Design, Analysis & Development of Spur Pinion of Rotary Actuator With Different

More information

ANALYSIS OF SURFACE CONTACT STRESS FOR A SPUR GEAR OF MATERIAL STEEL 15NI2CR1MO28

ANALYSIS OF SURFACE CONTACT STRESS FOR A SPUR GEAR OF MATERIAL STEEL 15NI2CR1MO28 ANALYSIS OF SURFACE CONTACT STRESS FOR A SPUR GEAR OF MATERIAL STEEL 15NI2CR1MO28 D. S. Balaji, S. Prabhakaran and J. Harish Kumar Department of Mechanical Engineering, Chennai, India E-Mail: balajimailer@gmail.com

More information

DESIGN AND ANALYSIS OF GAS TURBINE BLADE

DESIGN AND ANALYSIS OF GAS TURBINE BLADE DESIGN AND ANALYSIS OF GAS TURBINE BLADE 1 Kottha Srinivas, 2 Mr. M.Prasad 1 PG Scholar, Department of MECH, Methodist COLLEGE of Engineering & Technology. Abids, Hyderabad 500 001. 2 Assistant Professor,

More information

Modal analysis of Truck Chassis Frame IJSER

Modal analysis of Truck Chassis Frame IJSER Modal analysis of Truck Chassis Frame 158 Shubham Bhise 1, Vaibhav Dabhade 1, Sujit Pagi 1, Apurvi Veldandi 1. 1 B.E. Student, Dept. of Automobile Engineering, Saraswati College of Engineering, Navi Mumbai,

More information

Stress and Design Analysis of Triple Reduction Gearbox Casing

Stress and Design Analysis of Triple Reduction Gearbox Casing IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 02 July 2015 ISSN (online): 2349-6010 Stress and Design Analysis of Triple Reduction Gearbox Casing Mitesh Patel

More information

ISSN: [Patil et al., 5(10): October, 2016] Impact Factor: 4.116

ISSN: [Patil et al., 5(10): October, 2016] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY DESIGN AND ANALYSIS OF TELESCOPIC HALFSHAFT FOR AN ALL-TERRAIN VEHICLE (ATV) Chirag Patil *, Sandeep Imale, Kiran Hiware, Sumeet

More information

[Vishal*et al., 5(7): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Vishal*et al., 5(7): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY DESIGN AND ANALYSIS OF ALUMINUM ALLOY PISTON USING CAE TOOLS Mr. Jadhav Vishal, Dr. R.K. Jain, Mr. Yogendra S.Chauhan *M-Tech

More information

New Frontier in Energy, Engineering, Environment & Science (NFEEES-2018 ) Feb

New Frontier in Energy, Engineering, Environment & Science (NFEEES-2018 ) Feb RESEARCH ARTICLE OPEN ACCESS DESIGN AND IMPACT ANALYSIS OF A ROLLCAGE FOR FORMULA HYBRID VEHICLE Aayush Bohra 1, Ajay Sharma 2 1(Mechanical department, Arya College of Engineering & I.T.,kukas, Jaipur)

More information

COMPARATIVE STUDY OF MODAL ANALYSIS ON FLYWHEEL FOR AUTOMOTIVES

COMPARATIVE STUDY OF MODAL ANALYSIS ON FLYWHEEL FOR AUTOMOTIVES COMPARATIVE STUDY OF MODAL ANALYSIS ON FLYWHEEL FOR AUTOMOTIVES Aswin Inbaraj Jaison A 1*, Manoj Kumar G 2 12 PG Scholar, Department of Mechanical Engineering, Regional Centre of Anna University, Tirunelveli,

More information

Finite Element Analysis and optimization of Automotive Composite Drive Shaft

Finite Element Analysis and optimization of Automotive Composite Drive Shaft Finite Element Analysis and optimization of Automotive Composite Drive Shaft S V Gopals Krishna* 1, B V Subrahmanyam 2, and R Srinivasulu 3 1&2 Asst. Professor, Sir C R Reddy College of Engineering, Eluru,

More information

Propeller Blade Bearings for Aircraft Open Rotor Engine

Propeller Blade Bearings for Aircraft Open Rotor Engine NTN TECHNICAL REVIEW No.84(2016) [ New Product ] Guillaume LEFORT* The Propeller Blade Bearings for Open Rotor Engine SAGE2 were developed by NTN-SNR in the frame of the Clean Sky aerospace programme.

More information

Finite Element Modeling and Analysis of Vehicle Space Frame with Experimental Validation

Finite Element Modeling and Analysis of Vehicle Space Frame with Experimental Validation Finite Element Modeling and Analysis of Vehicle Space Frame with Experimental Validation Assoc. Prof Dr. Mohammed A.Elhaddad Mechanical Engineering Department Higher Technological Institute, Town of 6

More information

Fatigue Life Estimation of Chassis Frame FESM Bracket for Commercial Vehicle

Fatigue Life Estimation of Chassis Frame FESM Bracket for Commercial Vehicle Fatigue Life Estimation of Chassis Frame FESM Bracket for Commercial Vehicle Shivakumar M.M 1, Nirmala L 2 ¹M-Tech Student, Dept. of Mechanical Engineering,K.S Institute of Technology, Bangalore, India

More information

Structural Analysis of a Ceramic Coated Diesel Engine Piston Using Finite Element Method

Structural Analysis of a Ceramic Coated Diesel Engine Piston Using Finite Element Method Structural Analysis of a Ceramic Coated Diesel Engine Piston Using Finite Element Method 1 Narsaiyolla Naresh, (M.Tech), 2 P.Sampath Rao, M.Tech; (PhD) Mechanical Dept, VREC, Nizamabad- 503003 Abstract:

More information

Heat treatment Elimination in Forged steel Crankshaft of Two-stage. compressor.

Heat treatment Elimination in Forged steel Crankshaft of Two-stage. compressor. Research Journal of Engineering Sciences ISSN 2278 9472 Heat treatment Elimination in Forged steel Crankshaft of Two-stage Compressor Abstract Lakshmanan N. 1, Ramachandran G.M. 1 and Saravanan K. 2 1

More information

NUMERICAL ANALYSIS OF LOAD DISTRIBUTION IN RAILWAY TRACK UNDER WHEELSET

NUMERICAL ANALYSIS OF LOAD DISTRIBUTION IN RAILWAY TRACK UNDER WHEELSET Journal of KONES Powertrain and Transport, Vol., No. 3 13 NUMERICAL ANALYSIS OF LOAD DISTRIBUTION IN RAILWAY TRACK UNDER WHEELSET Piotr Szurgott, Krzysztof Berny Military University of Technology Department

More information

Ashwani Kumar 1, Shaik Imran Behmad 2, Pravin P Patil 3 1,2,3

Ashwani Kumar 1, Shaik Imran Behmad 2, Pravin P Patil 3 1,2,3 Thermo-Mechanical and Vibration Analysis of the I.C. Engine Piston made of SiC reinforced ZrB2 composite using Finite Element Method (ANSYS) Ashwani Kumar 1, Shaik Imran Behmad 2, Pravin P Patil 3 1,2,3

More information

MODELLING AND STRUCTURAL ANALYSIS OF VEHICLE CHASSIS FRAME MADE OF POLYMERIC COMPOSITE MATERIAL

MODELLING AND STRUCTURAL ANALYSIS OF VEHICLE CHASSIS FRAME MADE OF POLYMERIC COMPOSITE MATERIAL MODELLING AND STRUCTURAL ANALYSIS OF VEHICLE CHASSIS FRAME MADE OF POLYMERIC COMPOSITE MATERIAL Shaik Neelophar Begum 1, S.P.Bhanu Murthy 2 1Department of Mechanical Engineering, VEMU Institute of Technology,

More information

EVALUATION ON FAILURE OF AN AUTOMOBILE DRIVE SHAFT

EVALUATION ON FAILURE OF AN AUTOMOBILE DRIVE SHAFT EVALUATION ON FAILURE OF AN AUTOMOBILE DRIVE SHAFT International Journal of Latest Trends in Engineering and Technology Vol.(8)Issue(3), pp.059-067 DOI: http://dx.doi.org/10.21172/1.83.008 e-issn:2278-621x

More information

Parametric study on behaviour of box girder bridges using CSi Bridge

Parametric study on behaviour of box girder bridges using CSi Bridge Parametric study on behaviour of box girder bridges using CSi Bridge Kiran Kumar Bhagwat 1, Dr. D. K. Kulkarni 2, Prateek Cholappanavar 3 1Post Graduate student, Dept. of Civil Engineering, SDMCET Dharwad,

More information

Thermal Analysis of Helical and Spiral Gear Train

Thermal Analysis of Helical and Spiral Gear Train International Journal for Ignited Minds (IJIMIINDS) Thermal Analysis of Helical and Spiral Gear Train Dr. D V Ghewade a, S S Nagarale b & A N Pandav c a Principal, Department of Mechanical, GENESIS, Top-Kolhapur,

More information

DESIGN AND ANALYSIS OF HARMONIC ANALYSIS OF THREE WHEELER AUTO CHASSIS USING ANSYS

DESIGN AND ANALYSIS OF HARMONIC ANALYSIS OF THREE WHEELER AUTO CHASSIS USING ANSYS International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 12, December 218, pp. 195 111, Article ID: IJMET_9_12_11 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=12

More information

126 Ridge Road Tel: (607) PO Box 187 Fax: (607)

126 Ridge Road Tel: (607) PO Box 187 Fax: (607) 1. Summary Finite element modeling has been used to determine deflections and stress levels within the SRC planar undulator. Of principal concern is the shift in the magnetic centerline and the rotation

More information

Static And Modal Analysis of Tractor Power Take Off (PTO) Gearbox Housing

Static And Modal Analysis of Tractor Power Take Off (PTO) Gearbox Housing Static And Modal Analysis of Tractor Power Take Off (PTO) Gearbox Housing Gopali S Lamani 1, Prof: S.R.Basavaraddi 2, Assistant Professor, Department of Mechanical Engineering, JSPM NTC RSSOER,India1 Professor,

More information

FINITE ELEMENT ANALYSIS OF CONNECTING ROD USING ANSYS

FINITE ELEMENT ANALYSIS OF CONNECTING ROD USING ANSYS FINITE ELEMENT ANALYSIS OF CONNECTING ROD USING ANSYS 1 NIKHIL U.THAKARE, 2 NITIN D. BHUSALE, 3 RAHUL P.SHINDE, 4 MAHESH M.PATIL 1,3,4 B.E., Babasaheb Naik College of Engineering, Pusad, Maharashtra, India,

More information

Assessment of Fatigue and Modal Analysis of Camshaft

Assessment of Fatigue and Modal Analysis of Camshaft ISSN 2395-1621 Assessment of Fatigue and Modal Analysis of Camshaft #1 V. M. Kalshetti, # 2 H.V. Vankudre #1 vmkalshetti13.scoe@gmail.com 1 #12 Department of Mechanical Engineering, Savitribai Phule Pune

More information

Stress Analysis of Engine Camshaft and Choosing Best Manufacturing Material

Stress Analysis of Engine Camshaft and Choosing Best Manufacturing Material Stress Analysis of Engine Camshaft and Choosing Best Manufacturing Material Samta Jain, Mr. Vikas Bansal Rajasthan Technical University, Kota (Rajasathan), India Abstract This paper presents the modeling

More information

Vibration Reduction in Aerospace Bracket through Structural Design

Vibration Reduction in Aerospace Bracket through Structural Design IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 2278-1684 Volume 4, Issue 5 (Nov. - Dec. 2012), PP 47-51 Vibration Reduction in Aerospace Bracket through Structural Design Murali Mohan

More information

Numerical Analysis and Optimization of Passenger Car Drive Shaft

Numerical Analysis and Optimization of Passenger Car Drive Shaft Numerical Analysis and Optimization of Passenger Car Drive Shaft Naveenkumar Dasanagoudar 1, Vinayak Koppad 2 1 Naveenkumar Dasanagoudar, Post graduate student of M.Tech (Machine Design), S T J Institute

More information

EXPERIMENTAL ANALYSIS AND TOPOLOGY OPTIMIZATION OF LOWER SUSPENSION ARM OF CAR

EXPERIMENTAL ANALYSIS AND TOPOLOGY OPTIMIZATION OF LOWER SUSPENSION ARM OF CAR EXPERIMENTAL ANALYSIS AND TOPOLOGY OPTIMIZATION OF LOWER SUSPENSION ARM OF CAR Rupali Dhore 1, Prof. M.L. Thorat 2 1B.E.MECH. (M.E.Pursuing), Mechanical Department, RMD SINHGAD SCHOOL OF ENGINEERING, PUNE

More information

FE Modeling and Analysis of a Human powered/electric Tricycle chassis

FE Modeling and Analysis of a Human powered/electric Tricycle chassis FE Modeling and Analysis of a Human powered/electric Tricycle chassis Sahil Kakria B.Tech, Mechanical Engg UCOE, Punjabi University Patiala, Punjab-147004 kakria.sahil@gmail.com Abbreviations: SAE- Society

More information

Design, analysis and mounting implementation of lateral leaf spring in double wishbone suspension system

Design, analysis and mounting implementation of lateral leaf spring in double wishbone suspension system Design, analysis and mounting implementation of lateral leaf spring in double wishbone suspension system Rahul D. Sawant 1, Gaurav S. Jape 2, Pratap D. Jambhulkar 3 ABSTRACT Suspension system of an All-TerrainVehicle

More information

FINITE ELEMENT SIMULATION OF SHOT PEENING AND STRESS PEEN FORMING

FINITE ELEMENT SIMULATION OF SHOT PEENING AND STRESS PEEN FORMING FINITE ELEMENT SIMULATION OF SHOT PEENING AND STRESS PEEN FORMING H.Y. Miao 1, C. Perron 1, M. Lévesque 2 1. Aerospace Manufacturing Technology Center, National Research Council Canada,5154 av. Decelles,

More information

DESIGN AND ANALYSIS OF SPRING SUSPENSION SYSTEM

DESIGN AND ANALYSIS OF SPRING SUSPENSION SYSTEM DESIGN AND ANALYSIS OF SPRING SUSPENSION SYSTEM N.Sai kumar, Mail id: saikumarnitturi55@gmail.com R.Vijay Prakash, Asst.Prof, Mail id: vijayaprakashr@hotmail.com Dept Of Mechanical Engineering, ANU Collage

More information

Address for Correspondence

Address for Correspondence Research Article DESIGN AND STRUCTURAL ANALYSIS OF DIFFERENTIAL GEAR BOX AT DIFFERENT LOADS C.Veeranjaneyulu 1, U. Hari Babu 2 Address for Correspondence 1 PG Student, 2 Professor Department of Mechanical

More information

Composite Long Shaft Coupling Design for Cooling Towers

Composite Long Shaft Coupling Design for Cooling Towers Composite Long Shaft Coupling Design for Cooling Towers Junwoo Bae 1,#, JongHun Kang 2, HyoungWoo Lee 2, Seungkeun Jeong 1 and SooKeun Park 3,* 1 JAC Coupling Co., Ltd., Busan, South Korea. 2 Department

More information

OPTIMIZATION & ANANLYSIS OF A HEAVY VEHICAL CHASSIS USING COMPOSITE MATERIALS

OPTIMIZATION & ANANLYSIS OF A HEAVY VEHICAL CHASSIS USING COMPOSITE MATERIALS OPTIMIZATION & ANANLYSIS OF A HEAVY VEHICAL CHASSIS USING COMPOSITE MATERIALS U.NANDINI 1, C.PARIMALA 2, K.SAI KEERTHI 3 1,2,3 Assist. professor, department of mechanical engineering, Anantha Lakshmi Institute

More information

STRUCTURAL ANALYSIS OF STEERING YOKE OF AN AUTOMOBILE FOR WITHSTANDING TORSION/ SHEAR LOADS

STRUCTURAL ANALYSIS OF STEERING YOKE OF AN AUTOMOBILE FOR WITHSTANDING TORSION/ SHEAR LOADS STRUCTURAL ANALYSIS OF STEERING YOKE OF AN AUTOMOBILE FOR WITHSTANDING TORSION/ SHEAR LOADS S.K.Chandole 1, M.D.Shende 2, M.K.Bhavsar 3 1 PG Student, Mechanical Engineering, S.N.D. COE & RC, Yeola, Nasik,

More information

INFLUENCE OF CERAMIC COATING ON PISTON SURFACE IN I.C ENGINE

INFLUENCE OF CERAMIC COATING ON PISTON SURFACE IN I.C ENGINE INFLUENCE OF CERAMIC COATING ON PISTON SURFACE IN I.C ENGINE V. Mohan 1, N.Surya 2, D.Srinu 3 1, 2, 3 Assistant Professor, Department of Mechanical Engineering, TKRCET, Hyderabad, Telangana, (India) ABSTRACT

More information

FINITE ELEMENT ANALYSIS OF TIE-ROD FOR SPACECRAFTS

FINITE ELEMENT ANALYSIS OF TIE-ROD FOR SPACECRAFTS FINITE ELEMENT ANALYSIS OF TIE-ROD FOR SPACECRAFTS Kiran S Sankanagoudar 1, Dr.H.K.Amarnath 2, Prashant D. Bagalkot 3, Mukund Thakur 4 1 M.Tech Student, Gogte Institute of Technology, Belgaum, (India)

More information

STATIC STRUCTURAL ANALYSIS AND OPTIMIZATION OF BRAKE PEDAL

STATIC STRUCTURAL ANALYSIS AND OPTIMIZATION OF BRAKE PEDAL STATIC STRUCTURAL ANALYSIS AND OPTIMIZATION OF BRAKE PEDAL Miss. ASHWINI N.GAWANDE 1, Prof.G.E.KONDHALKAR 2, Prof. ASHISH R.PAWAR 3 1PG Student, Design Engineering, APCOE & R, Parvati, Pune 2HOD, Mechanical

More information